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collisions of black holes: The zero-fretluency limit
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The zero-frequency limit (ZFI.) of the energy spectrum (dF/dcodA) for the gravitational radiation emitted
during the scattering or collision of two particles is investigated. If the asymptotic trajectories have constant
velocities, at least one of which is nonzero, then the ZFI. of the spectrum is flat and can be easily calculated.
These calculations are made for the cases of distant encounters or head-on collisions of two compact objects,
and comparisons to previous methods are made. It is found that the ZFI. not only gives the exact low-
frequency results, but that it provides an estimate of the total energy radiated, its polarization, and its angular
distribution. Applied to the high-velocity collision (V -1) of two equal-mass black holes it predicts an
isotropic angular distribution of gravitational radiation with an efficiency of order unity

I. INTRODUCTION

%hen two bodie@ gravitationally scatter or col-
lide, the accelerations involved cause gravita-
tional radiation to be emitted. If the incoming and
outgoing trajectories asymptotically have constant
velocities, at least one of which is nonzero, then
R technique exists' "9to calculate exactly the zero-
frequency limit (ZFL) of dF/A&d A, the energy
radiated per unit frequency per steradian. One
finds that the energy spectrum is flat as &-0, a d
therefore the ZFL also gives an estimate of the
total energy radiated as well as of its angular dis-
tribution. This estimate is obtained by multiply-
ing the ZFL by a cutoff frequency (d„whose value
depends on some physical cutoff in the particular
problem. Further, since this is the very-long-
wavelength limit (&u '» size of the interaction re-
gion), the details of the internal structure of the
objects as well as the details of their scattering
are irrelevant. Therefore this limit should re-
liably describe even the scattering or collision
of two black holes subject only to the above-stated
restrictions on their asymptotic trajectories. I
use the ZFL technique in Sec. II to calculate the
zero-fx'equency gravitational bremsstrahlung pro-
duced by distant encountex s or head-on collisions
of two objects. In Sec. III, the exact ZFL answers
and the approximate values for the total energy
radiated are compared with previous calcula-
tions' "of these two problems using other tech-
niques.

II. THE ZERO-FREQUENCY I.IMIT

The ZFL technique was originally derived from
quantum arguments, "but it is equivalent to a
purely classical calculation'(see Appendix). 1
shall use the notation of Feynman' since his me-
thod seems the easiest to apply. Let P" repre-

sent the 4-momentum of the Nth particle
(&" P" =~„'), q the propagation 4-vector of
the outgoing gravitational x adiation, and c&" the
polarization tensor of type 1(+or x)." Then the
Feynman-Weinberg-DeWitt (FWD} amplitude for
emission of such gravitational radiation from a
classical scattering problem is

~N~pv~N ~N qcf (2.1}

where q„=+1 (-1) for incoming (outgoing) par-
ticles. The frequency ~ of the radiation emitted
in the direction n, where n n=l, is given by
q = &u(1, n). The analogous amplitude for the
emission of electromagnetic r adiation is

(2.2)

where e& is a polarization vector of the appro-
pr iRte type.

The energy radiated by gravitationa1 radiation
per unit frequency per steradian at zero fx'equency
is given by (c =1)

dE, 6
d(ud Q & 2v (2.3)

(a
dQ 2m

(2.4)

The total energy is then obtai. ned by integx'ating
over angle and summing over polarization:

This is the key formula I will use in the calcula-
tions below. One sees that the energy spectrum
is flat as e-0, which suggests there exists some
cutoff frequency ~, above which dE/dku rapidly
drops to zero. Using an ru, picked from physical
considerations for the particular problem, one can
then use (2.3) to get an estimate of the total energy
radiated in polarization I into solid Rngle 0:



2070 LARRY SMARR 15

FIG. 1. The coordinate system used for the gravita-
tional scattering of a small mass m by a large mass M
with impact parameter b. The initial momenta P; of m

lies along the z axis. The final momenta Pf has been
deflected through an angle R into the XZ plane. During

the process, gravitational radiation is emitted in the

(8, ft)) direction with momentum. q = con.

(2.5)

Again, the values given by (2.4) and (2.5) should
be considered estimates correct to order unity,
while the ZFL, Eq. (2.3), should give the exact
answer at zero frequency. H'om here on I set
c =G =1.

Turn now from the frequency dependence to the
angular dependence. Using (2.1}with P = ym(1, v)
and v n =cos8, one finds a -sin'8/(1 —v cos8).
As FWD point out, this means the amplitude for
gravitational-radiation emission, in the limit
v-1, does not show the sharp forward peaking
(8= 0) that electromagnetism does. This is be-
cause the amplitude for emission of electromag-
netic radiation (2.2) goes as -sin8/(1 —v cos8).
The presence of s momenta in the numerator for
emission of a spin-s massless particle (scalar,

photon, graviton) means the angular dependence
is very different for different spin in the ZFL.
The question arises as to whether these general
comments on the nature of the coupling between
matter and radiation fields in the ZFL allow one
to conclude that gravitational radiation can never
be beamed at zero frequency. To determine the
answer I have carried out several model calcula-
tions using the ZFL.

First, consider a point particle of mass m and
velocity v which is gravitationally scattered by a
much heavier particle of mass M. If there is a
large impact parameter b, then the angle of scat-
tering" is

rsg 1+v2
(2 8)

where rs,„=2M is the Schwarzschild radius of the
large mass M. If m is initially moving up the z
axis while M is fixed on the x axis, then the initial
and final momenta of m are

P' = ym(1, 0, 0, v),

P~ = ym(1, 5, 0, v)
(2.7)

(eeet —e@e&},
(2.8)

~x =~& (e eel + epee)

Transforming (ee, e@) into (e„e„e,) and using
(2.1), the two amplitudes are (the emission from
mass M can be neglected in lowest order)

where 5 -=vh8. Let the radiation be emitted along
n in the (8, Q} direction" (see Fig. 1}. The two

polarization tensors are constructed from the unit
vectors (ee, e&) by

ym 5[v sin8 cosp[2 cos8 —v(1+ cos'8)] —5(l —v cos8)(cos'8 cos2$ —sin'p)j
v'2 (1-v cos8)(1- v cos8 —5sin8 cosQ)

2ym5 sing(v sing —5 cos8 cosP)
v 2 (1 —v cos8 —5sin8cosg}

(2.9)

(2.10)

To proceed I will keep only the terms first order
in 5. This effectively means considering only
small-angle, large-impact-parameter scattering.
Precisely, I require for a given b and 6 that

(AH, /5 )
' ' & v & 1 ——'5

(2. 11)
0&5v ' .

dE y 2m 2v2g2

sin'8[2 cos 8 —v(1+ cos'8)]'
X cos Q~(1 —v cos8)4

(2.12)

The energy E„radiated per unit frequency inter-
val per steradian at zero frequency in each polar-
ization is now obtained using (2.3), (2.9), and
(2.10):

d~dQ „m' 1 —vcos6)

Integrating over angles yields
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dE, y m v 5 1

I

x Bv —'-,' v' —4(1 —v') ln
( 1—v

dE, 2y'm2v 5' 1 1+v

(2.13)

)(2 ~' ' ' (1-v, cos8)(1+ v, cos8)- '

(2.15}
a„=0
The vanishing of a„ is a general property of a non-

rotating axisymmetric system, as is the indepen-
dence of a, from the azimuthal angle p. The re-
sult for dE, /d&udQ = (dEO/dradQ), is

These ZFL spectra will be compared with other
published bremsstrahlung calculate ions in Sec. III.

The other model calculation is that of the head-
on collision of two particles to form one particle
at rest. In this case, no restriction will be placed
on the masses of the two particles. If mass m]
has velocity v, and mass m, has velocity v„ then
the initial momenta of m, and m, are

P', = y, m, (l, 0, 0, v, ),
P2 = @2m (1,0, 0, -v, ) .

Here there is no contribution from the final par-
ticle at rest. Using conservation of momentum

(y,m, v, = y2m v2) with (2.1) and (2.8), I find the am-
plitudes to be

III. COMPARISON WITH OTHER TECHNIQUES

dE, 32m'M'
$2 v-0 (o-0 . (3 I)

This agrees exactly with the ZFL of Ruffini and
Wheeler's' calculation of low-velocity scattering
using the Landau-Lifshitz quadrupole-moment
technique. They do not calculate the energy car-
ried by each polarization, but I find (dE, /d(v)„
= 5(dE, /d(v), as v-0. They were able to obtain the
spectrum dE/d(v and the total energy radiated b,E.
Dividing aE by (3.1) they obtain an effective cut-
off frequency ~, such that

A number of calculations exist in the literature
of the gravitational radiation produced by distant
encounters or head-on collisions of particles. ' "
Because these calculations involve various re-
gimes of velocity or mass ratio, a fairly broad
comparison can be made with the results of the
preceding section. The purpose of the comparison
is threefold. First, it will demonstrate the val-
idity of the ZFL, if the ZFL gives answers which
agree to order unity with more complicated but
better established methods of calculation. Second,
the ZFL results contain more details about the
radiation at low frequencies (for instance polari-
zation) than any previously published work. Third,
the ZFL provides a framework in which a number
of different calculational techniques can be com-
pared and contrasted.

The bremsstrahlung from scattering will be
treated first. Consider the low-velocity limit of
(2.13). Adding polarizations I find the ZFL:

(
dEO yl m1 VI sin (g

d~dA 4m'
hE= ' e„z,=3.8vb '.

d(d
(3.2)

dEp y'm'v sin g

d&udQ 4s' (1-vcos8)' ' (2.17}

2 2 tdEo y m,
)

1+v
dv 2mv 3 1-v

and second, if m, =m, =m, v, = v, = v, then

dEp y' m'v' s in'g
CkudQ w' (1-v' cos'8}' '

(2.18)

(2.19)

2 2m2
((— ') (——(3 + '))

(2.20)

Ia
(2 16)

(1 —v, cos8)(1+v, cos8)-

For comparison with previous calculations, I
consider the two limiting cases: First, if
my m m2 M vl v vp m y«M, then

Their figure 30 of dE/du& shows the characteristic
type of spectrum one expects for processes in
which the ZFL is useful: nonzero dE,/d~ at zero
frequency and a cutoff which is a factor of order
unity (here 3.8) times a characteristic frequency
(vb ') for the problem. The angular distribution
of the ZFL equation (2.12) may be compared with
Peters's' "Eq. (3.16) which gives dE/dQ obtained
by taking the v«1 limit of his perturbation cal-
culation. Since his dE/dQ contains all frequencies
and both polarizations, the ZFL dE, /duxfQ, Eq.
(2.12}, must be multiplied by (v„(3.2) above, and
summed over the two polarizations. Figure 2 then
plots both dE/dQ from Peters's work and from
this paper for v = 0.1. The agreement between
them in the YZ plane (P = v/2) is very good (this
is the dominant x polarization), while the XZ plane
(P =0), shows the higher frequencies Peters in-
cludes contribute an angular dependence which
tends to smooth out the basic 4-petal quadrupole
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FIG. 2. The angular distribution of gravitational
radiation emitted during the low-velocity (v = 0.1) scat-
tering of two particles. Log, o(d E/dO) is plotted against
0 for ft) = 0 (the XZ plane) and p= x/2 (the YZ plane).
Both the results of the ZFL (this paper) and the fully
relativistic perturbation technique (Peters) are graphed.
The units of dE/dQ are M m b 3 (G=c =1}.
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180
shape. Nonetheless, it is clear that the angular
distribution which arises solely from the ZFL
dominantes the higher-frequency contributions in
this low-velocity limit.

The agreement continues in the ultrarelativistic
limit v-1. Again to compare with Peters, I need
to choos e a cutoff frequency ~,. From P eters's
Eq. (4.4) one finds that the radiation time during
closest approach goes as y ', suggesting an

ur, =Kyb ', where K is a constant of order
unity. Multiplying (2.12) by &u, (with K-1) and

summing polarizations, I obtain the ZFL esti-
mate of dE/dQ which is plotted in Fig. 3 (/ =0)
and Fig. 4 (P =s/2) for v = 0.1, 0.75, and 0.99.
[Note the v =0.1 plot disagrees with Fig. 2 by the
factor 3.8 in Eq. (3.2).] The sharp forward peak-
ing that Peters finds is quite evident. One can
directly compare Peters's Fig. 3 with Fig. 3 of
this paper. It seems that the angular smoothing
induced by the inclusion of the higher frequencies,
noted for the low-v limit, carries over to the
high-v limit in the XZ plane, with the ZFL still
producing quite distinct backlobes. However, the
envelope of the ZFL angular distribution is quite
close to the shape Peters finds. In addition, I
find the peak value in the XZ plane of (dE/dO goes
as 0. 7Ky while Peters's Fig. 4 indicates that he
finds (dE/dQ) „-2.5y' in the units M2m'b '.
While Peters does not graph dE/dD for the YZ
plane, he does comment that it is peaked as well.
In Fig. 4, one can clearly see the transformation
of the YZ-plane quadrupole pattern to a beamed
pattern as v goes from 0 to 1. As in the low-v
limit the && polarization dominates the + polariza-

2

O

O

0 450 90 135
I

180

FIG. 4. As for Fig. 3, except in the YZ plane.

FIG. 3. The change in log10(dE/dQ) versus 8 in the
XZ plane for v = 0.1, 0.75, 0.99. The result of Peters
(Ref. 7) is shown for comparison for v =0.99. The units
for dE/dO are as in Fig. 2.
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tion so that the most intense radiation occurs in
the YZ plane.

Finally, I estimate the total energy radiated,
n, E, by integrating u&,(dE, /dQd&u) over angles.
Using (2.13), I find

8KmM y
3.~

8Km'M»
(3.3)

m'M'y'
d.E„„-256 In(4y s)

d, Ez„„-10Kln(4y ')
(3.4)

The ZFL seems to be a complementary calcula-
tion to Matzner and Nutku's since their virtual-
quanta technique breaks down at low frequencies. '
The above comparison demonstrates that the ZFL
can predict sharp forward peaking as v-1.

That this is not always necessary is made clear
by studying the model calculation for the head-on
collision of two particles. I investigated such a
problem earlier" because it serves as a model
for the high-speed collision of two black holes.
The details of low-velocity collisions can be cal-
culated on digital computers by solving the ax-
isymmetric Einstein equations for the spacetime
of the collision. "" This complicated procedure
is necessary when v„~0, because then the ac-
celeration of the holes toward each other, as well
as the details of the horizons coalescing, will de-
termine the angular pattern and total energy con-
tent of the radiation. However, in the case q.=1,
it may well be that the ZFL technique can be ap-
plied.

One limit of a head-on collision is that for which
one mass m is very much smaller than the other
mass M. The relativistic spacetime perturbation
version of this collision has been calculated" for
the case where v„&0. This may be compared with
the ZFL result (2.17). As v-0, dE/dkddQ shows

Here again the x polarization is dominant with
d E„/dE, =31n(4r '). Equation (3.3), obtained using
the ZFL, casts new light on the apparent dis-
agreement between the results of Peters, ' who
used perturbation theory, and the results of Matz-
ner and Nutku, ' who used the method of virtual
quanta. Peters finds that hE -y', while Matzner
and Nutku find dE -y'In(4y'). If ko, is independent
of angle, then the ZFL analysis shows that Matz-
ner and Nutku are correct in their discovery of the
logarithm term. " However, my results for the
numerical coefficient of b, E are in much closer
agreement with Peters than with Matzner and Nut-
ku:

d E ™0.2 ymc', (3.5)

-2
3

0
QJ

O 4
0

-6—

-7,
0 45

I

90 f35
I

180

FIG. 5. Logko(dED/d~dQ) versus 8 for a head-on col-
lision of two particles with m

&
«m2 and v = 0.1, 0.75,

0.99. The units for dEJd~dD are mk .

the sin'e quadrupole dependence characteristic of
low-velocity infall. Furthermore, dE, /d&a - v ',
as pointed out in Ref. 11. Thus, dE,/dkd -0 for
parabolic infall (v„-0), even though n.Ex 0. This
demonstrates that if both the initial and final vel-
ocities of the particles are zero, the ZFL method
fails and the gravitational radiation emitted is
dominated by the details of the collision.

On the other hand, as v„-1 the low frequencies
dominate the spectrum (see dE/d&v in Figs. 3 and
4 of Ref. 11). In contrast to the distant-encounter
scattering, one can see from the v-1 limit of
(2.17), plotted in Fig. 5, that no sharp forward
peaking occurs in the angular distribution of the
head-on collision. As for the ZFL limit of dE/dkd
itself, Eq. (2.18), one can compare the dE, /d&u

calculated in Ref. 11 for the lowest multipole mo-
ments. Summing the values for l=2, 3, 4, one
finds the fully relativistic calculation" yields
dEo/Ckd &5.9m s for y = 4 and dEO/dksP 13.5 m s for
y=6. My Eq. (2.18) gives dE, /dkd=4. 9m' and
12.9m', respectively. This indicates very close
agreement as v«1.

Turning finally to the total energy radiated as
v-I, one finds from Ref. 11 that kd, -(2M) ' in-
dependent of v„. Presumably this is because the
characteristic collision time is determined by the
large black hole whose radius is 2M. Using this
ko, to multiply (2.18), I find the limit as v-I
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unity. This, together with the fact that the char-
acteristic scale

isn't,

leads to ~, -(Km@) '.
This gives an efficiency estimate of

= 0.75

hE ~dE v)~ 2 0.6
2m@ du 2m@ mR K (3 7)
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FIG. 6. Same as Fig. 5, except m&=m2.

wh1ch means the radiation efficiency &E/yM&~1
since ym«M by assumption. The y' dependence
predicted anaiytically by the ZFL is seen to agree
well with the numerical results graphed in Fig. 2
of Ref. I1.

Since the ZFL seems to give good agreement in

them, «m, limit, I now consider the m, =m, case.
The low-u limit is essentially as above. In the
high-velocity limit of Eq. (2.19), one finds that not
only is there no sharp forward peaking, but that
1118teRd 'tile angular distribution tends to an 180-
tropic pattern" (see Fig. 6). This is due to the
sum and interferenee of two patterns like Pig. 5,
since now both particles contribute equally. The
v-1 limit of Eg. (2.20) yields the ZFL of the spec-
trum

a factor of 3 greater than for the above ease with

m~ &&m.

Until recently, there has been no ealeulation
available with which to compare this ZPL result.
Adler and Zeks" have calculated the time-rever-
sed version of two equal masses flying apart from
a centxal object initially 3t rest. The technique
they use, the purely classical approach as given
by %einberg, ' is completely equivalent to the ZFI .
They thus agree exactly with Eq. (3.6). To esti-
mate the total energy radiated one has to estimate
v„ the cutoff frequency. Dimensionally (d, goes
as m '. If energy conservation is not to be grossly
violated, the efficiency n.E/2my must be less than

These calculations lead to the following specu-
lative picture of the high-speed collision of two
equal-mass black holes. As they approach each
other at roughly constant velocity (v„-l), they
see each other's gravitational field Lorentz-con-
tracted" from spheres into plane waves with ax-
ial symmetry in the plane. As the plane waves
collide, they tend to focus themselves somewhat,
although not nearly as severely as homogeneous
plane waves, '2 and become outgoing gravitational
waves with roughly lsotx'opic distribution, Since
most of the energy is in the initial kinetic energy
of the holes, this gets converted, with on the or-
der of unity efficiency, into escaping radiation
leaving the small rest-mass energy behind in the
final spherical hole.

Penrose'3 has shown, by finding trapped sur-
faces in the initial data for a speed-of-light col-
lision, that if "cosmic censorship"" holds (no
naked singularities form) then the efficiency must
be strictly less than 5(p{). The ZFL estimate,
Eg. (3.7), shows there is a chance that this hypo-
thesis ls violated (if K + 1.3), kNIt slllce tile ZFL
ean ot determine &, exactly it cannot decide the
issue. Fortunately, since the above discussion
was submitted, D'EBth, 2' using an elegant and in-
genious perturbation method, has been able to
calculate the detailed structure of high-speed col-
lisions. " He finds that cosmic censorship is not
violated since K-2.6, i.e., the efficiency is-25/&&.

Furthermoxe, his calculations confirm the ZFL
predlctlon [Eg. (3.6) Rlld Fig. 6] tllRt, 'the angular
distribution becomes isotropie as v„-1. This re-
sult is important because it demonstrates that the
ZFL method can accurately discriminate between
situations where beaming occurs (bremsstrahlung)
and where it does not (collisions). Also, the above
case shows the ZFL can predict certain aspects
of the radiation before complicated calculations
ax'e Inade.

Note that the hyperbolic collision (e„=1)is qual-
itatively different from a parabolic one (u =0). In
the former situation, the gravitational radiation
is produced by the field far from the black holes,
and the efficiency is determined by the asymptotic
trajectories. The black holes play little role in
either the generation or propagation of the main
part of the radiation. Just the opposite seems to
be the case for a parabolic or bound collision.
Here the ZFL fails precisely because the details
of the inter3etion region determine the radiation.
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Thus, it seems that detailed study of the hyper-
bolic collision will not shed light on the parabolic
case and vice versa. In particular, the upper
limit on the efficiency for hyperbolic collisions
(5(Pp) obtained" by use of the Hawking black-hole-
area-increase theorem, " is within a factor 2 of
the real efficiency, whereas for the parabolic case
the actual efficiency seems to be orders of magni-
tude lower" than the Hawking" upper limit of 29%%uo.

IV. SUMMARY

In summary, I have shown that the very simple
analytic procedure of calculating the exact
dE, /durdQ at zero frequency reproduces the main
qualitative, and in most cases quantitative, fea-
tures of fully relativistic numerical calculations
for which this procedure is appropriate. Because
one is concerned only with very long wavelengths,
the details of the scattering process are irrele-
vant, and only the asymptotic trajectories need be
considered. There is a great enhancement at low
frequencies, and the spectrum dE/d~ is flat (in-
dependent of ~) as v-0. This means that an esti-
mate, good to order unity, of the total energy
radiated, as well as its angular distribution, can
be obtained by estimating the cutoff frequency ~,
and multiplying it by the ZFL of dE/dvdQ.

The procedure is useful whenever the asymptotic
trajectories have constant velocity, at least one
of which is nonzero. Thus, it works for both high-
velocity (v-1) and low-velocity (v -0) distant en-
counters, where the scattering is through a small
angle. It also works for head-on collisions when
the velocity at infinity v -1. Even for low v, it re-
covers most of the qualitative features. It is found
that beaming may (distant encounters) or may not
(head-on collisions) occur, even though the ampli-
tude for the emission of gravitational radiation
from a single particle trajectory is not beamed
for high v. From a quantum viewpoint, this is
because one sums the amplitudes (2.1) for emis-
sion from aQ lines and then squares the result to
obtain (2.3), thus introducing interference terms
which cause the beaming. From a classical view-
point, the difference can be understood by con-
sidering Lore&z-frame transformations. In the
distant-encounter case, one can go to a frame in
which the velocity is small (the moving-particle
frame) and the angular distribution is quadrupole.
When one transfers to the fixed frame in the
laboratory, a strong headlight effect occurs. In
the head-on collision, there is no frame in which
the acceleration is small, so there is no large
velocity shift between frames and consequently no
beaming.

An intriguing aspect of the ZFL method is that it
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APPENDIX

Because the main references' ' for the funda-
mental ZFL equation (2.3) are quantum mechani-
cal, the following classical derivation was worked
out in collaboration with Robert Bontz and Richard
Price. Let us consider the metric perturbation
h„„ induced at the field point x by a particle with
4-velocity u„at a point x' on its trajectory. Since
we are interested in the long-wavelength limit,
we assume that the field point is far from the par-
ticle and that spacetime is nearly flat there. In
the particle's rest frame the perturbation is that
due to the gravitational field of a static particle of
mass M. From Ref. 14 (MTW), p. 441, this means
that

Kpf Kjg
4m
r (A1)

where K„„=-h„„——,'q„„h. However, we need the
perturbation in the rest frame of the observer.
By a Lorentz transformation one finds

4~u~uv
—k ~ u

The denominator occurs because in the particle's
rest frame

—k ~ u= k'= [x'-x"[-=r„, , (A3)

where k =r„,(1, n) is the null vector joining the
point x and x'.

The energy flux through a 2-sphere of radius r„,
is given by [MTW equation (35.23)]

dE rzet TrkTT
2

dndt 32' (A4)

where the TT gauge implies only hee, h&~, and he@are
nonzero. Using the polarization tensors defined
by Eq. (2.8), this can be rewritten as

can be applied even when the interaction occurs in
a strong-gravitational-field region, e.g. , a head-
on collision of two black holes. It will be inter-
esting to see if there are other examples of strong-
field high-velocity problems which can be treated
using the ZFL.
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r 2"' ((h„e,'} +(h~, ef(')'),„. (A5)
PN =P„u+PN

=P„u+PN +PN .
Define the amplitudes & and their Fourier trans-
forms B,(&o) by

q =h)~ eq,fA

(A6)

l*=qq, Zf l&r(&)l'&

(A7)

B,=-~~ dt SI e i fdt

g

noting that B,(-&o) =B*, (cu) since ts, is real. Par-
seval's theorem then allows us to rewrite Eq. (A5)
as

My notation is that an arrow over the letter de-
notes a three-vector, while an underline denotes
a four-vector. The time axis lies in the direction
of u and the spatial part of PN is split into a piece
in the direction of g: P'„—= (n ~ P„)n and a piece
transverse to q: P„=-P„—P„'. Now since gN ~ g=(d
(P»+ [P„' [), Eq. (A13) can be rewritten as

P» ——(+ 'P„~ q -
I
P'»

I )u + P'» + P„. (A14)

Weinberg requires us to consider (P„~ P„)' or

(P 'P )'=[-(~ 'P» q —IP»l)(~ 'P 'q —IP' I)

+P» P»+P»' P»]' (A15)

The ZFL then yields

The final step is evaluating B,(0):

1
Bg (o) =~2,

(A8)

Expanded out, this is a sum of terms each containing
four momenta. Every time a, term involving P„- q
appears in the numerator of (A11) it cancels an
identical term in the denominator, leaving one term
involving a piece of P„and two P„. The sum N
then vanishes by momentum conservation [Eq.
(A12)]. For instance, a typical term is

1=~ [(h&»e r )r +„—(=h»e&'), „]. (A9)

g (~ 'P» u}IP»IP» P»
(P» ~ q)(P» ~ q)

s u Pg'q (A16)

where the gN and P~& are as defined in Sec. II.
Since k =r„, (1, n) =r«&~ 'q, where q=cu(1, n), Eq.
(2.3) follows immediately.

Weinberg's classical derivation' leads him to the
following formula (his equation 10.4.22):

dE G&u' g (P» P»P ——,'m» m»'
&nd~ 2»', „(P» q)(P q)

(All�)

where the gN, g„are dropped for convenience.
Here the two polarization states have been summed
over, but it is not apparent that his result is
equivalent to my Eq. (2.3) summed over L How-

ever, as shown below, if one assumes momentum
cons ervation

P„=O, (A12)

the two formulas are identical.
First, split P„ into orthogonal pieces:

Here it is explicitly seen that the ZFL depends
only on the asymptotic (t-+~}trajectories (through
h») Plugg. ing in h» from Eq. (A2) gives

(»»m»)'= IP» I' IP»l' (A18)

To make the final step, sum over polarization
states in Eq. (2.3). By introducing the basis set
in Eq. (2.8) one finds

P ~ e, . P"=~ [(P») —(P»~} ],
(A19)

Y . e)( ~ P" = &2 P» P» ~

and a short calculation demonstrates that

pN ~ PN PN ~ ~ PN
N N

=2[(P» P»}'-2(IP»IIP»l)'] (A20)
N, N

where P„=p„ee+P„e&. This completes the proof
of equivalence. In practice, it seems much easier
to use the ZFL equation (2.3) than Weinberg's Eq.
(A11}and one obtains polarization information
automatically.

Thus, we can drop all terms in Eq. (A15) involving
P„q. Further, the terms P'„~ P'„= IP»I [P'„[ can-
cel the terms —[P'„ll P'„[, leaving only

(P„~ P„)'=(P„' P„')' (A17)

if momentum conservation (A12) holds. Similarly
one can show that
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