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We study high-energy two-particle inclusive correlations as a function of the invariant mass M of the pair.
Using data from 205-GeV/c pp interactions, we compare the correlation functions C(M) for (+ —) and
(— —) pairs of produced pions. Strong positive correlations are observed in both distributions in the form of a
broad threshold enhancement at small M. The decrease of C(M) as M increases is interpreted in the Mueller-
Regge framework. From the M dependence of C*~ we extract an effective-trajectory intercept of roughly
a(0)~0.5 % 0.1, consistent with the (p,f) pair. For the exotic (——) system, we find a low intercept,
a(0)~ —0.5. A p-resonance signal is observed above background in C ¥~ (M). Near threshold, effects
suggestive of Bose symmetry are seen but are not conclusive. In an exclusive picture, we relate most of the
correlation in the threshold region to resonances involving three or more pions. We also examine the joint

correlations in M and the azimuthal angle ¢.

I. INTRODUCTION

The experimental study of two-particle inclusive
distributions in high-energy interactions has
deepened our understanding of multiparticle pro-
duction processes.! The two-particle inclusive
correlation function is observed to be roughly
energy independent in the central region of rapidity
space and to decrease rapidly in magnitude as the
rapidity interval widens between the two particles.
These features are characteristic properties of
models, such as the ABFST multiperipheral
scheme? and the Mueller-Regge ansatz,® which
are built on the principle of short-range order.
Phenomenological approaches have been devised
to interpret the magnitude and rapidity depen-
dence of the correlation functions. Popular are
prescriptions in which the production and sub-
sequent decay of clusters are deemed responsible.*
The data are used to determine certain properties
of the clusters.®® This interpretation provides a
convenient though enigmatic summary of a large
body of data. One important question which re-
mains unsettled is the extent to which only those
concepts familiar from low-multiplicity exclusive
investigations suffice for the understanding of
multihadron processes. These include the notions
of perpheral f-channel exchanges at large in-
variant mass, resonance dominance at low in-
variant mass, and the qualitatively successful
duality principle.

In most investigations of inclusive correlations,
the rapidity variable y is used. This procedure
is well motivated when the only aim is to test the
concept of short-range order. Experimentally, in
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situations in which angles and not momenta are
measured, it is the only available variable [y
~]ntan(6/2)]. For more detailed investigations
of the correlations, rapidity may be seriously
disadvantageous. In this article, we study in-
clusive correlations C(M) as functions of the in-
variant mass M of the two-particle system. Data
from the ANL-Fermilab-Stony Brook 205-GeV/c
pp experiment® are used to calculate C*~ (M) and
C~~ (M) for (+-) and (- -) pairs of pions. We find
important structure in C(M) in both cases, and
we discuss its significance.

There are evident arguments in favor of mass
as a dynamical variable. Singularities such as
resonances and thresholds appear at fixed values
of mass. Bose-Einstein interference effects are
expected to depend on the square of the difference
of the four-vector momenta of identical bosons,
(py = p)?=4m,> =M% Regge and duality properties
of the four-to-four forward Mueller amplitude,
which represents the correlation function, are
functions of the two-particle invariant mass. To
be sure, at large mass rapidity separation and
mass are related simply, because in this limit

Ay~1nM? .

However, because the relationship between C(Ay)
and C(M) involves an integral over the transverse
momenta, possible important structure in the data
at small M will be smeared when viewed in terms
of Ay. The correlation function C(Ay) is itself
observed to be large at small |Ay| (<1). The
interpretation of this structure in terms of reso-
nances (or other forms of clustering) with rela-
tively low mass may be more readily checked by
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examination of C(M). Invariant mass has long
been a useful variable in high-energy investiga-
tions. Its disuse in high-multiplicity processes

is explained in part by the large combinatorial
background present in the two-particle density
(1/0)do/dM. We argue that the correlation function
removes the uncorrelated background.

In Sec. II, we define the two-particle inclusive
correlation function C(M) and discuss its depen-
dence on the invariant mass M. Using data® on
pp—~m"1"X and pp - 7" 7" X at 205 GeV/c, we
examine the correlation functions C*~(M) and
C~~ (M) for (+-) and (- -) pairs of pions. Strong
positive correlations in the form of broad peaks
near the two-pion threshold are observed in both
distributions. As M increases, C;~ (M) drops
more rapidly than C; " (M). A p-resonance signal
is visible above the background in C}~(M). The
possibility of Bose-Einstein interference phe-
nomena is investigated near threshold in C; " (M).
Finally, we examine the dependence of the corre-
lation function C(M, ¢) on the relative azimuthal
angle ¢ between the transverse-momentum vec-
tors of the two pions.

In Sec. III, we show that the rate of decrease of
C:~ (M) is consistent with an inclusive Mueller-
Regge exchange picture in which the M dependence
is controlled by the (p,f) pair of trajectories. The
faster fall of C;~ (M) agrees with duality expecta-
tions and would require a low-lying trajectory with
intercept az(0)~-0.5. In an exclusive frame-
work developed in Sec. IIIC, we interpret the back-
ground below the p and most of the threshold
structure as reflections of decay from resonant
systems of three or more hadrons. Our con-
clusions and perspective are summarized in
Sec. IV. In Appendix A some details are presented
of the way we treat the data.

II. CORRELATION FUNCTIONS IN INVARIANT MASS
A. Preliminaries

The definition of the two-particle inclusive cor-
relation function is

Co(P1,02) = ol Py, 12) = P1(D1)P1(12) - (2.1)

In this expression, p, and p, are the momenta of
the two hadrons. The two-particle density is

E.E, d%o
pz(PuPz)E—Lo—zm . (2.2)
The single-particle inclusive density is
E do
Pl(P)—;% . (2.3)

The cross section ¢ appearing in Egs. (2.2) and

(2.3) is taken to be the inelastic cross section.
When discussing the data we shall comment on
effects arising from other choices.

The function C,(p,, p,) in Eq. (2.1) is a function
of six independent variables. A common choice
for these six is: the total c.m. energy Vs , the
c.m. rapidities y, and y, of the two hadrons, the
magnitudes p,, and p,, of the two transverse mo-
menta, and ¢, the relative azimuthal angle be-
tween Em and En. In models with pure short-
range order, these six variables reduce to four:
Ay=(y, = ¥,), Pms Prsy, and ¢. For reasons stated
in the Introduction, we advocate including the in-
variant mass M of the two-particle system as an
independent variable. Because interesting struc-
ture” has been observed at small Ay in the ¢ dis-
tribution, we retain the ¢ variable as well as p,
and p, in our set. To complete the set, we add
Vs and one other variable to locate the longitu-
dinal position of the system with mass M. This
last variable need not be specified since we in-
tegrate over it. A possible choice is the rapidity
V., Of the system. The relationship between M
and Ay is

M?%=2m? - 2511 © Do+ 2 mM o cOsh(Aay)  (2.4)
with

mpP=mi+p .
Equation (2.4) shows that

M2 =exp(|ayl),

for large M and |Ay|. However, at small M or
Ay, the relationship between these variables is
influenced greatly by the values of p,, and pp,. If
the transverse momenta are integrated over, the
effect is to smear possible structure in M or in
Ay when viewed in terms of the other variable.
After integrating Eq. (2.1) over the p, and ¢

dependences, and over the longitudinal position
of the pair, we obtain a correlation distribution
which is a function of M only (at fixed Vs ). We
then have

Cz(IVI):pz(A/I)_pl®pl(A4) . (2.5)

In Eq. (2.5), p,(M) is the usual differential cross
section do/dM, divided by o0,,,;. The second term
represents the combinatorial background which
we subtract from p, to obtain C,(M). This product
of single-particle distributions at fixed pair mass
is
d3p, d?
P 891(“4):[—%,5—"26([ (py+p )12 - M)
1 2
X py (PP (D) - (2.6)

In Appendix A, we describe how the data for
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p, ®p, are expressed numerically as a function
of M.

B. Data

The data discussed in this section were obtained

from the Argonne-Fermilab-Stony Brook analysis

of an exposure of 205-GeV/c protons in the 30-
inch hydrogen bubble chamber at Fermilab. De-
tails of the experiment have been published else-
where.® The data consist of an inclusive sample
of 5128 inelastic events. All negative tracks are
assumed to be negative pions. Positive tracks
except for those clearly identified as protons by
ionization are assumed to be positive pions. In
addition, a positive track with ¥>0.6 is assumed

to be a proton.

In Fig. 1 the three distributions p,(M), p, ® p,(M),
and C,(M) are presented as functions of the two-
pion invariant mass. Figures 1(a) and 1(b) show
the results for 7* 7~ and 7~ 7", respectively. No
selection is made on the location in phase space
of the pair. The mass distributions extend to very
high values of M, but we concentrate here on the
region M <2 GeV. We present the data in 40-MeV
bins; the average mass resolution is about 20 MeV
for pions in the central region of rapidity.

It is useful to examine first the (- —) data, since
no resonancelike structure is expected.® The dis-
tributions p,(M) and p, ® p,(M) are indeed rather
smooth. Both show broad enhancements extending
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FIG. 1. Displayed as a function of dipion invariant mass are the three distributions p,, p;& p;, and C, for (a) 7"~

pairs and (b) 71~ pairs from pp —mrX at 205 GeV/c.
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from threshold to ~1 GeV. The curves are re-
markably similar in shape and magnitude above
0.6 GeV, but differ in the region M < 0.6 GeV.

The correlation function C; ~(M) shows structure
next to the two-pion threshold, with width of =200
MeV, and it is nearly zero for M > 0.6 GeV. That
C; " (M) is featureless within statistics for all M

= 0.6 GeV conforms to expectations that the exotic
7" 7" system should show no strong correlations.
The roughly constant value of C;~ (M)~ 0 above
0.6 GeV also confirms that our definition of the
correlation function is reasonable. Changes, for
example, in the normalizing cross section in Eqgs.
(2.2) and (2.3) from oy, to 0,,, change the level of
p, ®p, by ~20-30% relative to p, but do not change
M dependences. The structure in C; ™ (M) below
0.6 GeV is striking. We return to a discussion of
its origins below, in Secs. IIB2 and III.

The data for (+ —) combinations are shown in
Fig. 1(a). The distribution p; ® p; is again smooth,
whereas p} - shows structure in the p region.® The
two curves do not coincide, in contrast to (- -),
until M= 1.6 GeV. Because of their different de-
pendence on M, p;~ and p; ® p; cannot be brought
into coincidence in the region 0.6 <M =1.6 GeV
except through an unmotivated M -dependent
multiplicative factor. The function C}~ (M) shown
in Fig. 1(a) has a broad enhancement extending
from threshold to ~1.0 GeV, on which is super-
imposed a peak which we identify with the p meson.

In Fig. 2, we compare C,(M) for (+~) and (- -)
pairs. We note that C}~ (M) and C; " (M) differ in
magnitude and behave differently as functions of
M, whereas the differences in p;~ and p; - are
not readily apparent (Fig. 1). This demonstrates
the virtue of removing the large combinatorial
background.

The integral of the two-particle correlation func-
tion is the second Mueller moment

fo= J cona .

When the M range extends over the full spectrum,
we obtain the value®f;~=0.8+0.1. For M =0.6
GeV, f,7=0.7+0.1. Thus the low-mass peak in
(- —) accounts for ~90% of the full f;~. For all
M we find ;" =4.0+£0.2, whereas for M =0.6 the
value is 3~ =2.0+0.1, or 50% of the total. (As
remarked above, we have excluded identifiable
protons from our sample; thus, the value of f;~
quoted here differs from the value published pre-
viously®).

The contrast between (- -) and (+ —) in Fig. 2
may be compared with the similarity in shape' of
C;"(Ay) and C; " (Ay). In rapidity, the correlation
functions differ to first approximation only in nor-

malization; this is associated with the fact that

s =f5 () .

The structure in C;~ (M) at small M in Fig. 2 cor-
responds to the peak at Ay=0 in C; " (Ay). For

(+ =), a much broader spectrum of mass values
provides the peak in C*~(Ay) at Ay=0.

1. Resonance contributions

The p signal in Fig. 2 is observed on a rapidly
falling background. The difference of the shapes
of the (+ =) and (- -) curves argues against using
the (- -) curve as background. Fitting the (+ =)
distribution with the sum of a Breit-Wigner formu-
la plus a noninterfering quadratic background over
the range 0.5= M = 1.0 GeV, we obtain directly
the mean number of neutral p’s per inelastic event:

(n,0)=0.30£0.04 .

The x? of this fit is 14.4 for 9 degrees of freedom.
The mass and width were fixed at M,0=0.748 GeV
and T,=0.128 GeV.! This value of (n,0) may be
compared with the value 0.33 +0.06 obtained pre-
viously® from a fit to p} = (M).

No resonance signal is seen above the smooth
background in the f- and g-meson regions. For a
very crude upper bound on f production, we may
take all events in C; "~ in the interval M =1.26 GeV
+T'/2, with ['=0.15 GeV. We obtain (n;)/(n,)
<0.3/%4=0.45. The factor % is the branching ratio
of the f into 7*7~. Similarly, for the g, we take
M=1.68 GeV +I'/2 with '=0.18 GeV, and obtain
(n,)/{n,)<0.15/5=0.6. These numbers are un-
reasonably large. They would be reduced by at
least 3 if one were to take the same resonance-
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FIG. 2. The correlation functions C,(M) are displayed
versus dipion invariant mass. Shown are results for
(+—) and (- —) pairs. The nominal locations of the
p M=0.76 GeV) and f (M =1.27 GeV) are marked.
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to-background ratio which we observe in the p
region.

2. Broad threshold structure

Threshold enhancements are present in both
C; (M) and C;~(M). They differ appreciably in
overall magnitude, and to some extent in the de-
tails of their mass dependences. In the next two
subsections (3 and 4) we attempt to parametrize these
differences quantitatively, and we comment on the
interpretation of the enhancements.

Some structure near threshold in both C;~ and
C;~, as well as a broad background under the p in
C;~ may be anticipated as a result of the decay of
resonances with multiplicity m > 2, e.g., 1, w,

A,, g. These decays produce correlated but gen-
erally nonresonant pairs of 77~ and 7~ 7~. Their
effects are not removed from C,. In Sec. IIIC we
provide a formal analysis of C, from an exclusive
point of view, which allows us to relate the thresh-
old structure to the properties of resonances with
decay multiplicity m =3. However, this exclusive
approach does not explain naturally the fact that

C, (M) is observed to decrease with M more
rapidly than C}~(M). Indeed, the exclusive argu-
ment would suggest “backgrounds” of similar
shape in both C;~ and C; "~ near, e.g., M=0.76
GeV, the p location. In Sec. III, using the Mueller-
Regge inclusive framework, we interpret the sup-
pression of C;~ as a natural consequence of duality
requirements.

3. Interference phenomena near threshold

In addition to the contribution from higher-
multiplicity resonance decay, other effects in-
fluence the M dependence of C,(M) near threshold.
For example, we recall the peak near threshold in
the 777~ mass distribution observed in the anni-
hilation process pn—7*7"7". A dynamical in-
terpretation of this was given by Lovelace.'* In
his model, resonances are present only in the two
m* 7~ channels. The structure at low mass in the
7~ 7" distribution is a reflection of both identical-
particle symmetry and dynamical ingredients in
his amplitude. Thus, there are at least two ef-
fects which contribute to the threshold enhance-
ment in the inclusive function C,(M): reflections
of resonance decay and the Bose-Einstein identi-
cal-boson symmetry property of production ampli-
tudes. We shall conclude that we find no reliable
means to disentangle these two influences in the
data sample.

The influence -of Bose-Einstein statistics on the
distribution of like pions with small relative mo-
menta has been studied by several groups.'? A
standard assumption made is that in some proper-

ly chosen variable the 7”7~ distributions should
show substantially different behavior from 7n* 7~
distributions. With all other effects neglected,
one expects an enhancement of the dipion yield
for like pions relative to unlike pions when the
four-momenta p, and p, are equal. If A=—(p,
-p,), the effect is expected at and near A=0.
Because A=M? -4m,?, we investigate the thresh-
old region in C(M).

Certain small differences are indeed apparent
in the mass dependences of C; ~(M) and C; ~ (M)
near threshold. As seen in Fig. 2, the threshold
peak in C;~ (M) is centered near 450 MeV, whereas
in C; "~ it occurs below 400 MeV. Correspondingly,
in the lowest mass bin (2m,= M = 2m,+40 MeV)
the value of C; " is relatively greater than C;~.
This effect may be restated in a more quantitative
fashion.

We propose now to examine the normalized cor-
relation function

R(M)=C,(M)/p, ® p,(M) .

The uncorrelated products of the single-pion den-
sities pf ® p; (M) and p; ® p; (M) have similar de-
pendence on M, but they differ in normalization
because there are more 7* than 7~ in the data
sample., Therefore, in dividing C,(M) by p, ®p,,
we change the relative normalization of the (+ =)
and (- -) correlation distributions, but not their
relative mass dependence,

Values of R(M) are presented in Table I. Where-
as C;~ (M) is roughly a factor of 2 larger than
C, " (M) in the near-threshold region, the values
of R*~ and R~ are more nearly equal. For
M =0.42 GeV, an interval which extends one
pion mass above threshold, we find R*~ =0.64
+0.03 and R™~=0.42+0.03. Thus, relative to the
uncorrelated measure, the (- -) system appears
to peak less toward threshold than does (+ —). How-
ever, subdividing the data into 40-MeV bins, we
find a clear variation of R™~ over the range M=0.28

TABLE I. Ratio C,/p;® p; as a function of invariant
mass.

M (GeV) R*- R~
(a)

0.28-0.32 0.67+0.07 0.68+0,07

0.32-0.36 0.68+0.03 0.48+0.03

0.36-0.40 0.61+0.03 0.28+0.04

0.40—0.44 0.57+0.04 0.32%0.04
(b)

0.28-0.42 0.64%0.03 0.42%0.03

0.42-0.64 0.51£0.03 0.15%0.03

0.64—-0.86 0.45+0.03 0.06+0.01
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to 0.44 GeV. These results are presented in Table
I(a). Little variation is seen in R*~ over the same
M interval. We observe that R~ falls by roughly
one-half from threshold to M =0.42 GeV. If we
take this variation to be entirely a manifestation
of Bose-Einstein effects, we find that the dimen-
sion in M over which symmetry effects are im-
portant is of order »/,. However, we cannot ex-
clude the possibility that some or all of this varia-
tion is due to other effects which also contribute
to the threshold structure.

C. Joint correlations

As remarked in Sec. II A, the inclusive correla-
tion function depends in general on six variables:
Vs , M, Dris Prsy ¢, and y... Further insight
may be gained by studying the s and M dependences
of C, for restricted values of the four other vari-
ables. In this context, an investigation of the
semi-inclusive distribution C;"’(M) for fixed
charge multiplicity might be instructive. Here
we limit ourselves to a presentation of C,(M, ¢).

Structure in the distribution of the azimuthal-
angle variable was previously observed to be par-
ticularly strong at small Ay.” It was suggested
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FIG. 3. The joint correlation function C} = (M, ¢) is
displayed versus mass for three selected intervals of
the relative azimuthal angle ¢ between the two pions.

that this behavior at small ¢ could be due to Bose-
Einstein statistics.” One obvious difficulty with
this interpretation is that no restrictions were im-
posed on the p, values in these previous analyses.
Thus, the peak in ¢ may be due to pairs for which
the two p, values are substantially different; such
a situation does not satisfy the Bose-Einstein con-
dition. By limiting M to be small, we are assured
that the two four-momentum vectors do not differ
greatly. This is an additional advantage of the M
variable.

To begin, we examine the distributions p,, p,
® p,;, and C, as functions of M for various selec-
tions on the azimuthal angle. In Fig. 3, we present
C; " (M) for three intervals of ¢. Data for C;~ (M)
are shown in Fig. 4. For both (+ =) and (- -)
there is a strong positive correlation between
small M and |¢|< 45°. The curves for ¢> 135°
are suppressed near threshold. For (+-), events
in the p region stand out more clearly in this
latter distribution.®

The enhancement near ¢ =0 for small M is at
least partially kinematical in origin. For given
values of the overall c.m. momenta of the two
pions, a smaller value of mass is obtained if the

¢ <45°
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FIG. 4. As in Fig. 3, but for (- —) pairs.
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vectors are parallel (¢p=0). To display the result
more clearly, and in an attempt to disentangle
these kinematic biases, we present in Fig. 5 dis-
tributions of C, vs ¢ for pairs with M < 0.42 GeV.
This interval is selected because it extends

one pion mass above threshold and appears to
include the principal structure seen in Fig. 4.

In Fig. 5(a), we observe that all three curves,
P, Py ® p;, and C;~, peak towards ¢=0. Be-
cause the term p} (p,)p;(p,) is uncorrelated in p;
and p,, the enhancement near ¢ =0 in this quantity
at small M is purely kinematic. It arises, as ex-
plained above, because of the restriction of M
=(p, +p,)? to small values. The correlation func-
tion C} " is nonzero in Fig. 5(a) for all ¢. How-
ever, we note that the ratio R*~=C}"/p!®p;,
tabulated in Table II, column 2, is nearly inde-
pendent of ¢. Its average value for M =0.42 GeV
is 0.64 £0.03. We conclude that dynamical corre-
lation in ¢, if present at small M, is not strong
enough to overcome the strong kinematic in-
fluence. Of course, in doing this analysis, we

T A L m
(a) | (b)

“ -
0.28<M<0.42 [GeV]
1‘ b

08p 1 2 R i
()

INCLUSIVE DENSITIES [(30 deg)™]

FIG. 5. The correlation function C(M,¢) versus ¢ for
selected charged states and mass intervals:

(a) +—3 0.28=M=0.42 GeV.

(b) ——; 0.28<M=0.42 GeV,

() +—3 0.64=M=0.86 GeV.

(d) ——30.64=M=0.86 GeV.

have averaged over all p, values and over the M
range 0.28< M< 0.42 GeV. We cannot exclude the
possibility that ¢ correlations may be observed
in more differential distributions. Summarizing
our result, we may write

C3™(M, $)~0.64p; ® p (M, ¢)
for
M<0.42 GeV .

In Fig. 5(b), the ¢ distributions for (- -) are
shown for M = 0.42 GeV. Again, strong peaking
towards ¢ =0 is observed in all three curves. In
addition, the distribution p;~ is suppressed near
¢=180°. This suppression can also be observed
in the ratio R"~=C;"/p; ® p{ (Table II).

As shown in Table II, column 3, the ratio is
roughly constant at R™~ ~0.45 from ¢=0° to 120°,
but then falls as ¢ —=180°. This behavior is not
well represented by a+b cos¢ or some other sim-
ple form. Except for the clear depression near
¢=180°, the (- -) correlation function seems to
display no dynamical correlations in ¢ when av-
eraged over p, and M < 0.42 GeV.

We have also examined the ¢ dependence of
C,(M, ¢) for pairs in the p mass band. These dis-
tributions are presented in Figs. 5(c) and 5(d), and
ratios are tabulated in Table II, columns 4 and 5.
Peaking towards ¢ =180° is observed for the (+ -)
case.

III. PHENOMENOLOGICAL INTERPRETATION

In this section we discuss the interpretation of
C,(M) from two complementary points of view. An
analysis is given first in terms of the Mueller-
Regge inclusive approach.'® This is followed in
Sec. IIIC by a description in terms of exclusive
concepts.

A. Mueller-Regge model for C,(p.p,)

In the Mueller approach to inclusive correlations,
the two-particle correlation function C,(p,,p,) is a
properly defined discontinuity (“imaginary part”)

TABLE II. Ratio C,/p;® py as a function of azimuthal
angle.

¢ 0.28<M< 0.42 GeV 0.64 <M<0.86 GeV
(deg) R*" R~ R*™ R~

0-30 0.58+0.05 0.46+0.05 0.26+x0.01 0.02+0.02
30—60 0.60+0.08 0.44+0.07 0.27+0.02 0.02+0.01
60—90 0.73+0.06 0.42+0.05 0.36+0.02 0.03+0.02
90-120 0.79+0.07 0.43+0.05 0.53+0.04 0.09+0.02

120-150 0.82+0.2 0.38%+0.15 0.56+0.02 0.18=0.02
150-180 0.57+0.1 0.13+0.07 0.57+0.05 0.04+0.03
All ¢ 0.64+0,03 0.42+0.03 0.45+0.03 0.06+0.01
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of a four-particle-to-four-particle forward scat-
tering amplitude.'® At high energies, the Mueller-
Regge approximation for pp — 7mX is sketched in
Fig. 6(a). This graph applies to dipion production
in the central region of rapidity space.’* The
shaded oval represents a scattering amplitude
from which the leading Pomeron exchange is ex-
cluded. We remark that the shaded oval does not
represent the 77 elastic amplitude. Although the
Pomerons are each attached to the oval at zero
four-vector momentum, the structure of the oval
is still that of an amplitude with six external legs.
Consequently, there is no general reason to sup-
pose that the dipion mass dependence of Fig. 6(a)
should closely resemble that of elastic 77 scatter-
ing. In particular, in C,(M) for pp -n*n"X, Fig.
6(a) leads us to expect resonance signals at the
o,f,g, ... positions, as well as a background.
However, the relative contributions of the differ-
ent resonant partial waves and the resonance-to-
background ratio need not be related simply to
those measured in studies of 7*7~ elastic scatter-
ing. The data in Fig. 2 show in fact that the p
resonance-to-background ratio in the M depen-
dence of pp - m*7°X is much smaller than in the
elastic 7*7” amplitude.

In an attempt to obtain a simple parametrization
of the M dependence of C,(M) we study the behavior
of Fig. 6(a) expected at large M, where a Regge-
exchange approximation may be used. The re-
sulting graphs are shown in Figs. 6(b) and 6(c) for
pp—~7*n"X and pp - m1°X, respectively. For
pp —m*n"X, the leading exchanged Reggeon R in
Fig. 6(b) is the (p,f) pair, with intercept a 4(0)
=~ 0.5. For pp—-7"n"X, more discussion is neces-
sary.

In two-body phenomenology, duality arguments
suggest that the Regge exchanges leading to an
exotic system such as 777" occur in exchange-
degenerate pairs, and that their contributions
cancel in the imaginary part of the scattering
amplitude. Applying analogous arguments to
pp—1"1"X, we expect that the exchange labeled
E in Fig. 6(c) is either a low-lying trajectory or
cut [e.g., a;(0)<0]or a normal trajectory
(e.g., a,) whose small coupling at =0 is related
to the deviation from exact exchange degeneracy.
We admit parenthetically that the concept of an
exchange contribution to the discontinuity of the
forward amplitude may be altogether wrong in
the case of the 7°7” channel, but we know of no
other way to proceed.

B. Mass dependence of C,(p, ,p;)

Assuming that the exchanges in Figs. 6(b) and
6(c) are factorizable, we obtain the following limiting

p 7 T p p i T p
PIR]| P PlE P
4 ¢
pf 7 T 4P Py T LA
(b) (c)

FIG. 6. (a) Mueller-Regge diagram for the inclusive
reaction pp — mnX where the dipion system is produced
in the central region of rapidity. The symbol P denotes
the Pomeron. (b) Mueller-Regge diagram for pp — 1t 7-X
at large s and large mass M of the m* 7~ pair. (c)
Mueller-Regge diagram for pp — m~1"X at large s and
large mass M of the m~m~ pair.

expressions at large M:
C;-(pl)p2)=BRp(7H TI)BRP(H/’ Tz)(MZ)OtR(O)-l
a Mt , aS M =,

C;-(pl’pz) = BEP(VVI Tl)ﬁEP(n/] Tz)(MZ)C!E(O)-l .

(3.1)

(3.2)

The transverse mass m, is defined in Eq. (2.4);
Brp and Byp are vertex functions whose m , de-
pendence may be estimated from data on the sin-
gle-pion inclusive yield p,(p). In the central re-
gion, the Mueller-Regge approach provides the
expansion

pl(p)=BPI,(mT)+BRI,,(n/zT)s'”‘1 . (3.3)

This equation shows that the vertex functions
yield the transverse-momentum damping of p,(p).
As is apparent from Fig. 2, available data are
concentrated at small M, where Egs. (3.1) and
(8.2) are not obviously applicable. Inasmuch as
we are working with the imaginary parts of am-
plitudes, we might hope nevertheless that the ex-
trapolation of Egs. (3.1) and (3.2) to small mass
is meaningful in the sense of a dual average.
Since the p signal is not prominent in C}*(M), the
average is not difficult to obtain.

We wish to compare Egs. (3.1) and (3.2) with the
data at low M and to extract effective values for
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ag(0) and ag(0). The proper comparison should
be done at fixed values of all kinematic variables
other than M. Present statistics do not permit
such a differential comparison. Integrating Eq.
(3.1), we obtain

C;-(M)z(Mz)aR(O)-l ffdpldpzﬁRP(777Tl)BRP(”IT2)

X 6(M =[(p,+p,)T"?).
(3.4)

Here dp represents the invariant integration ele-
ment d%p/E. The integrations over the p, and ¢
variables and over the longitudinal position of the
dipion pair introduce an added dependence'® on M
through the 6 function in Eq. (3.4).

It is a simple matter to show analytically that
as M - 2m,, the integral in Eq. (3.4) provides a
threshold suppression factor!® proportional to
(M? - 4m ?)'/2. By contrast, atlarge M the
transverse-momentum dependence of the vertex
functions in Eq. (3.4) results in a function which
falls rapidly with M. In order to extract the ef-
fective Regge power a(0) from the data on
C; (M), it is first necessary to divide out these
important threshold and large-M factors. In the
absence of a detailed knowledge of Brp(m ), this
procedure is necessarily approximative.

Returning to Eq. (3.3), we note that at large s
the Mueller-Regge model provides the following
prescription for the M dependence of the product

pL® P
pr® p;(M) = f f dpldpzﬁpp(’” Tl)ﬁpp(’” Tz)
X o(M = [(p+p, )} /%) (3.5)

This integral has exactly the same form as that

in Eq. (3.4), except for the replacement of Bp(m ;)
by Bpp(m ;). If we assume that the m , dependences
of Brp and Bpp are identical, we may divide Eq.
(3.4) by Eq. (3.5) to obtain

Ccr (M)

R*™(M =l M2 aR(O)-l.. 3.6
(M) p; ®p; (M) (M%) (3-6)
Likewise,

R™™ (M) o= (M?)*E@ (3.7

Alternatively, assuming that Bz, in Eq. (3.1) has
the same m , dependence as B, in Eq. (3.2), we
may work directly with Eq. (3.4) to derive

C;(M)/Ci (M) o (M?)* @), (3.8)

Motivated by Eq. (3.6), in Fig. 7 we display
R**(M) on a logarithmic scale. Beyond M ~2.5
GeV the errors are large, and therefore we do
not show the data. The form of Eq. (3.6) requires

that the data points in Fig. 7 should fall on one
straight line. Quite obviously they do not. An
excursion is visible in the p region, as expected.
For M values below the p position, a rough fit to
the data suggests an effective trajectory with the
rather high intercept @(0) ~0.6. For M= 1 GeV,
the intercept is much lower, a(0) ~0.35. In view
of the approximations we have made, it is hazard-
ous to propose strong conclusions. However, we
call attention to the fact that the Mueller-Regge ex-
pectation of «(0)=0.5 lies well within the range
of values of @(0) which provide an acceptable av-
erage fit to the data in Fig. 7.

In Fig. 8, we display the ratio C;*/C}” as sug-
gested by Eq. (3.8). Here the statistics preclude
an examination of the M dependence for M =1
GeV. For comparison, we show the M2 depen-
dence expected if ax(0) - a@5z(0)=1 in Eq. (3.8).
We observe that this form is consistent with the
fall of C;7/C;". In the Mueller-Regge framework
this result suggests that the process pp —71"1°X is
mediated by a rather low-lying exchange, with
intercept a;(0) =~ - 0.5. The duality expectation is
borne out, in that the exchange-degenerate pair
of p and f with intercept a(0)=0.5 does not contri-
bute to the M dependence of pp - 7"7°X . This re-
sult is an important verification that standard
duality notions are applicable in inclusive pro-
cesses. It stands in contrast to the list of em-
barassing failures associated with early scaling
criteria.'®
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FIG. 7. The mass dependence of the ratio R* (M)
=C3~(M)/p{® p{ (M) for pp —1*7"X at 105 GeV/c. Two
straight lines are drawn. They correspond to two
choices of the parameter «(0) in the expression R* ~(M)
o (M2°(0-1 guggested by Mueller-Regge analysis.
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In terms of rapidity, the Mueller-Regge expec-

tation for the correlation function C™" is
C(ay) <exp{laz(0) - ap(0)]]ay |} (3.9)

The low intercept a;(0) = - 0.5 provides a corre-
lation length ™™ =(ay - @p)™ =~ %, much shorter
than the (+ —) value A*"=~2, The fact that ™ =~ ja*"
is to be contrasted with expectations of cluster
models*® in which typically X™ >~ *", Previously
a small value of A™” was suggested, on the basis
of the observation’ of a sharp peak near Ay=0 in
the rapidity variation of the two-dimensional dis-
tribution C™"(Ay, ¢) for values of ¢ near zevo.
Our extraction of a small value of A™” from the
one-dimensional C(M) is perhaps more direct.
However, the two observations are surely related,
since small M and small (Ay, ¢) are correlated
kinematically (cf. Sec. IIC).

We turn now to an examination of the absolute
magnitudes of C}*(M) and C;"(M). The structure
of Eq. (3.4) shows that

Co7(M) _(Bgp\?), -
Cr (D) (ﬁxp)M . (3.10)

In obtaining Eq. (3.10), we have defined vertex
function B averaged over p, and set ax(0) — az(0)
=1. The data in Fig. 8 provide the estimate

EEP >2~ 1 EEP ~1
=EP ) ~— or |ZEE[=—.
<ﬁRP 15 ﬁRP 4

We note that the exchange denoted E couples rela-
tively weakly, at least in the imaginary part of
the inclusive amplitude for pp - 7"7"X. Whether
E is a factorizable singularity (or pair of singu-
larities) which plays a role in the 7°7" elastic am-
plitude is open to question. However, presumably
ap does contribute to pp —m*7"X in much the same
fashion as to pp —71"7°X. Therefore, a consistent
phenomenological study of C; (M) would require
a reanalysis of its M dependence in terms of both
a@,(0) and a;(0). The present data do not appear
to warrant such a detailed treatment.

Turning to pp - 7*7"X, and using Egs. (3.1) and
(3.3)-(3.6), we may express R* (M) as

R*(M)= <%>2(M2)“R‘°"‘ . (3.11)

The data in Fig. 7 provide the estimate
(Brp/Bpp)?=0.25+0.05. Recognizing that the
trajectory R represents the (p,f) exchange-
degenerate pair, whose couplings are presumed
to be equal in magnitude, we deduce that

Bp |~ |Bor | ~0.3540.04 .
BPP PP

Fits to single-particle spectra'*!” provide values
of these ratios in the range 0.4 to 0.7. While
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FIG. 8. The mass dependence of the ratio C;~ (M)/
C3 ~(M). The dashed line is drawn to show the M de-
pendence expected if the ratio is proportional to M =2,
It is not a fit to the data.

these different estimates are in fairly close
agreement, they suggest that C;"(M) is somewhat
smaller (~50%) than expected in the Mueller-
Regge framework on the basis of factorization
and the properties of single-particle inclusive
spectra.

As a final remark in this section, we comment
on the energy dependence of C,(M). In all short-
range-order models, C,(p,,p,) is expected to
approach an energy-independent constant value
as s—=. This remains true if we integrate over
all variables except M and y,,. If the dipion sys-
tem is distributed uniformly in rapidity, the in-
tegral over y,, is proportional to Ins. Therefore,
we may expect that C:"(M)/Ins will become inde-
pendent of s as s—, It would be useful to check
this expectation with data at other energies.

C. Exclusive model for C(M)

To provide a second basis for understanding
C(M), we introduce an elementary exclusive
phenomenological framework. We imagine that
the production of pions occurs in several ways:
They are produced singly, in correlated pairs,
in correlated triplets, in correlated quartets,
and so forth. For convenience, we use the term
resonance to denote these correlated groups, al-
though we have no evidence yet that all correla-
tions are attributable to the resonances already
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established. Borrowing from the vernacular, we
qualify as “prompt” the mechanisms mentioned
above: prompt single pions, prompt two-pion
resonances, prompt three-pion resonances and
so forth. The functions G,(p), G,(p,, p,),
Ga(pys bay P3), - - - stand for the densities of prompt
single pions, two-pion resonances, three-pion
resonances, ... produced in the high-energy in-
teraction. They are symmetric functions of the
momenta of their identical decay products. The
single-particle density of observed pions is

p(P)=G,(p)+ [ dp,Colp,p)

1
+—2_Tf dpldpzcs(p’pupz)‘*‘ et (3.12)

The integration dp in Eq. (3.12) is the invariant
integration d®/E. Physically, Eq. (3.12) ex-
presses the idea that the pions result from an in-
coherent sum of prompt single-pion production,
as decay products of two particle resonances G,,
and so forth.

J

The mean multiplicity of pions is

)= fpl(p)dp, (3.13)

whereas the mean multiplicity of prompt pions is

<n1>prompt=fcl(p)dp- (3.14)

The two-pion correlation function is the sum of
contributions from the prompt production of two
pions, G,(p,,p,), plus the prompt production of
three-pion resonances, integrated over the un-
observed pion, and so forth. Explicitly,

Colprs£2)=Colb1,22)+ [ oG b, 02:P9)

1
+2_|f ddep4G4(p1, D2 3 P4) +00 .

(3.15)

Likewise, the three-particle correlation function
is expressed as

1
Cy(prsbas b9) = Z mf dgy* * * 445G (D15 P23 Pas Q15 * * * Ameg) - (3.16)
m=3 *

A formal derivation of these results is given in
Appendix B.

The correlation functions are determined by the
prompt densities, which are the relative frequen-
cies for direct production of an m -particle object.
The first term in C,, Eq. (3.15), is G,, the densi-
ty for prompt two-pion resonance production. The
subsequent terms represent dipions which are de-
cay products of the m -particle resonances, with
m 2 3. Removed from C, are all incoherent com-
binatorial backgrounds due to pions arising from
different resonances.

By integrating G, over p, and p, we obtain the
mean number of prompt pairs of correlated pions.
Restricting the integral to the p-resonance re-
gion, we derive the mean number of prompt p
mesons:

<”p>prompt = f

P region

Gy(p1, Po)dpdp, - (3.17)

There are also p’s among the decay products of
m pion resonances (m = 3). The functions

G,, (m = 3) provide a background of nonresonant
7*n” pairs in the p region as well. Consequently,
in the vicinity of a particular two-pion resonance,
such as the p, C,(M) is expected to have both a
resonance and a background contribution. Unless
all higher correlations are measured explicitly

-

or otherwise parametrized, the resonance signal
is obtained by the standard practice of fitting the
data to the sum of background plus resonance
functions, as was done in Sec. I B. The virtue
of dealing with C,(M) rather than p,(M) is that
the combinatorial background of pion pairs from
different sources is eliminated from C,(M).
Letting B(p,,p,) stand for the background in C,,
we may express

)= [ [Cop1 £) = Blpy, 0 prdp, . (3.18)

Obviously the best way to study the properties
of resonance production is to isolate the prompt
functions G,,. This is difficult in exclusive final
states unless one knows how many resonances are
produced. The inclusive correlations provide a
different method. Since each correlation function
is linear in the prompt functions, knowledge of
these correlations can be used to obtain the prompt
densities.

The exclusive framework just developed provides
us with certain qualitative expectations for the be-
havior of C(M) as a function of mass. Peaks in
C*"(M) should occur near the locations of known
resonances, such as the p, f, and g. As explained,
there will in general also be considerable back-
ground beneath the resonance peaks. The relative
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magnitude of the resonance and background con-
tributions in a given mass bin cannot be predicted
unless we have a specific model for the prompt
densities G,,. Third, in both C**(M) and C* (M),
we expect to observe a substantial enhancement
just above threshold. If we take the full width of
the A, - and @-meson signals as typical of the
properties of threshold enhancements, we may
suppose that the threshold structure in C(M) will
extend over a range of 200 to 400 MeV. This is
consistent with the results shown in Fig. 2. These
nonresonant threshold enhancements in C(M) arise
in part from the (integrals over the) G,, (m = 3) in
Eq. (3.15). The nonresonant pairs of 7*7" and

7" 7" from these G,, will tend to have small invari-
ant mass (and thus be near threshold) simply be-
cause the G, must yield pions whose momentum
spectrum is peaked at small p, and x=2p,/V's, as
observed in the overall inclusive sample. Finally,
superimposed on this broad threshold structure in
the 7”7~ distribution, there may be a discernable
effect very near threshold due to Bose-Einstein
symmetry requirements. We shall return to this
question below.

We remark again that the model discussed here
is necessarily qualitative. It is based on the as-
sumption that pion production results from a sum
of incoherent processes. It is a model for cross
sections, not amplitudes, and we have ignored in-
terference effects. Nevertheless, one conclusion
which may be drawn directly from the data in Fig.
2 is that the bulk of the two-pion correlation
arises from the decay of correlated states G,,
of multiplicity » = 3. The two-pion resonances
account for only ~10% of 3.

Through interference effects, the p meson may
also induce a positive correlation in f;°. This can
be understood heuristically by appeal to the Love-
lace fit,™ or by direct consideration of interfer-
ence effects expected between multiparticle pro-
duction amplitudes. We may postulate amplitudes
for the production of prompt single pions and p’s.
The amplitude A™(p,, p,) for the production of two
77’s must be properly symmetrized to satisfy
Bose-Einstein statistics. In a specific model of
this type,'® it was found that a threshold peak is
generated in C;°(M). The integrated interference
effect in f3" is roughly 0.5 (npo). Taking the value
<",,o>: 0.30+0.04 determined in Sec. II, we conclude
that about 20% of f;~ may be a Bose-Einstein re-
flection of p production. Superposition and inter-
ference effects may be present in the 7*7~ distribu-
tion also. In this case, isospin considerations
provide the symmetrization requirement. Model
estimates'® suggest that about 0.25(z,,) (only 4%)
of the integrated low-mass enhancement may be
explained in this way. For both (+-) and (- =),

the range of the interference effect extends one
pion mass above threshold.

IV. CONCLUSIONS

We find that the correlation function in invariant
mass is a useful way to display data from high-
energy multiparticle processes. It reveals inter-
esting structure not visible in rapidity. We ob-
serve strong positive correlations in both C;~ and
C;" in the form of threshold peaks extending from
the two-pion threshold to =0.6 GeV. In the (- -)
combination this peak accounts for all of f;7; in
the (+ —) combination it is responsible for 50% of

3". A p signal is visible above a broad back-
ground in C;7(M). For M <0.42 GeV, we find no
significant dynamical ¢ dependence in either
C; (M, ¢) or C;7(M, ¢), except for a suppression
near ¢=180°in C;". In examining the M depen-
dence of R"=C;"/p; € p;, we find a rapid variation
with M over the narrow range 0.28 <M <0.42 GeV.
This variation is not inconsistent with Bose-
Einstein effects. If present, the scale of this ef-
fect is about one pion mass.

The decrease of C(M) as M increases is inter-
preted in the Mueller-Regge inclusive framework.
For C; (M), we find that the average M dependence
is described by an effective trajectory with inter-
cept @(0)=0.5+0.1, consistent with the expected
(p,f) pair. For the exotic (- -) system, we find
a low intercept, a(0)=-0.5. These results sup-
port the application of standard duality concepts
in inclusive processes. Correlations in the exotic
71" system are observed to be of much shorter
range than those in 7*7°. This important differ-
ence was not discernable in rapidity, where, in
part because of the smearing introduced in con-
verting M dependence into a y variation, similar
correlation lengths are found for (+ -) and (- -)
pairs.

In an exclusive framework, we relate most of
the positive correlation in the low-M region to
higher-mass resonances decaying into three or
more pions. This picture could be checked by an
examination of the mass dependence of the three-
and-more-pion correlation functions.
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APPENDIX A: EXPERIMENTAL METHOD

To obtain C,(M), we must first evaluate the M
dependence of the product p, ® p, of single-particle
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spectra, Eq. (2.6). The single-particle dis-
tributions p, are determined experimentally
both for positive (p}) and for negative (p;) parti-
cles. We compute the integrals in Eq. (2.6) by
the Monte Carlo method. It is convenient to use
as integration variables the longitudinal rapidities
v, and y,, the magnitude of the transverse mo-
menta p,, and p,,, and the orientation angles ¢;
of the transverse-momentum vectors. The sin-
gle-particle density is a given function of y and
pronly. Fromy, p,, and ¢ for each particle,
the mass M is computed from Eq. (2.4).

Y /2 2r wy Y/2 2r
p1®p1(M)=f dylf dthf dwlf dyzf do,
-Y/2 ¢} 0 Y/2 3}

where the curly-bracketed quantity is reexpressed
in terms of (y;, ¢;, w;). The value of R? is ad-
justed to make the bracketed quantity a slowly
varying function of w;. The domain of the integra-
tions in Eq. (A2) is a six-dimensional box which
is populated uniformly.

There are two sources of uncertainty which
contribute to the errors shown on the histograms
of C,(M) in Figs. 1-5 and 7-8. First, there are
the usual statistical and systematic experimental
errors on p, and p,. Second, there is an uncer-
tainty introduced by the Monte Carlo integration
method.

We estimate the total error on p,(M) by dividing
the data sample into three equal parts. For each
mass bin, the mean value and standard deviation
of p,(M) are obtained by comparing results from
the three subsamples. The central values and un-
certainty of p, ® p,(M) are computed by generating
several sets of Monte Carlo events and taking the
average and standard deviation. The statistical
error on p, ®p,(M) is negligible compared to the
Monte Carlo error. The total uncertainty on
C,(M) is the combination of the comparable inde-
pendent errors on p,(M) and p, ® p,(M).

APPENDIX B: DERIVATION OF EQS. (3.12), (3.15),
AND (3.16)

We adopt the specific interpretation of the
prompt function G,, as an independent density for
production of an m -particle resonance, which
subsequently decays into pions, possibly through
intermediate resonances. The cross section for

15

Since the p, distribution is exponentially damped
we use importance sampling in the p, integrations
to increase the efficiency of the Monte Carlo pro-
cedure. To implement this, we make the substi-
tution

“’z%(l - e Rty (A1)

The p, values in the data are limited to p,® =<1
(GeV/c)?, so that w has a maximum w, = (1/R?)
(1 = e ®). Interms of the new variables, the in-
tegral (2.6) is

[ dw, Hou(p)e™ oo, (p)eR 2 6([(py + 5V /2 - M0},

(A2)

a typical final state containing N resonances is

n n nN
Glml ] G'mz' oo O a'p. (B1)
mylnl myln,!

Pl=
v m ylny!

The M =m,n, +* ** +m yny distinct momentum
labels are suppressed. We use G}, to denote
Go(pr1* *Pim) " "Gl Pmy ** * Ppm)- The integration
d"p is the invariant integration over the M pion
momenta. The cross section for making exactly
M pions is

oy= D Ph. (B2)
N

This is the sum of the cross sections (B1) over
all possible numbers of produced resonances.

Generating -function techniques are a simple
way of relating exclusive cross sections to in-
clusive cross sections.'® For example, if one
defines

o(z)= Z z¥g,, (B3)
W

the integrals of the single-particle density and
correlation functions are known to be

)

f, =—1no(z)
toez e
82
f2=-a?1na(z) e (B4)
83
fy=531n0(2) "

For o, defined by (B2), using M =2J,m n,;, we
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immediately derive

o(z)=exp<; jd”p%#) . (B5)

A more sophisticated treatment allows z to be a

function of the four-momentum p. Let 2™ denote
z(p,) -+ z(p,). Functional derivatives of Ino(z(p))
with respect to the function z(p) yield the single-
particle distribution, and n-particle correlation
functions. Applying such functional derivatives to
(B5) we obtain Egs. (3.12), (3.15), and (3.16).
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