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Gravitational Lagrangian and internal symmetry
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The field equations of general relativity, when interpreted as a set of equations in a Riemannian manifold
endowed with internal space at each point, are shown to be derived from a variational principle. The failures
of other approaches to recover the full general-relativity theory are traced to the absence in their Lagrangians
of direct coupling between space-time and internal structure. Examination of this observation sheds some light
on the fundamental implications of the intimate relation between space-time covariance and internal
symmetry.

I. INTRODUCTION

In the classical formulation of Einstein's theory
of gravitation the dynamical variables are the
components of the metric field g»(x) correspond-
ing to the Riemannian manifold of space-time, to-
gether with the physical fields ("matter field" )
present. The field equations are derived from a
principle of least action

5I= 0, I= L ~gd'x

with a Lagrangian L. This Lagrangian decomposes
into two parts: the gravitational Lagrangian, L„
which is equal to the Ricci scalar. R, and the mat-
ter Lagrangian L„, viz. ,

L Lp+ KL~= A + KL~

(s is a coupling constant). Variation with respect
to the metric field in this action integral leads to
the Einstein field equation

1+
p v & 8 ii v R = -KT ii v

It has been found, however, that from a theo-
retical as well as a computational point of view,
it is desirable to recast the theory as a formalism
in space-time with internal structure, posessing
SL(2, C) symmetry. This is the conceptual back-
ground for the two-component spinor theory in
curved space-time. ' This approach is also the
basis for the tetrad calculus and the Newman-
Penrose spin-coefficients formalism, ' and is use-
ful for the analysis and classification of gravita-
tional fields. Furthermore, it has been shown by
Carmeli' that, using such a framework, the theory
of gravitation can be cast into a Yang-Mills-type
formalism. Yang in his recent integral formalism'
again relates gauge fields and gravitation when the
latter is expressed as an SL(2, C)-covariant theory.
This is one step in the current tendency to bring
general relativity more in line with the prevalent
trends in particle physics.

It is therefore of importance to find out whether
in formulations of that type the Einstein field equa-
tions can be derived from an action principle
under the variation of the fundamental quantities ap-
pearing in the particular formulation. More spec-
ifically, the question arises whether an action
principle can yield the field equations without add-
ing in the process ad Itoc quantities. A partial
answer to this question has been given in a few
articles, ' where it is demonstrated that an appro-
priately chosen Lagrangian leads to field equations
which are related to Einstein equations. These
equations, however, are weaker than the full Ein-
stein equations, and must be augmented by addi-
tional conditions in order to recover general rel-
ativity. Furthermore, auxiliary quantities must
be artificially introduced in order to facilitate the
derivation. Carmeli's method' of first-order form
suffers from the same latter deficiency. The
merits of the aforementioned schemes lie in their
Lagrangians being functions of gauge fields, an
approach which is not attempted in the present
article. Likewise, the equations obtained by
Yang' from a variational principle constitute a
vast generalization of general relativity, and ad-
mit solutions which are physically unacceptable. '
It is the purpose of this paper to show that the
full Einstein field equations are obtained from an
SL(2, C)-invariant Lagrangian, which is consid-
ered as a functional of the dynamical variables
alone, without any necessity to introduce any
auxiliary quantities. This Lagrangian, in contrast
to the Lagrangian considered by others, mixes up
the space-time and internal structures.

In Sec. II the framework is set and the notation
is established. A basic decomposition of the cur-
vature is represented in Sec. III, and in Sec. IV
the Lagrangian is introduced and the resulting
Euler-Lagrange equations are derived. The equa-
tions as applied to vacuum and to space-time ad-
mitting a neutrino field are discussed in Sec. V.
The last section is devoted to concluding remarks,
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and in the Appendix a few identities used in the
article are stated.

II. RIEMANNIAN STRUCTURE IN TERMS OF SPINORS

where the spin connections I' » are determined
by the usual requirements for differentiation
(Leibnitz rule, etc.) together with

&AB)p =o
v0' Ah]p

(2.2)

(2.3)

The spin curvature R»„v is defined by the com-
mutator of the covariant derivative

A A A B" luv " tv'

and is expressed in terms of the connections
A A A A C A CR „„=I'

~
-I', „+I' vI' „—1" „1

The spin curvature is equivalent to the F„„ma-
trices in Carmeli's gauge formulation, ' and is re-
lated to the Riemann curvature tensor Rq, » by

& ~Xr
RABpv 2 ~ AB~"Xvpv

AB AB . ~

~Xrpv ( kg ftABpv + kg ttABpv )

where

AB 1 ~ v I AC BD AC BDy
pv 2~CDK&p 0v +v 0p I y

AB &e (
CA DB CA DB)—26C D 0'~ 0'v —0'v 0'~ ~

(2.4)

(2.5)

(2.6)

III. DECOMPOSITION OF THE SPIN CURVATURE

The three bivec tors S„„',S„v ' = S&„',S„v"and
their complex conjugates are six independent com-
plex bivectors (as can be shown with the aid of the
"completeness relations" in the Appendix), and
hence serve as a basis in the space of complex bi-

In the standard spinor algebra in curved space-
time' a one-to-one correspondence is set between
vectors $„ in the Riemannian manifold of space-
time (endowed with metric tensor g»), and Herm-
itian spinors )Ag, viz. ,

~AB +AB~p 7 ~ JAB~

The connecting quantities crA&B satisfy the relations
~ ~

(CAC CBD +CAC CBD) g ~AB (2.1)

p. , v=0, 1, 2, 3, A, B =0, 1 .
The approach to be followed here is to take the

spinor vecotrs 0„"Bas the fundamental quantities
of the theory, and to construct the Riemannian
metric out of the spin structure. Consequently,
Eq. (2.1) is the definition of the metric g„„.

Covariant derivatives of spinors are defined' by

pv
RABCD 2S CDRABp v

pv .~
RABCD 2S CDRABp v

(3.2)

Contracting (3.1) with S""" and using the "com-
pleteness relations" of the Appendix and (2.4), one
finds

AB0 —= RAB =-4 R ~

Furthermore, a similar but longer calculation
shows that the coefficients R»cD are related to the
trace-free Ricci tensor:

pv ~ . 1
1ABCD 20 ABCD(~pv ggpv+)

~ ~

1 ABCD ~ ~

pv 4gp vR = 2gpv RABCD 7

(3.3)

where g""ABcD is the totally symmetric spinor ten-
sor defined in the Appendix.

In fact, RABcD is equal to the spinor 4 ABcD in the
Newman-Penrose formalism. '

For further reference it is mentioned here that
the symmetries of RABCD (&ABCD &ABDC = &CDAB)
entail

C
RACB 2 0CAB (3 4)

IV. THE GRAVITATIONAL LAGRANGIAN AND ITS
VARIATIONAL DERIVATIVE

If the theory is confined to quantities which are
of, at most, second differential order in the 0 "»,
and linear in the second derivatives, then the only
concomitant of the fundamental quantities 0 "»
which is scalar under coordinate transformations
in space-time and invariant under the action of the
group SL(2, C) is (up to a constant, which contri-
butes only a cosmological term)

L,,= S~vABR „=20=='R .ABpv 2

Variational principles of this type have been con-
sidered' from other points of view. Our calcula-
tion, which agrees with the aforementioned re-
sults, will be based on the decomposition scheme
of Sec. III, thus gaining in simplicity and brevity.
Thus let us consider the change of

v, d-g d'*==, fgd-gd'*

under the variation

AB + AB 0 AB

For this purpose we have to express the variations
of the quantities appearing under the integral sign

vectors. The spin curvature R»„„ for fixed val-
ue of (A, B), is a complex bivector and therefore
can be uniquely expanded in terms of the basis

CD . ~ CD
RABp v RABCD I1 v + RABCD p v (3.1)

where the coefficients are given by
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in terms of 5C"» or 5a'„. Using (2.1) one finds

AB . Ak
&gpv=&pAB~&v + 0'vAB&0'p

5gpu = ~g ~ AB5&p
1

AB CD ABg v
ET ~

— 0'jf {XV
0'

ps' uAB [tiA. g u]BC + tp B g u]AC

S"""58 =V" with V" =2S"" 5F"

The last relation, which is coordinate- and
SL(2, C) -invariant, can be most easily verified in
a *'geodetic" coordinate system and spin frame,
adapted to the point under consideration. In such a
coordinate system and spin frame the fundamental
quantities c"AB are constant (at the point) and re-
duce to the Pauli matrices, and I'"» =0 (at the
point).

Taking these relations into account one finds

5(l-gLJ =5(V-gS""ABltAB„„)

0 0

—1/-g V („+2Mg (Itchy cf B(7 lr AB + A)50'p

Finally, using (Al), (3.4), and substituting (3.2),
we conclude

5(~gL, g=a gV"-)„+2v-g(IIAcBBC"c

+ B Acr"AB)5cq . (4.1)

Now as usual we considex vaxiations 50& such
that they and their first derivatives vanish on the
boundary of integration. Under these assumptions
the vector V" too vanishes on the boundary and by
Gauss's theorem the divergence ~g V"

~ „
=(~g V") „does not contribute to the Euler-
Lagrange equations. Thus (4.1) leads to the field
equations

RRACBDO' +Qg AB =-II,'g AB
PCD p . p (4.2)

(&".--'5".It) C"AB

V. APPLKATION TO VACUUM AND NEUTRINO

In the ease of a vacuum, the field equations (4.2)
reduce to

2+ACBN +~& AB =0.
Contracting with o„AB we find this equation to be
equivalent to the pair

a=0,
~Acth= 0

y

which in turn are equivalent to

5(~iLB)
~g 5c~AB

That (4.2) is indeed equivalent to the Einstein
equations is confirmed with the aid of (3.3), where-
by we find that the left-hand side of (4.2) is equal
to

and these are the Einstein vacuum field equations
A„„=0.

For a space admitting a neutx'ino field qA, the
matter Lagrangian I„is taken to be

B ( i l AB i i q l AA)
A j)

Variation of qA and q~ in the action integral leads
to the Euler-Lagrange equations

qA, AB= 0 (and c.e.),
i.e. , the Acyl equations for the neutrino field.
This equation can now be used to find the "energy-
momentum spinor vector" T"», to be substituted
in the right-hand side of (4.2), namely in order to
calculate the variational derivative 5{v' gL„)/-
6o„AB. The variational variables g „" appear in
~g (the contribution of this term is known from
Sec. IV), and in the spin connections I'"B in I„.
Thus

5L,„=f(riA, „q' qAri3, „)5& „;
+ &&"&'(o"cB«'A. —c"Ac51' B.)

First observe that the indentity

0 = AB = Ah —1 a AB+ I A ch
JL I v u ~ v u, v )t Cv

CV&P,

yields the following expressions for the variation
of the spin connections:

51 A 1&u 5[(5& A5) A55Z4 ]

=+Boo ~(5C B5)le+& B55F g 8 ~

(Again this relation is most easily verified in a
"geodetic" coordinate system and spin frame. )
Substituting in (5.1), the terms containing 51'"„„
cancel, and we have

~ i @CD Ak
B (qcIAB% ic iDlAkro

4 e

+ ,'i(S""Aerial-c S""B5riAqc—){5lr„AB),„.
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with

P'= —,' (S"—"'„3)3) —q""f,53)„3} )6 „"
Again, the divergence term does not contribute to
the variational equations.

The contribution of the variation of ~g, i.e. ,
f.„5~g, vanishes also due to the neutrino equa-
tion. Hence we conclude from (5.2)

1 5(v gf „)-
go Ah

3 (')A(cb&fj — )A&i)(cf)

.s f cb+ t C l AB"ID t C~D I AB (5.3)

From the field equations thus obtained, viz. ,
(5.4)

After some manipulations the following expression
is obtained:

B ~ le 33( )A(CD )8 )A)B(CS

+ ~Cf AB~D ~C IDI AB&~
B Bi V. CJ5 AB

A»» into a form where all the indices appear on
the same footing. This is accomplished by the
usual way of changing tensorial indices into spin-
ollal indices, viz. ,

+AB|1V +ABPQX Y 0 Pg + X Y +ABP v

Now the coupling emerges naturally:
AP BX QY~ . . ~puAB~

A BPQXY ABP v

and this is precisely the Lagrangian of the present
work, which indeed leads to the full general-rela-
tivity field equations. (We mention in passing that
the program outlined here can be carried out,
mutatis mutandis, within the framework of spinor
calculus in the five-dimensional unified theory of
relativity, 0 thus tying up the electromagnetic field
with internal degrees of freedom. )

The last observation may provide more insight
into the centrality in general relativity of the in-
separability of space-time aspects and internal
group, and into the fundamental role played by the
intimate relation between general covariance and
internal symmetry.

with T"» given by (5.3), the familiar form can be
recovered. Contracting (5.4) with o ~ yields

flACBD 43(((&AICD)B -&A)BicD

+)CRAB )D )C%(AB)

VI. CONCLUSION

It has been demonstrated that general relativity
can be viewed as a theoxy involving the fundamen-
tal quatities c„" alone (along with external phys-
ical fields). The field equations are derived from
a variational principle, the gravitational Lagran-
gian being

Sp ll ABg
0 ABPV

It will be instructive to compare this Lagrangian
to other Lagrangians considered recently, "'
which have not led directly to the full general-
relativistic field equations, but have nevertheless
been adopted by proponents of the gauge-field ap-
proach to gravitation. A typical Lagrangian pro-
posed by those authors is (in our notation)

B»„„A "'. In such a Lagrangian the space-time
indices ()4, v) are contracted with space-time in-
dices, and internal-group indices (A, li) are con-
tracted with internal-group indices, and no mixing
occurs. The only way to couple directly indices of
one kind with indices of the other kind is to recast

APPENDIX: ALGEBRAIC PROPERTIES OF THE SI p

Several properties of the basic quanti, ties 8»",
which are used in this work, are listed here. All
of them can be verified from the definition (2.6)
and the relations (2.1).

"Completeness relations" are

S|'" 8 cD=O 'e +5
P, V A B A B

BB

SPV g CD 0AB PV

(e„„„,is the alternating tensor e„„z,= v-ge„„z„
~ 1334

Single-jadex contraction yields

ABS )CD 3 (~ A(C~D)B + B(C~D)A
PX. V & PV pv

+ ~A(C&D)Bg )

LCD 0 ABCD

where g"'»cD is the totally symmetric spinor
tensor

ABCD 0 A(C + BD)
PV .. — (P . V) .

((} ABCD 0 ABC)) 0 BACD (I AD!Et gPPN ABCD

=0). Another useful identity relates products of
g's with 8's:

& ABO CD
—& AB& Ca AC BD BD AC

(A1)
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