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Quantum-electrodynamic corrections to the gravitational interaction of the photon*
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The order-a quantum-electrodynamic modifications to the photon stress tensor are calculated using the finite,
causal methods of source theory. The results are in agreement with those of Berends and Gastmans, who used
dimensional regularization. Although the corrected stress tensor is conformally invariant, a "trace anomaly"
does appear as a consequence of gravitational and electromagnetic gauge invariance.

I. INTRODUCTION

There is, as yet, no complete quantum theory
of gravitation. Instead, we have a theory of mass-
less helicity-two gravitons, which, when gravita-
tional gauge invariance is extended to general coor-
dinate invariance, becomes, in the classical limit,
the strong-field, Einstein theory. " All of the
observed features of gravitation follow from this
weak-field graviton theory (they are the conse-
quences of iterated single-graviton exchange be-
tween classical energy distributions), yet, theoret-
ically, we require of a complete theory that quan-
tum corrections (irreducible multiparticle-ex-
change processes) be calculable. Diff iculties
emerge, apparently, when modifications to gravity
involving the exchange of other particles (electrons
and photons, for example) are incorporated, ' '
although, for the isolated graviton system, the
theory seems to be renormalizable in the first
nontrivial order, at least. '

Our concern here is with a related, but simpler,
question, the purely quantum-electrodynamic
corrections to the interaction of electrons and pho-
tons with gravity. These corrections may be re-
garded as modifications to the energy-momentum,
or stress, tensors of the corresponding particles.
That this question is nontrivial, going beyond the
confines of electrodynamics, is made evident in
the (physically unrealisittc) situation of spin-0
electrodynamics. ' There, an unambiguous quan-
tum correction can be computed only if the initial
description of the interaction of the spin-0 "elec-
tron" with gravity is though the stress tensor that
respects conformal or scale invariance in the lim-
it of zero mass (the "conformal" stress tensor). '
The realistic electrodynamic case automatically
provides a completely calculable quantum correc-
tion because the canonical stress tensors for spin-
—,
' and spin-1 are just the conformal ones. In con-
ventional language, we are saying that this corn-
bined electrogravidynamic system is renormaliz-
able (in this simple application) only for a particu-

lar class of interactions. This observation also
suggests that partial conformal invariance may be
important in quantizing gravitation. In any event,
understanding how such calculations may be per-
formed should be helpful in constructing a more
satisfactory theory of gravitational phenomena, or
in appreciating what the present theory is, in fact,
saying. But it should be borne in mind that such
calculations have no foreseeable practical impor-
tance, since the phenomena are quite small even
in neutron- star environments.

In my earlier researches"' I had calculated the
order-n quantum corrections to the electron stress
tensor, with primary emphasis upon the consist-
ency of the theory. For some reason I failed to
consider the corrections to the photon stress ten-
sor. Now, stimulated by a recent computation by
Berends and Gastmans, "I have returned to this
subject in order to complete my treatment of this
problem. My verification of their result is signif-
icant partly because we employ quite different
methods. Berends and Gastmans use conventional
field-theory methods together with dimensional
regularization. I, on the other hand, use what I
feel are the more physically perspicuous methods
of source theory, '" in which only physical coupling
constants and masses occur, and renormalization
does not arise. In the approach I adopt, the pho-
ton-graviton form factors are generated automat-
ically in a spectral form reflecting the internal
two-particle-exchange process.

Especially of interest in this problem are the
questions of (I) gauge invariance with respect to
both photon and graviton, and the corresponding
choice of an appropriate tensor basis, and (2)
conformal and scale invariance, and their possible
breaking by quantum corrections. For (I), the
basis given by Berends and Gastmans" will be
seen not to be the best for physical interpretation,
although not incorrect. In regard to (2), Berends
gnd Gastmans assert that there occurs a scale vio-
lation, which they attribute to the use of dimension-
al regularization. While I agree with the value
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they obtain for this "trace anomaly, " I show it to
be an expected consequence of the dimension (4) of
the contributing gauge-invariant basis tensors. It
also does not reflect a violation of conformal in-
variance of the electromagnetic stress tensor, for
the dilation Ward identity'" is satisfied here.

the photon field:

qI IPVkX —P

For real photons, obeying

q
2 —qI2 -p

(2.10)

(2.11)

II. PRIMITIVE INTERACTION AND BASIS TENSORS

The canonical stress tensor of the photon is

t+V —gQXgV ~+V+0!gg
eB ~ (2.1)

V —P (2.2)

The primitive interaction of photons with gravity
is thus taken to be the action term

W= dx t4v x h„„x, (2.3)

where h„„ is the gravitational field.
Note that because, outside photon sources, the

stress tensor is conserved,

9 tf'"=Q (2.4)

the action (2.3) is invariant under the substitution"

h„„-h„„+(a,$„+8„$,) . (2.5)

This is a gravitational gauge transformation,
which must represent an exact invariance of the
theory.

When we consider the quantum corrections to
the photon stress tensor, additional tensor struc-
tures arise. It is simplest to express these in mo-
mentum space. We write the general coupling be-
tween two photons and a graviton in the form

where E""is the field strength tensor. This stress
tensor is conformally invariant, as expressed in
part by

there are six tensors satisfying these require-
ments. A convenient way of writing these is the

following:

IPVk)t — B y Pvkk
i

=1
(2.12)

T.""""=(2q "q'"—2q'"q" —Q'g"")(Q"Q"—Q'g""}

(2.13c)

T,""""= (2q "q'"+2q'"q"- Q'g""}(q—q'}"(q —q'}"

(2.13d}

T,""""= (2q "q'" —2q' "q"—Q'g "")(q —q') "(q —q')"

(2.13e)

T.""""= (2q"q'+ 2q'"q"- Q'g""}(2q'"q'"+ 2q
"q'"—Q'g""}

+ (2q' "q'"+2q "q'"- Q'g'")

x (2q "q"+ 2q'"q" —Q'g"") . (2.13f)

where the B, are scalar functions and the tensors
are

T,"v~z = (2q ~ql v+
2qi "qv Q2g gv)(2qllqlx+ 2q llfqx QRg x)

—(2q"q'"+ 2q'"q" - Q'g"")(2q "q'"+ 2q' "q"-Q'g"")

—(2qq'"+2q'"q" Q'g"'")(2q "q-'"+2q'"q" —Q'g"")

(2.13a)

Tg~~& —(2q~qI++2q~~q~ Q g2b&)(Q+Q~ Q2g+~)

(2.13b)

1 (dq) (dq')
W

2 (2v) (2v)
A„(-q')A„(-q)

x I""""(q,q')h„„(Q), (2.6)

Note that T,"""~has been so chosen that it is ortho-
gonal to q or q in each of its indices (it is sym-
metric under q —q'):

I I Vk)t II.V)tk (2.7)

where Q =q+q' is the momentum carried by the
graviton. In determining the form of the tensor
I""""we impose the following four constraints:

(1) It should be symmetric in x, X:

ygvkX P1

ygvkX —
Q

T yVkX p

ggvkk Q

(2.14}

(2) It should be invariant under interchange of
the photon variables:

and it is traceless with respect to the graviton in-
dices

IPVKX(q ql) P Ilk'(q/ q) (2.8) y JJVk Qk (2.15)

q Igvkk Pk (2.9)

(4} It should be gauge invariant with respect to

(3} It should be gauge invariant with respect to
the graviton field:

Not surprisingly, it corresponds to the free photon
interaction through (2.1}.

To see this, we now recognize that the real pho-
ton fields in (2.6) are proportional to polarization
vectors,
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A„(-q') =~'„A(-q'),

A„(-q)=e„A(-q),

satisfying

& q =Kg=0.

(2.16)

(2.17)

Employing (2.17) we obtain three independent re-
duced tensors:

8K)L ~l ~ yf PKX1
1 2q2 f V 1

= —
Q. ([2( 'q}( q'} —O' 'J(2q"q'"+2q"q'" —Q'g"")1

—(2&q'q" —Q'e')(2e'qq'" —Q'e'")

—(2eq'q" —Q'e")(2e'qq'" —Q''")),

gk)L- g/g gf Ilk)t
2 Jl P 2y3

=(2(~'q}(~q'}—Q'«'J(Q "O'-QY'}

=!2(~'q)(&q') —Q'«'J(q —q')"(q- q')".

(Note that

~l~ ZIQPKjl 2Q26Ãk+gKh OKER)p 8 1 2 3

(2.18a)

(2.18b)

FIG. 1. Causal diagram representing the production
of an electron, pair by a virtual graviton, and its Mb-
sequent annihilation into bvo photons. Upon space-time
extrapolation, this process gives rise to an electro-
dynamic modification of the photon stress tensor.

itive interaction between graviton and photons.
This is shown in Fig, 1, which represents the pro-
duction of a real electron pair by a virtual gravi-
ton, and its subsequent annihilation into two real
photons. The action term representing the ee - yy
process ls

Here, gravitational gauge invariance appears as
8k}'—qI 8K)t —0 q 8K)' —q 8k)t —0 (2.19)

dx) dh g2 x p eq &A, x

X G, (x —x')eqyA, (x')g, (x'), (3.1)

It is permissible and necessary to divide by Q' in
defining 8,", since the numerator there vanishes
at Q' =0. The basis (2.18) is thus free from kine-
matic singularities and zeros." The photon-
graviton coupling of (2.6) can now be written in

terms of the stress tensor coupling in (2.3), where

fax(Q) — q q (2v)46(+q/ Q}
1 !d (d '
2 (2v)'(2n)'

where the causal labels 2, 1 represent the fields of
incoming and outgoing particles, respectively, and

g is the charge matrix. (We are using real fields. )
The relation of the electron fields to their (earlier
acting) sources,

(3.2)

I, free photon.
Z,„=0I

(2.21)

»( q') ~(-q)+6("-(q )~q;(Q)
f=a

(2.20)
In particular, the free photon coupling given by
(2.1) corresponds just to 8"".

P(x)~'=* d"„e'""n(P'b'(m+WP'),

where the momentum-space measure is

(&p)
P (2}8200

{po)2 —$2+'"2
(3.3)

This observation provides the reason for defining
the tensor 8,"" in the way we did, for it then alone
describes the primitive interaction. %'e now ask
how (2.21) is modified when the lowest-order elec-
trodynamic corrections are included.

III. CAUSAL 7%0-ELECTRON EXCHANGE

There is exactly one causal process rvhich gives
rise to the order-n modification of the above prim-

allows us to rewrite (3.1} in terms of the two-
electron effective source

'n(f)n(&')~'I. „
'"„„(0+f")b'"(0 0-')"+&(0-P')"J,-(3 4)

which involves the canonical stress tensor of the
electron. Summing over charge space, we find
the result for the causal exchange process may be
written in the form of (2.6) with
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f""""=--,'e'i d(d, d(d, (2. ii)'&(P+P' —Q)

x Tr m —yp y" p- p' "+y" p —p' " m+yp' y" ---, , 2
— y"

(p'- q')'+ m'

~1 ~ f((v((x i(s (iaaf 2)e((A
P (3.6)

Evidently, this result is gravitationally and elec-
tromagnetically gauge invariant, in. fact, it sat-
isfies conditions (2.V)-(2.10), because of the
causal restriction. Hence, it can be written in
the form (2.12).

The evaluation of the scalar func". ions there is
extremely straightforward. If one first works
out the integration over momentum space, one has
only to compute the trace of four Dirac matrices.
Reducing the six resulting gauge-invariant tensors
by use of the polarization vectors according to
(2.18), we find (c( =e'/4ii)

-Q'=M' ~ 4m'. (4.1)

dM2
. r, (x-x', M'), (x-x')0&02'

~ ~

(dQ) dM2 eio(x - (." )

(2m') 2vi Q +M' —i e '

We remove this restriction by the process of
space-time extrapolation: In essence, if x' repre-
sents the point where the exchanged pair is pro-
duced, and x the point where it is annihilated

18K- 101' —3(1—W')(3 —f') )n
12

1+/
6), =-, (1- t') 2t - (1 —P') ln4M' 1 —f

(3.7a)

(3.7b)

al, =, (( —('((((( —(8 —('&1n ). (3.'Ic)

Here we have introduced the mass M of the ex-
changed excitation,

(3.8)

Q
gK)t O (4.3)

while the corresponding property for 83" (2.18c)
requires only the kinematic restriction

(x —x')' unrestricted. (4.2)

Appearing in the last form here is the general
propagation function of an excitation having mass
M. After the causal restriction is removed in this
manner, Q is, of course, no longer confined to
timelike values.

In carrying out this extrayolation it is essential
that the gauge-invariance properties of gravita-
tion be maintained. Now 0," (2.18b) is identically
conserved,

and the abbreviation
q2 q/2 (4 4)

4m2g'=1-, , 1&)~O. (3.9)

2
3

1 m' m' M'
M M ' M

(3.10a)

(3.10b)

1V. SPACE-TIME EXTRAPOLATION: FORM FACTORS

In the previous section we derived the action ex-
pression describing the causal exchange of an
electron pair between its production by a virtual
graviton field and its subsequent annihilation into
a photon pair. In momentum space this corre-
sponds to a timelike momentum of the exchanged
state

In the following, we will require the behavior of the
amplitudes as M'-~, or f -1:

in which

1
= -—rR„„(Q) (4.5)

&..(Q) = (Q'g. .gi,.—Q.Q.g,„
-Q.Q.~,.+ Q, Q.z..)«"(Q) (4.6)

But the conservation of Hi' (2.18a.) necessitates
the use of the photon field equations, embodied in
(2.17). More generally, 8f', representing the Max-
well stress tensor, (2.1), expresses the full gravi-
tational gauge response of the photon field. The
quantum corrections to this term must be invariant
under the gauge transformation (2.5). This will be
achieved if, before space-time extrapolation, we
make the gauge transformation

1»..(Q) -~~(-Q'», .+ Q.Q'»„+ Q, Q"»., —Q, Q,»)
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is the gauge-invariant field strength, the (linear-
ized) Riemann tensor. " [Note that in a gravitation-
al Lorentz gauge, where

Q"h„), —pg„h= 0,

the Riemann tensor becomes

ft, .(e) = e'&„.(@.I

(4.7)

Ensuring gauge invariance by making this re-
placement, we are free to make a space-time ex-
trapolation, as sketched in (4.2). After extrapo-
lating, we can simplify R„„by use of (2.18a) and
write the result in the form (2.20), with the form
factors now appearing as (with the primitive in-
teraction now incorporated)

1 '" dM $(M )
2m„q 2 M Q+cV -i&'

dM 8, (M'}
(4 9b)Q'+M~- R

(4.9a)

oo

F...(e)=-
27

An alternative way of appreciating the factor
-Q'/M' in (4.9a) is to regard it as enforcing the nor-
malization of the "gravitational charge" of the pho-
ton, expressed through the stress tensor (2.1).

gdf —, --, ln = ln'x,J
1 1+&

2 g2

where we have introduced

4m'
u =1+- 2, x =---1

(4.10)

(4.11)

The integral (4.10) may be, for example, simply
evaluated by contour methods. The form factors
(4.9) are thus explicitly found to be

Note that the extrapolation embodied in letting the
upper limit of the integrals in (4.9) range up to in-
finity is valid, since the spectral functions have
significant values only fox' low-mass states; that
is, (3.10) indicates that the spectral integrals are
convergent.

As emphasized in Ref. 9, the spectral represen-
tation (4.9) is quite sufficient and convenient for
most purposes. (For example, see below. ) How-
ever, in order to make contact with the results of
Ref. 10, we note that we can very easily evaluate
the integrals occurring in (4.9), when Q') -4m'.
Only elementary functions appear, unlike in the
electron case9'0: in particular, we encounter

2~ 1 (-35+ 226x' —35x') 1 1+x' x'
Ey —1 ——

72 (1 2)2
—

3 (1 2)g (1 -7x +x ) lux+(1 2)4(l —4x +x ) ln x (4.12a)

1 1 1+ 34x'+x~ 2x'(1+x') 4x'
w Q' l2 (1 x'}' (1 —x')' (1 x')~ (4.12b)

1 ' 1 (-1+ 86x' -x') 6x'(1 + x') 2x'
v Q 12 (1-x')' (1 x')' (1 x')'

Note that, in spite of their appearance, I, and E,
are finite at Q'= 0. These explicit results agree
with those of Berends and Gastmans, "when the
linear combinations corresponding to their basis
are formed. Particularly interesting is the limit

Q -~ or x-0;
then

35 1 m2
E -1+——+- ln~36 3

(4.13a)

1 1
2g3 ~Y (4.13b)

(4.14)

where f, ,(g} are given by the quantities in large

The leading logarithm in (4.13a) follows immedi-
ately from the asymptotic behavior of S, (3.10a),
while the behavior in (4.13b) ismostsimplyfounddi-
rectly by evaluating the elementary integrals

parentheses in (3.7b), (3.7c). Note that one con-
sequence of using the proper basis is that the lead-
ing logarithm is concentrated in a single term.

V. SCALE INVARIANCE

There are two limiting situations relating to
scale invariance in this problem. On the one hand
we ask how the conformal invariance of the elec-
tromagnetic field, as expressed initially by the
vanishing trace (2.2}, is maintained when quantum
cox'rectlons ax'e included, This question ls an-
swered by the dilation Ward identity, ' which here
fox real photons requires

g +i(Q)e,".(e, 4') (5.1}
Q =q+q'=0

Since

(5.2}

which just reexpresses (2.2), and

(5.3)
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m'-0 . (5.4)

In fact, this is true before space-time extrapola-
tion, since according to (3.10b)

the requirement (5.1) is trivially satisfied since
F;(Q =0) is finite.

The situation in the opposite limit, Q -~, is
not so simple. We would naively anticipate that
scale invariance would be achieved in the limit as
the electron mass tends to zero,

The situation is clarified by contrasting with the
case of quantum corrections to the electron stress
tensor. "There, the dimension of the new basis
tensors which emerge from electrodynamic cor-
rections is 2, so the form factors are dimension-
less. (We here incorporate an extra factor of m

from the spinors. ) Scaling behavior of the spec-
tral functions then implies scaling for the form
factors: (We use the notation of Refs. 6 and 9,
which should not be confused with that used above. }

lim, , =0 .
m~0

(5.5) mll, , -m' jV' (5.9a)

But the trace of the stress tensor does not vanish
after space-time extrapolation, since

g F;(Q)9~".(q, q')
j=i

= —
I. 2(e'V) (eq') —Q'«'~ Q'(3F,(Q)+F, (Q))

-t 2(~'e) (e e') —Q'«')—3' (5.6)

as m-0, according to (4.13b). This is the trace
anomaly discussed by Berends and Gastmans. "

The origin of this phenomenon lies in an incom-
patibility between gauge invariance (gravitational
and electromagnetic) and scale invariance. The
former requires that the basis tensors 82" and
83"", which are free from kinematic singularities
and zeros, have (mass) dimension 4. Thus,
since

implies

, mrr, ,(M')
m 3 2 Q2

m Q——ln —-0 m2-0 .Q' (5.9b)

m2
F2- 2

mm Q

2 2

(5.10a)

(5.10b}

leading to a vanishing trace at m =0:

Actually, a slightly more delicate argument is re-
quired, for the spectral integration corresponding
to the two-photon intermediate state extends down

to zero. We find, from the explicit results given
in Ref. 9, that the precise asymptotic behavior is,
as m'-0 or Q2-~,

has dimension 2, F, , have dimension -2.
If we did not have the causal scaling property

(5.5), we would anticipate

(5.7)

which is sufficient to ensure that the extrapolated
spectral integrals (4.9b) converge. But then we
would have

1 Q2
F -—ln — Q'-

2, 3 Q2 2 (5.8)

leading to a logarithmically growing anomaly in-
stead of (5.6). The actual situation involves im-
proved high-M' behavior of the spectral functions
dl, „(3.10b), which leads to the improved high-Q'
behavior of the form factors F, „and hence to
the "softer" anomaly given by (5.6).

t" (Q) = . . (2v)'6(P+a' Q)-
(2w)' (2w)'

&& Q'(F, + 3F,)s V(Pb'0(P') -o (5 11)

The photon situation that we have discussed in
this paper leads to a "scaling anomaly" precisely
because of the higher dimensionality required of
the basis by gauge invariance. The asymptotic
form of@2 „asm'-0, leads to a threshold singu-
larity in the spectral integration in the same limit,
necessarily implying a constant limiting value for
the trace of the stress tensor. But the breakdown
of scale invariance so induced is the weakest pos-
sible.
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