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Alternative space-time view of vector-meson dominance for virtual-photon —nucleus scattering*
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We clarify the meaning of vector-meson dominance for virtual photons via a coupled-channel formalism, in
which the photon can interact only by converting itself into a vector meson, the conversion occurring
anywhere in space. We calculate the relative contributions of the diferent conversion regions, discuss their
physical interpretation, and establish the equivalence of this approach to the usual treatment.

I. INTRODUCTION

In this paper the meaning of vector-meson
dominance (VMD) for virtual photons is clarified
via an alternative, but equivalent, treatment to
that of Refs. 1 and 2. In the usual treatment' the
photon can interact either directly with the nu-
cleus or by first converting itself into a vector
meson; all interactions are described by poten-
tials confined within the nucleus and are propor-
tional to one another. In this approach maximum
shadowing, comparable to hadronic shadowing,
occurs when the energy is much larger than (-q
+m»')/2M (M = nucleon mass m» =vector-meson
mass), owing to a cancellation of direct and in-
direct photon potentials. It is in this sense that
the term VMD is valid, despite the presence of the
direct photon potential. However, it is more cus-
tomary to think of VMD as implying that the pho-
ton can interact only by converting itself into a
vector meson, and that the conversion can occur
anywhere in space. As we will show, this ap-
proach is equivalent to the usual one; this is to be
expected, because of the canonical equivalence of
these two approaches in Lagrangian field theory. '
Nevertheless, to the best of our knowledge, this
equivalence has never been demonstrated for the
nuclear problem. Since the photon-vector -meson
conversion can occur even in the absence of the
target, a renormalization of the relevant ampli-
tudes is needed before the equivalence can be
shown.

In Sec. II we describe our approach, discuss the
renormalization problem, and establish the equiva-
lence to the usual approach. In Sec. III we discuss
the case of a target of constant density and the
meaning of VMD for -q v0. We restrict ourselves
to the case of constant rather than more realistic
density, because the problem can then be solved
analytically, thus facilitating the physical inter-
pretation of this alternative approach. For exam-
ple, this physical picture requires that the photon-
vector-meson conversion occur both outside as
well as inside the nucleus. It would then be inter-

esting to calculate the relative contributions of the
different conversion regions. Although the total
contribution from a nucleus of total constant den-
sity is well known, "this question of the relative
contributions of the different conversion regions
could not have been formulated in the usual ap-
proach.

II. ALTERNATIVE APPROACH TO VMD

We start, as in Ref. 1, with a set of coupled
equations for the photon and vector-meson wave
functions g„and P»,

(V +k )$» =Q U~»$»,

(V + k» ) P» = U»»f» + U» $»,

where k (k») is the virtual-photon (vector-meson)
momentum, Uy~ is the "potential" responsible for
the conversion of the photon to the vector meson
V, Uy~ is that for the reverse conversion, and U~
is the potential describing the strong interaction
of the vector meson V with the target. Unlike Ref.
1, there is no U» term (direct photon interaction)
and the Upy Uyp potentials are constants through-
out space (not confined within the target area).
This is because, as explained in the Introduction,
the photon interaction in our approach can only
take place through conversion, and conversion can
occur anywhere in space. Thus if for convenience
we let

and

i Uyy
» (2k)li2(2k )li2 (2a)

(2b)

then this approach requires ~~ to be constant in
space and A.~ to be zero outside the target. In
order to preserve well-defined, asymptotic photon
states, we limit the range of X~ to a distance 2z,
centered around the target, with zp ultimately
going to infinity.
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As in Ref. 1 we solve Eqs. (1) in the eikonal ap-
proximation. In terms of the eikonal wave func-
tions

mass of the virtual photon, and mv is the mass of
the vector meson V. In order to study the cross
section for the photon to scatter off the target, we
need the solution of Eqs. (4) satisfying the boundary
COIldltlolls X)»(z= —z()) =1 slid X)»(z =-z()) =Oz 'this ls

Eqs. (1) become approximately

d tghv
dz
—XV+~VXV =-~V

(4)

X,(*) X =f-'dz'e"' exp — dtz (t), (e)
gp g I

X„(z)—1=+(X))' dz'e ""&
V go

where

X
= Qe "XIX)zz

V

gl g I

&& dz" e ' v exp — dt Xv(t)
go

II

(I)
-q + Ill 15V=k-kV=

2v

in the high-energy limit. In Eqs. (5) v and q are
respectively the laboratory energy and the squared

The scattering from the target is described by the
difference of the eikonal wave functions in the
presence and in the absence of the target potential
Xv evaluated at z =zp. This difference can be cal-
culated from Eqs. {6)and (7); we obtain

x (z,) —x„"='(z,)= —x f dze'„""'exp — dtx„(t) —t},
go g

gp

x„(z,) —x„='(,)=I (x')' d*e "t d*' " t 'exp — dtl (t) —)}).
v go ~gp g

(8)

(9)

This subtraction is the renormalization alluded to in the Introduction. Performing an integration by parts
in the z integral (by differentiating the quantity in the curly brackets) Eq. (9) becomes

'o i I"

x»(z)-x»" (z,)=I (x')' dze" —e "' exp — dtx (t) —t}„~gp V ~gp

dz' e" '«X„(z') exp — dt X„{t) (10)

Since we are ultimately interested in the limit zp- ~, the factor e '* v will average to zero, so we drop
it. Performing one more integration by parts in the z integral (by differentiating the quantity in the paren-
theses) in the limit z, —~ Eq. (10) finally becomes

t 2 2 ee g » g

X„( )-X„""='( )=P ~ «& (z)-P ~ «e ""~„(z) «'e"' & (z')exp — dt's„(t)
v ~V w Cl g

Similarly, performing an integration by parts,
Eq. (8) becomes

p„
I oo

X,( )-X„"I='( }=-t~ «e"'~X„{z)V

become respectively

X ( )-X„='( )=-'~ exp — dtz„(t) -t},

xexp — dtXv t . 12

Now, in the limit 5„8-0 (e.g. , )d- «) for fixed
qZ, R is the radius of the target) Eqs. (12) and (11)

yt 3 oo

x»(")-x»"='(")=-g ~e exp — «x(t) -t}. ,
V ~ eo

(14)
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Thus„we see that in this limit [using Eqs. (2a)
and (5}]

I

Xv( ) -Xv"='(")=-& ~51Xv(")-Xv'='( 6

== g,
"' 2(Xv(")-Xv'='("}I .

Hence, if we define

scribes VMD by coupling the vector-meson and
photon fields to each other and both to the hadronic
current is equivalent, by a canonical transforma-
tion, to a Lagrangian, in which only the vector
meson couples directly to this current. ' The vec-
tor-meson propagator (-I/5v) appears automatical-
ly in Eq. (15) because this is a fully quantum-mech-
anical treatment with relativistic kinematics.

fv =- (18)
U

7

then Eq. (15) is the usual VMD relation.
For finite values of 5vR (e.g. , low-energy real-

photon scattering or in the Bjorken limit) a simple
relation such as Eq. (15) is no longer valid. The
physical reason for this is discussed in Sec. III.

I.et us now compare Eqs. (11) and (12) with the
results of Ref. 1; combining Eqs. (2}and (3) of
Ref. 1 we obtain

x„(")-x„""='("}

Uv() ~ -d „,, U, A)

III. TARGET OF CONSTANT DENSITY

We proceed now to the evaluation of Eqs. (8) and

(7) for the case of a target of constant density and
radius g. Since the conversion can take place in-
side or outside the target, it is instructive to di-
vide the z axis accordingly. Thus for every im-
pact parameter 5 (see Fig. 1}we divide the z axis
into three regions: A: -zo &z &-z, =-(R' —5')' ',
8: -z, &z ~z„C: z, ~ z &zo (with z, -~). Then

~, (z) =~, e(z, —~z [),

and Eq. (8) becomes

c U (t)-
x exp dt

Z, ( )-)t„"v='( ) =-x„'(ag„+ng, +as, ),

It is then clear that our Eq. (11) is consistent with
Eq. (1V), and Eq. (12) is consistent with Eq. (2) of
Ref. 1, provided the following relations hold:

1$yzv(e mxvzl 1) g glv=Q1
A, i5~ A A

~Z, =—e "v*l(e+'l —e +*l)8
p

v ~ev v ~f 2
( g+~ 2}2 vv

V

(18) (zl Qg~ e i+gl)-
i5~

When Eqs. (22) are substituted in Eq. (21), the

Equations (18) are the usual vector-dominance
relations with the vector-meson propagator put in.

%e have thus shown that the following two de-
scriptions are equivalent. A photon interacts with
the target by first converting to a vector meson
anywhere in space (U„v). Or else, it either inter-
acts dll'ee'tly (Uv} ol' through eollvel'alon illto a
vector meson (Uvv and U„), all interactions being
confined within the target, and the potentials satis-
fying Eqs. (18}. The equivalence of the results of
these two descriptions reflects the fact that in
Lagrangian field theory the Lagrangian that de-

FIG. 1. The different regions introduced for the evalu-
ation of Eqs. (6) and (7).
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final result is

SJC1 6V

y„(~)—
}trav 0(~)=-i XvX(, (1 —e & i) .'

&v&v

Similarly we obtain from Eq. (9}

&~(")-X~' ('0)-Q(".) (n4~+&4s+&I~c

+ hiss+ EIac+ r(.Icc) (

(24)

where 4I&~ means that the region of integration is
such that z is in the interval (i) and z' is in the in-

terval (j ). Explicitly
Xv= o+IAA IAA IAA

Ice=0
2i(.vz, X„(X„+2f 5v)
i&v&v ~v' &v'

+ e-2t bvg
&v'

&I„c=, e " &'& (1 —e ' ~'~)
v

AI~~= EIac
1 i

v i6vgv

Collecting all terms we finally have

x (")-x'" '(")=Q(~'(* — ' 2* ' " ('-' * "')
Ii5v)v ~

' i5v Ev
(25)

This is the generalization of the VMD relation (15}
to the case 6v 40. The proportionality factor be-
tween 4I«and ~ J& is nothing more than the ma-
trix element for V-y transition in region C and is
therefore proportional to

l
-jul bv

d 8-4k' ~ikVc i(5„ie)- (29)

Similarly one can show that the y-V transition in
region A is also proportional to Gv.

Thus, in the spirit of vector dominance, one
expects that the vector-meson scattering ampli-
tude is proportional to 4J„/G„=e ' r'& —1.
deed, this is exactly what one gets if one solves
Eqs. (1) in the eikonal approximation for the vec-
tor-meson elastic scatter ing amplitude. Qf

We next discuss the physical content of Eqs. (22)
and (25). First notice that

'lc1 bv
n.I(c —— . bJ( (f=A, B, C) .

Ac 2(Ac g 2

1
BB + 2~

&v
(29)

-2X, g&I»= &Iac =
~v&v

After this paper was submitted for publication,
it was brought to our attention that recently an-
other discussion of space-Lime aspects of vector
dominance has been given. '

course, the full elastic photon amplitude contains
in addition the terms nl, s (i =A, B), which have
no counterpart in the vector-meson production am-
plitude. Thus, unless the 4I,c terms dominate,
the above proportionality will not hold for the fuQ
amplitude. Since 4I» = 4I~c, this dominance will
occur only if &I„c is large compared to all other
terms. This is the case when Oval 0, since then
one can easily show from Eqs. (25) that
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