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The multiplicity and inclusive distributions for the sequential decay of a massive state into massless particles

are studied, with particular emphasis on polynomial matrix elements. Integral equations for these distributions

are derived and discussed, and a Monte Carlo event generator is also described. In many of the models for
which the average multiplicity grows linearly with mass, the inclusive spectra are similar to those obtained

with a constant matrix element. However, there is also a large class of models in which the momentum

spectrum flattens out after falling several decades. The large fluxes, the increase of associated multiplicities, and

the large violations of scaling observed in large-transverse-momentum reactions would all receive natural

explanations in cluster models with this kind of decay matrix element. The same mechanism gives a

satisfactory phenomenology of the small-transverse-momentum events.

I. RATIONALE

Many phenomenological models of multiparticle
production suppose that, at an intermediate stage,
the final state consists of a few massive objects
which subsequently decay into the observed ha-
drons. ' In hadronic collisions the objects are often
viewed as clusters of pa. rticles which are produced
peripherally or multiperipherally, and then decay
according to some matrix element, usually a con-
stant. In e'e annihilation, the final-state hadrons
have been interpreted to be the decay products of a
single cluster at lower energies, and to be two jets
formed by neutralizing the quark quantum numbers
at higher energies. '

Many of the models based on these notions are
quite useful for interpreting the gross features of
multiparticle production. Also, there is positive
evidence in hadronic data for the existence of clus-
ters, although estimates of their average multi-
plicity cover a broad range. ' This raises a ques-
tion concerning the universality of the cluster pic-
ture and, without sufficiently detailed theoretical
guidelines, the answer must rely on phenomeno-
logical analyses. Thus there have been many ef-
forts to extend these models to rare but interesting
reactions, such as those involving a particle at
large transverse momentum k~. '

The purpose of this paper is to analyze the decay
characteristics of objects which could appear as
clusters. We will assume that the cluster decays
by a sequential process into zero-mass particles.
As discussed in Sec. II, the ultrarelativistic limit

greatly simplifies the kinematics, and the sequen-
tial-decay picture permits the derivation of useful
equations for the multiplicity distribution and in-
clusive cross sections. These results could be ap-
plied to cluster models, although we will not ap-
proach the difficult question of cluster production
here.

Many matrix elements lead to inclusive distribu-
tions which are similar to those obtained from
"flat phase space" (a constant matrix element for
each multiplicity). Here the invariant cross sec-
tion falls a little faster than exponentially with in-
creasing momentum. However, we have also found
large classes of models in which the momentum
distribution can suddenly flatten (after falling many
decades) before taking the final plummet to zero at
the edge of phase space. In models where the
average multiplicity grows linearly with the mass
of the cluster, the low-momentum inclusive spec-
trum scales approximately. The flattening begins
at a fixed momentum independent of the cluster
mass. Consequently, sizable violations of scaling
will occur at these larger values of momentum.

We expect this kind of cluster decay to give a
satisfactory account of large-k~ phenomenology in
a model in which the clusters are produced with
small transverse momentum. The flattening of the
momentum spectrum gives the relatively large flux
of particles at la.rge kr. (If the momentum spec-
trum drops off exponentially or faster in the clus-
ter rest frame, the relatively large yields at high

k~ can be achieved only if the clusters themselves
are produced with large k~. ) Moreover, two fea-
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tures of the large-k~ data, namely, )he large vio-
lations of sealing4 and the increase of associated
multiplicity with the k~ of the particle which is ob-
served, are explained naturally if the average
cluster mass increases slowly with the total cen-
ter-of-mass energy. In addition, the faster-than-
linear A dependence of the large-k~ yields from
nuclear targets can be understood as a multiple-
scattering effect within the nucleus, where the
cluster mass can be increased by the multiple col-
lxscons. At t,he same tame, low-k~ phenomenology
is controlled in this picture by the more copiously
produced low-mass clusters, and the standard re-
sults are easily reproduced. A more unified treat-
ment of both large- and small-k~ processes is an
attractive feature of this approach. cwork along
these lines is currently in progress.

It is a,iso interesting to apply these ideas to ha-
dron production in e'e annihilations. As the e'e
energy is increased, the probability of producing
a large-momentum particle in the flattened region
of the inclusive distribution is also increased.
These events will appear jetlike, with the jet axis
along the direction of the high-momentum particle.
In fact, it is possible to fit the observed spherici-
ties and multiplicities in terms of these single-
cluster models. ' If one assumes that the clusters
seen in e e annihilations are similar to those pro-
duced in hadronic collisions, it is then possible to
study production of massive lepton pairs. Vfork is
also in progress on this problem.

This paper is organized as follows: Section II
contains a compendium of general formulas for the
multiplicity and momentum spectra. ' Qur assump-
tions are discussed and equations for the multi-
plicity distributions and inclusive cross sections
are derived. '

The complete solution for flat phase space (con-
stant matrix element) is reviewed in Sec. III,
where exact formulas for the multiplicities and
one- and two-particle inclusive spectra are de-
rived. %e should emphasize that these simple an-
alytic results do not require computer calculations.

Section IV begins the analysis of general sequen-
tial decay models. The growth of the average mul-
tiplicity with cluster mass is studied, and the con-
ditions which restrict this growth to be no faster
than linear with mass are derived. Technically
this involves solving the equation for the "weighted
volume" of phase space. An outline of the solution
is given in See. IV, and a number of useful details
are included in an Appendix.

The inclusive momentum distribution is dis-
cussed in Sec. V, where we present an efficient
Monte Carlo method for solving the equations. '
This approach to dealing with the cluster decay is
very powerful and can greatly simplify some mod-

el calculations.
A number of examples are shown in Sec. VI,

where we also discuss some qualitative aspects of
models which give an enhanced large-momentum
flux.

II. NOTATION AND ASSUMPTIONS

%e set our notation by reviewing some well-
known formulas. The probability for a state with
four-vector momentum P, P'=M', to decay into n
particles is proportional to the Lorentz-invariant,
weighted volume of n-body phase space,

(2.1)

where M„(k„.. . , k„)is the n-particle decay matrix
element. The set, of functions I'„(P')contains all
the available information about the multiplicity dis-
tribution as a. function of P'. For many purposes
it is convenient to combine the I'„into a generating
function, '

(2.2)

(The choice of the powers of X simplifies some
equations below. ) The average decay multiplicity
(minus one) at the mass M, {n —1)„,is given in
terms of I'(X,M ') by

and the second moment is

(2.3a)

The Lorentz- invariant single-particle momentum
distribution for the n-body decay is proportional to

dI 0&
2E lld'k, dsk ' (2.4a)

(2.4b)

For future convenience we have not included par-
ticles n and n —1 in the sum. The Lorentz-invari-
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ant inclusive cross section is

f(P', (P —k)')=2E, =+2E," F(M2),

(2.5)
I'(M') =I'(X=1,M'),

normalized such that

f d'k f(P', (P -k)') =(n —2)„. (2.6)

n-1

(2.7)

where M, =M and M„,=O. (Note that this matrix
element is already totally symmetric in the mo-
menta so no explicit Bose symmetrization is nec-
essary. ) There are some models for which it is
trivial to relax this assumption; and it is particular-
ly simple to do so using the Monte Carlo method of
calculation discussed in Sec. V.

Probabilities of this form do not necessarily ex-
clude cases in which the intermediate particles in
the decay sequence have spin, since polarization
sums can eliminate angular dependence. For ex-
ample, suppose Mo M M2 M y are all spin &

and Mo and M„,are unpolarized. Then matrix ele-
ments of the forms guu, guy, u, or guy, jfu at each

More complicated correlation functions are easily
written down in a similar fashion.

For a general decay matrix element
M„(k„.. . , k„),the multiplicity and inclusive dis-
tributions must be computed directly from Eqs.
(2.1) and (2.5). In this paper, we study these dis-
tributions in a restricted set of models. We as-
sume the following:

(1}The n decay products are all massless. The
ultrarelativistic limit greatly simplifies the multi-
ple integrals of Eqs. (2.1) and (2.4). For example,
if IM„I'is a constant, the integra. ls are elementary
functions. 'This is not so for the massive case. '
This assumption is quite reasonable for decays in-
to energetic pions, but will fail for particle pro-
duction near the edge of phase space and for decays
into very massive particles.

(2) The clusters decay sequentially as indicated
in Fig. 1. This assumption means that

IM„(k„.. . , k„)I2 can be broken up into a product of
n —1 terms, where each term corresponds to a
vertex in the sequential decay.

(3) The probability distribution associated with

each vertex depends only on the masses of the ad-
joining particles (and not on the preceding momen-
ta), so that

vertex lead to Eq. (2.7) with

IF(M2 M.2) I'= g2(M+M, )'/MM„

and

IF(M, M, ') I'=g (M —M, ) /MM„

IF(M, M ') I'=g (M -M ')'/2MM„

respectively. The model with spin-1 sequential de-
cay is easily analyzed with our formalism, but
does not satisfy assumption (3).'

The sequential-decay picture, Eq. (2.7), allows
Eq. (2.1) to be written as a (well-known) recur-
rence relation, '

NI'„(M')=,f dM, '(M' —M, ')~E(M', M, ')~'
0

x r„,(M, '), (2.8a)

with

r, (M ') =—"
I
F(M' 0) I'.

2
(2.8b)

Equation (2.8} can be converted into an integral
equation for F(X,M') by multiplying I'„(M')by X" '
and summing from n=3 to ,

r(X, M') = r,(M')

N

0

x I'(A, M, '). (2.9)

M= Mo Mj Mp Mn-2

kg ky ~n-2 kn-i

FIG. 1. Sequential decay process. This figure shows
the labeling conventions used in this paper. Each vertex
corresponds to a factor )5'{M,M~ )) . The external
particles with momenta k &, . . . ,k„areall massless.

The Lorentz invariance of I"(X,M') is manifest,
and the series solution of Eq. (2.9} converges so
long as Eqs. (2.1}and (2.2) make sense. Equation
(2.9) has two important applications in our work
The asymptotic form of the multiplicity distribution
for large M' can be found directly from Eq. (2.9}.
Moreover, the solution of Eq. (2.9) is necessary
for the inclusive-cross-section calculations car-
ried out in Secs. V and VI.

It is convenient to rewrite Eq. (2.9) in dimension-
less form, since IF(M', M, ') I' has units of in-
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verse mass squared. Let
2

iF(M', M, ') i' =~ j—( y, z),

y =Mg/2, z=M, /M,

I'(X, M2) =-,' g'y„(y),
(2.10}

G(~)(P'& (P —k}'), for j&1& are somewhat more
complicated, but can be written as

dr("~P' m'~G(~'(P' (P —k)') = &fm'2Z '"' ' ' I'(m')d'k

(2.16)

This equation is further discussed in Secs. IV and
V and the Appendix.

It is also quite straightforward to derive an
equation for the inclusive cross section, ' as de-
fined in Eqs. (2.4} and (2.5). (The modifications
needed to include the last two particles on the
chain in Fig. 1 are trivial, but make the equation
less neat in appearance. ) We will not make much
use of the integral equation for the inclusive cross
section in this paper, and some readers may wish
to go directly to Sec. III.

The invariant cross section, f(P', (P —k)'), can
be written as

G (P & (P —k}')-=I'(P') f(P'& (P —k)')

(2.12)

The function dI'„'J'/d'k defined in Eq. (2.4b) can be
identified for the sequential decay as the momen-
tum distribution of the jth particle off the chain in
the n-body decay in Fig. 1. It is convenient to re-
organize this sum and consider the distribution of
the jth particle off the chain, summed over all
multiplic ities,

" dr(~)
G")(P', (P-k)')=2E P„J„d'k'

so that

(2.13}

where g is a coupling constant with units of in-
verse mass. Equation (2.9) becomes

r, ( y) =P( x, o)

1

+ 2Xy' dz z(1 —z')p( y, z)y, ( yz).
0

(2.11)

dl'&~ "((P—q)', m')
d k

(2.17)

ln effect, Eq. (2.17) shows how to add a zero-mass
particle to the front of the chain in Fig. 1, where q
is the four-vector momentum of the cluster after
this first particle has been emitted. A linear in-
tegral equation for G(P, k) is now easily derived by
summing Eq. (2.16) from j —2 to M), using the defi-
nition Eq. (2.14), and substituting Eq. (2.17) into
the right-hand side of Eq. (2.16). The invariant
form of the resulting equation is

G(P' (P —k}')=G"'(P', (P —k)')

+ d'q I' P', q' '6, P —q ')

x G (q', (q k)'). (2.18)

Two of the integrals can be evaluated in the frame
P = (M, O), where rotational invariance is simple:

«M' t) =IF(M' t) I'I'(&}

where

2M'x
N

d ( d~
g

/ ~ p ~y g ~I y ( j

(2.19)

where dl'&~)(P', m'}/d'k is the distribution of the
jth particle off the chain in a ( j+ 1)-body decay of
a cluster of mass P' and the mass of the ( j+1)th
body is m. This is an auxiliary object, but it is
useful because it satisfies the recurrence relation,

dl &J)&P' m'
2E '" ' = d'q iF(P' q')i'6 ((P — )')

G (P', ( P —k)' ) = Q G (~ ' ( P', ( P —k)' ). (2.14) x=2k/M, 0 x&1, )=M'(I —x), 0&)&M',

A substitution of Eq. (2.7) into Eqs. (2.4b) and

(2.13) yields

M '= ('+xM2

M, '= ]'/(1- x).

(2.20)

6"'(P' (P —II)') fdM(P(M=', M')('&, '

x(M, ' (P k)') I'(M, ').

(2.15)

[The two-body decay can be included by replacing
I'(M, ') by I'(M, ') =25(M, ')+I'(M, ').] The

This equation has proved to be useful on occasion,
although the solutions presented in Sec. VI were
obtained by Monte Carlo techniques.

III. CONSTANT MATRIX ELEMENT

Our object in this section is to give a complete
presentation of "flat phase space, " subject to the
assumptions of Sec. II. Many of the results are
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fF(M', M, ') /'=g—. (3.1)

r„(M') is then the multiple integral,

well known, but a careful presentation will ease
the more eomplieated discussions in Secs. IV and

7, and we thought it useful to collect these results
in one place.

All the formulas of Sec. II are easily evaluated
for

distribution as y —~. This distribution is always
narrower than a Poisson distribution and for some
calculations the difference is appreciable: The
probability of n being much different from average
is greatly suppressed compared to a Poisson dis-
tribution. In a model where P„is a Poisson dis-
tribution and ~M„~' is constant, ~M„~' therefore
cannot be written in the form Eq. (2.7).

From Eqs. (3.3), (2.2), and (2.10), it is easy to
calculate the multiplicity generating function y„(y),

y, ( y) =I,(»"'y)/(! "'y).

2n-2' M' (n-1)!(n-2)! ' (3.3)

where y =Mg/2, as in Eq. (2.10), and n=2, 3, . . . .
We first study the multiplicity distribution.

1'„(M')is proportional to the probability of an n-
body decay. The normalization sum is

r(M') = gr„(M')=(y/M' )I„(2y), (3.4a)

where I~ is the modified Bessel function,

(3.4b)

The large-z behavior of I,(z} is given by the as-
ymptotic formula

e' 4k' —1 (4k' —1)(4k' —9)
(2vz)" ' Bz 128z'

(3.5)

From Eqs. (3.3) and (3.4), the normalized multi-
plicity distribution is

@2ff 3 I
(n —1)!{n —2)! I„(2y)' (3.6)

where P„is the probability that a cluster of mass
M and coupling g [Eq. (3.1)] will decay into n par-
ticles. It should be noted that Eq. (3.6) is not a
Poisson distribution, even though, because of Eq.
(3.1), this is an "independent-emission model. "
Energy-momentum conservation in Eq. (3.2) in-
duces correlations which do not vanish for large
y; that is, Eq. (3.6) does not approach a Poisson

(3.2)

There are many ways to evaluate Eq. (3.2),' but

perhaps the simplest is to make a change of vari-
ables to the intermediate mass variables,
M„M„.. . , M„,of Fig. I, do the angular integra-
tions, and then transform to sealed variables y,.
=M;/M, ,(MD=M). The (n —2)-fold mass integra-
tion then becomes a product of elementary P func-
tions, and r„(M')is easily reduced to

The form Eq. (3.7} satisfies Eq. (2.11). The aver-
age multiplicity, (n —1)„=N(M), is given by

N(M) = yI (2y)/I, (2y)

1—g+ —+ +0
32$

(3.8}

The approach to a linear mass-multiplicity rela-
tionship for flat phase space is extremely rapid:
At y=3, the error in%(M) = y+~ is just 1%.

The second moment of the multiplicity distribu-
tion is given exactly by

{(n—1}(s—2)&z = y'. (3.9)

2E, " =2 (n —2)r„,((). (3.10)

The inclusive distribution, normalized to {n—2),
is obtained by substituting Eq. (3.3) into Eq. (3.10)
and summing it from n=2 to

dII g'M Io(g)'I'}
d ' k 4n' I,(Mg)

(3.11)

It is easily checked that G(M', $}= g'I, (g('~')/(Bv)
satisfies Eq. (2.19).

The asymptotic form of Eq. (3.11) is useful,
since the Bessel functions approach their asymp-
totic limits very rapidly. For k not too near M/2,

Higher moments are again ratios of Bessel func-
tions. The asymptotic behavior for large y of
{np)„is y~. Equations (3.8) and (3.9) suffic~ to
show that P„[Eq.(3.6)] is narrower than a Poisson
distribution, since

f, = {(n—l)(n —2)) —{(n—1})'= —z y —4

(f,=0 for Poisson).
Although the inclusive cross section can be de-

rived by solving Eq. (2.19), it is much simpler to
note that, since the decay matrix element is in-
dependent of intermediate cluster masses M, , the
first particle off the chain has the same momentum
distribution as any other. Thus, from Eq. (2.4),
with $=(P —k)',
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Eq. (3.11) becomes number of pairs where one secondary has momen-
tum k, divided by the average number of particles
at@

(3.12) A(k) = y(I-x}' '. (3.1'I)

((gk)') = (i+ I) t fl.,(23)/I, (23}.
The dispersion in k is defined by

D2=
2 —

2
1 ——,y»1.(k') —(k}' 1 3

(k)' 2 2y

(3.13)

(3.14)

Another easily calculable quantity in this case is
the two-particle distribution function. The two-
particle spectrum for the first two particles off the
chain is the same as that for a.ny other pair (for a
constant matrix element). For ann-body decay
(but ignoring the last two particles), there are
—2(n —2)(n —3) pairs. The calculation is similar to
that leading to Eq. (3.11),

Mg' [(P-k, -k,)')"'
'd'k, d'k, 16l12 f,(2y)

x f,(g [(P-k, -k,)']"'].
(3.15)

The n-body distribution functions are computed in a
similar fashion. %e should note that all these dis-
tributions are easily used in model calculations be-
cause of their manifest Lorentz-transformation
properties.

The associated multiplicity is also easily cal-
culable. There are two common definitions of this
quantity. The first definition we consider is that
tile RssociRted multlpllclty A(k) ls tile RvelRge
number of additional particles produced, given that
one particle is observed to have momentum k:),(2 I, (2y(i -x)'~2)

f, (2y(l -x)"')
~ y(1 x)1/2 (3.16)

for 2y(1-x)'~2» 1, where we remind the reader
that y =Mg/2 and x = 2k/M, 0 & x & 1. For small k,
the spectrum falls as exp(-gk). The decrease is
more rapid for larger k. One phenomenological
implication of this result for cluster models with
constant decay matrix elements is that the ob-
served large-transverse-momentum yields can on-
ly be obtained by imparting significant transverse
motion to the cluster. However, this is not a gen-
eral feature of all sequential-decay models.

A convenient characterization of the momentum
distribution is in terms of the moments (k'), which
are easily calculated from Eq. (3.11):

Regardless of the definition of the associated mul-
tiplicity, it is still necessary to fold it with the
mass spectrum to see whether it should grow or
decrease with the momentum of the observed par-
ticle.

Finally, we wish to point out that there exists a
class of models which appear to be nontrivial but
are in fact not essentially different from flat phase
space. Any matrix element ~E(M', M, 2) ~2 of the
form

~F(M', M, ') ~'= t2(M')/o. (M,') (3.18)

gives, by virtue of our sequential-decay assump-
tion,

~M„(k„.. . , k„)~' a(M')/n(0) (3.19)

Although the resulting I'(M'} has a more compli-
cated M dependence, the inclusive and multiplicity
distributions are identical to flat phase space. The
common factor ol(M2) can be absorbed into the
(unknown) cluster-production probability.

IV. NONCONSTANT DECAY MATRIX ELEMENTS

The problem of obtaining multiplicity distribu-
tions and inclusive cross sections for nonconstant
~E(M', M, ') ~' is more difficult. In this section we
focus on the multiplicity distribution by studying
the solution of Eq. (2.11). The following two sec-
tions are then devoted to the inclusive cross sec-
tions.

In outline, our approach to solving Eq. (2.11) is
to assume a power series for y, ( y), and derive a
recurrence relation for the coefficients. [We will
restrict the choice of ~F(M2, M, ') ~2 so that this is
feasible. ] The asymptotic behavior of the average
multiplicity can be derived directly from the re-
currence relation by methods which are discussed
in detail in the Appendix. The recurrence relation
also provides a convenient way to evaluate y( y)
and N(M) for all y. This solution for y( y) is used
to compute the inclusive cross section in the next
section.

We restrict our attention to those ~E(M', M, ') ~'

which can be approximated by a polynomial in M
and M„

~r(M' M *)~*=2—I; .„(2) I"I",;~ m, n

or [cf. Eq. (2.10)]
This quantity decreases with increasing k.

A second definition is that [A(k)]2 is the average p( y, s) = g c „y'"x". (4.1)
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The sums on m and n are finite, and may include
negative values of m and n so long as the integral
in Eq. (2.11) is finite. The c „must be such that

P(y, z) is non-negative. The restriction to poly-
nomial matrix elements is a useful one because
yi(y) is determined by a finite range of M, (M,
&M ), and lF(M ', M, ') l' ean be fitted arbitrarily
accurately by a polynomial of the form Eq. {4.1).

Assume that y„(y)can be expressed as a power
series,

ly.
Models where N(M ) grows faster than linearly

for large M are unphysical for real, finite-mass
particles. This possibility is an artifact of the ul-
trarelativistic approximation. It is, therefore,
useful to impose on the c„„in Eq. (4.1) the con-
straints which require each A,.(n) to approach a
constant for large n. 'These constraint equations
can be given a general solution in terms of the fol-
lowing combination of variables:

g)l( 1)f (4.2)
(M+M, )/M=l+z

where g„areconstants which depend on A. , and the
lower limit on the sum is determined by the re-
quirement that the integral in Eq. (2.11) converges.
(In many models g ) is zero. ) When Eqs. (4.1) and

(4.2) are substituted into Eq. (2.11), we find a re-
currence relation for the g„ofthe form

(4.3)

plus inhomogeneou8' terms for n ~ I.
It is possible to find the asymptotic behavior of

the average multiplicity N{M) from the asymptotic
form of the recurrence relation for g„and the re-
sults in the Appendix. The basic results we need
here are the following: The series is convergent
if IA;(n) l(cn' for n-~. However, if any of the

A;(n) grows with n as n- ~, N(M) will grow faster
than linearly in mass. If the largest A, (n) ap-
proaches a positive constant as n increases, N(M)
grows linearly. Finally, if all the A, (n) go to zero
for n -~, N(M ) will grow less rapidly than linear-

—,'g(M -M, ) = y(I z). (4.4)

The most general expansion of P(y, z) of the form
Eq. (4.1) for which the average multiplicity grows
no faster than linearly in y is

P(y, z) = ZP., i(1+z)'(1 —z)'y', (4 5)

where again the sum on 0 and / is finite, some
negative values of k and I are allowed, and P(y, z)
must be non-negative.

Upon substituting Eqs. (4.2) and (4.5) into Eq.
(2.11), evaluating some elementary integrals, and

readjusting the summation indices, we derive the
recurrence relation for the g„,

(4.6)

Since the sums in Eq. (4.5) are finite, the inhomo-
geneous term is absent from Eq. (4.6) for large n.
By explicit calculation, A,.(n) is given by

A, (n)=2 gP, , , ', dzz" "'(1+z)"(1—z)' '(n+ 1)!
i )), i-2(n &+ I)(

(n+1)!(n —i+ j+I)! (k+ I)!(i —1)!
)) ~~o

"' (n —&+I)((n+j+I)! j!(&+I—j)! (4 7)

The large-n limit of this expression is

A,.(n) =A, ,=4(i-l)! g2'P, , „

(4.8)

(4.9)

which is a constant, as it should be.
Models for which N(M ) is asymptotically a lin-

ear function of y have at least, one A;, 0 O. The
asymptotic recurrence relation is

nentially in this ease,

[+{)()y]u(x)cg (x))) (4.10)

[~(&)]' = &f&;,.I ~(&)I' ',
a=1

(4.11)

with the largest positive real part. From Eqs.
(2.3) and (4.10), we find that

As is shown in the Appendix, p, (X) is obtained from
the asymptotic solution to Eq. (4.6), and is the root
of the polynomial equation,

As discussed in the Appendix, y, (y) grows expo- N(M) -!i'y+ c()i'/!i+ o. ' ln }iy, (4.12)
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where primes denote derivatives with respect to X,
and all quantities are evaluated for X = 1.

For some explicit examples of the above solu-
tions we make an inessential simplification, and
assume that ~F(M', M, ') ~' is a power series in the
momentum (M'-M, z}/(2M) of the emitted particle
in the rest frame of M. In other words, in Eq.
(4.5} we let

Pk, l ~k, l~k, l ~k, laky (4.18)

where pk can be nonzero for 0 = —1, 0, . . . , I—2, and
must satisfy the positivity constraints. Equation
(4.6} then becomes

(4.14a)

for -1 ~ n « I- 2, and

g„=A. g„&A,n
s=l

for n&I-2, where

(4.14b)

(4.15)

Equations (4.14}, (4.15), and (4.2) completely spe-
cify y„(y). As an example, suppose

(4.16)

Then Eq. (4.12) becomes

[y (!()])((!& —2&+&(N + I) (!(

or

!/(!() 2(!()l/ (N+2) [(N+ I) (]1/ (N+21

(4.17a)

(4.17b)

The average multiplicity then goes asymptotically
as

V. CALCULATING THE INCLUS1VE SPECTRUM

It is very difficult to solve Eq. (2.19) directly for
the inclusive cross section, or even to obtain as-
ymptotic information from it. We therefore turn to
numerical methods, since our primary purpose is

N(M ) = [(N+ 1}!]'/ '""'+constant. (4.18)
2p

N+2

More complicated cases require solving Eq. (4.12)
for !/(X). In the cases where ~F ~'-k", Eq. (4.16),
the asymptotic behavior for N(M ) is reached for
rather low y. However, if ~F ~' has local minima
in k, the asymptotic formula is not a good approxi-
mation until M is above the region where ~F ~'

shows this structure.

to examine the dependence of the shape of 2EdN/
d'k on variations of ~F ~'. The method presented
here is a Monte Carlo technique' in which entire
events are generated with the quantum-mechanical
probability Eq. (2.7) constrained by phase space.
These events may then be analyzed as if they were
experimental data. This method is particularly
convenient if one must include experimental cuts,
resolutions, and so forth in order to compare mod-
el calculations with data. It is also a simple mat-
ter to compute complicated correlation functions.
However, it is somewhat awkward to study the
functional dependence of these correlations on the
parameters of the model and make best fits to the
data. The sequential-decay hypothesis makes it
possible to alleviate this problem somewhat, since
a very fast and simple event generator can be con-
structed.

The input for the event generator includes the
cluster mass M, a table of P,(M'), the probability
that a cluster of mass M' & M will decay into two
zero-mass particles, and P(M, ~M'), the probabili-
ty distribution for a cluster of mass M' to decay
into a zero-mass particle and a cluster of mass M,
(0&M, &M' &M). These tables are easily construc-
ted in terms of I'(M'), as we will show in this sec-
tion. The output generated for each event includes
the multiplicity (this is not determined a Priori, ),
and a list of four-vectors, one for each final-state
particle, which satisfy energy-momentum con-
servation.

The order of our presentation is first to describe
the procedure followed in generating an event, as-
suming that P,(M') and P(M, ~M') are known, and
then to describe the evaluation of P,(M') and

P(M, ~M'}. The next section discusses some re-
sults of explicit calculations.

We first generate a series of masses
Mg Mp M p as labeled in Fig. 1. We s tart
with mass M. The probability of a cluster of mass
M undergoing a two-body decay into zero-mass
particles is Pz(M). We generate a uniform ran-
dom number r on the interval (0, 1). If r&P, (M)
the decay series ends and M, =O. If r)P, (M), M
does not decay into two zero-mass particles, and
the residual mass after the first decay is non-
zero, M, &0. An easy and efficient way to generate
this residual mass is as follows. We normalize the
known function P(M, ~M } so that its maximum val-
ue is 1, generate a tr.a,l mass M, according to a
uniform distribution on (O, M), and compute
P(M, ~M). We then generate a random number r'
on (0, 1}. If r' &P(M, ~M), we use the trial value
of M„otherwise we repeat the procedure. Once
M, is generated, we ask if M, decays into two
zero-mass particles. If not, we generate M, from
P(M, ~M, ). The sequence ends when M„,decays



DURAND, FISHBANK, SIMMONS, AND SLANSKY

dM, P„(M,~M) =1.
0

(5.2)

Upon comparing Eq. (5.2) with Eq. (2.8), we find
that

P„(M,(M)=™(M'M, ') ~P(M', M, ') ~'

r„,(M,')
I"„(M') ' (5.3)

This identification is justified by the definition of
I'„(P')in terms of ~M„~' in Eq. (2.1). To average

into two zero-mass particles. It should be em-
phasized that the multiplicity distribution is al-
ready folded into P(M, ~M) and is not directly
needed for the ca,leulation.

The second part of the event generation consists
of obtaining a set of n foux'-vectox's from the n-2
masses. We staxt in the M rest frame. The mag-
nitude of the momentum is k, =(M' —M, ')/
(2M). Since the decay has been assumed to be iso-
tropic, we may randomly choose a direction for k, .
(It is also possible to include a nontrivial angular
distribution in the decay. ) The recoil cluster (M, )
has momentum -k, . We also generate the Lorentz
transformation L, which transforms vectors from
the M, rest frame into vectors in the M rest frame.
In the M, rest frame k, has magnitude (M, ' —M, ')/
(2M, ) and its direction is again uniform over the
unit sphere. This vectox is then transformed to the
M rest frame by computing L,k, . We define L, as
the Lorentz transformation from the M, rest frame
to the M, rest frame. Then the txansformation
from the M, rest frame to the M rest frame is
L,L„and this will be used to transform k, to the
M rest frame. We continue this procedure down
to M„,. The last step involves generating k„gand

k„(k„=—k„,in the M„2rest frame) and trans-
forming both of these back to the M rest frame
with L

y
L 2 L 3 L 2 This set of n four-vectors

satisfies the constraints of energy-momentum con-
servation. The computing time for N events is
proportional to {n —1}. The CDC 7600 generates
a little over 4000 four-vectors per second.

The probability P,(M) is given simply by

p, (M ) = I', (M }/I'(M }=p(y, 0)/V, (J), (5.1}

where I',(M) is given in Eq. (2.8) and I'(M) is the
solution to Eq. (2.9) for X = 1, and P(y, z) and y„(y)
are defined in Eq. (2.10).

The distribution P(M, ~M) is obtained by aver-
aging P„(M,~M) over all n, where P„(M,~M) is the
probability density that a cluster of mass M and
px'eassigned multiplicity n will decay into a zero-
mass particle and a cluster of mass My It satis-
fies the relation

P„(M,~M ) over all n ~ 3, we multiply Eq. (5.3) by
I'„(M')/[I'(M'}—I',(M')], which is the probability
that a cluster of mass M will actually decay into n
particles, and then sum from n —3 to ~. The can-
cellation of the I'„(M')and the simple form of Eq.
(5.3)are explicitly due to the sequential decay hypo-
thesis. Thus, we arrive at the result

P(M, ~M) =,'(M' M, ')-~P(M' M, ') ~'

I (M,'}
I'(M ') —I', (M ') '

and the calculation of P(M, ~M ) is reduced to com-
puting I"(M'). It follows from Eq. (2.9) with X= 1

that P(M, ~M) is normalized to 1. If the method
described above is used for generating M„allthat
ls needed ls

P(M, IM)" y, (y, y, '}p(y, y,b, (y,}, (5 5)

where y, =M,g/2, and the other notation is defined
in Eq. (2.10). The function y, (y) is easily calcula-
ted from Eq. (4.2) using the coefficients g„deter-
mined by the recurrence relation Eq. (4.3}.

VI. SOME EXPLICIT RESULTS

One of the main points of this paper is to show
that there exist sequential-decay models whose in-
clusive distributions differ appreciably from those
resulting from the model with a constant matrix
element (Sec. III). Both the kr and M dependences
are interesting. For example, if the large-k~ par-
ticles observed in hadron scattering originate from
clusters with small transverse momentum, dN/
dk~ must be much larger at large k~ than compu-
ted in the "constant" model. Moreover, the viola-
tions of scaling at large k~ in the hadronic data are
very large, and this must be reflected in corre-
sponding variations in dN/dkr' as a function of M
at fixed k~. In order to illustrate these effects, we
will compare the constant model with several other
models. (A more quantitative analysis of the data
is in progress. ) We will also give a qualitative
explanation of why our model matrix elements pro-
duce these distributions.

The caLculations reported in Figs. 2-5 were per-
formed using the Monte Carlo method of Sec. V.
Among the cheeks made on that procedure, we
generated for several M values 50000 events with
constant ~F

~

' a.nd compared the momentum dis-
tribution with the exact formula, Eq. (3.11). The
variations were consistent with statistics.

The figures show the single-particle transverse-
momentum distributions for different ~E

~

'. After
each event is generated, the magnitude of the mo-
mentum transverse to the z axis is computed for
ea.ch final-state particle, and is histogrammed into
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bins of 0.1-GeV width. (Perhaps we should recall
that, owing to the energy-momentum-conservation
constraints, there is no simple relation between
the k and kr distributions. } Each curve incorpo-
rates 50000 multiparticle events and thus includes
50000 times (n —1) values of kr. Thus, in the do-
main where dN/dkr'-0. 01 GeV ', the statistical
error in each bin is -5%.

Figure 2 shows dN/dkr' for IF I'=g'/2v, g=3.3

GeV ', plotted in the cluster rest frame. The low-
er curve is for M = 5 GeV, where (n —1),o,„=8.5,
and the upper curve is for M=9 GeV, where (n
—1)»,v = 15.1. The downward curvature indicates
that the distribution falls faster than exp(-akr),
although exp(-4k r} fits dN/dk r' fairly well for k r
~ 1.5 GeV. For low k~ these curves exhibit ap-
proximate scaling in M, but the scaling violation
increases with increasing kr. (This is clearly an
edge-of-phase-space effect. ) In models based on
clusters of this type, the naive extrapolation,
2 EdN/d ' k -exp(-akr), obtained from fitting
the low-k~ data, is in fact an upper limit on the
large-kr flux. Thus the value of dN/dkr' at large
k~ is much too small to account for the large-k~
production seen in the hadronic data, unless the

clusters themselves are given a large k~. Of
course, it could be that high transverse momentum
of the clusters is the physical origin of the large
yields of large-k~ particles. But it is one purpose
of this paper to suggest an alternative phenomeno-
logy in which the clusters are themselves produced
with low k~, but their decay mechanisms yield
adequate numbers of large-k~ secondaries. An ad-
vantage of this viewpoint is the possible unification
with the hadronic clusters formed in e'e annihila-
tions. '

At large k~, the model in Fig. 3 shows large
violations of scaling, and a large flux (compared
to Fig. 2) for the more massive cluster. The ma-
trix element in this case is

(6.1)

where k=(M' —M, '}/2M, @=0.5 GeV ', and g=3.2

GeV '. The lower curve is for M=5 GeV,
where (n —1),o,v=8.4; the upper curve is for M
=9 GeV, and (n —1)»,v =15.1. The low-kr dis-
tribution is essentially identical to that shown in Fig.
2. This is expected, since IF(M', M, '}I' in Eq. (6.1}
is approximately constant for small k. For M = 5

IO— 10—

Z CVI-

f)

OI— Ol—

kT (GA')

FIG. 2. Inclusive distributions for constant raatrix
element, IF~ =g /2s. The lower curve is dK/dkr
for M=5 GeV, the upper curve is dN/dkz for M =9
GeV, where g=3.3 GeV

2

k T (GeV)

FIG. 3. Inclusive distribution dN/dk r for ~$'(

=(g /2m')(1 -ak) with g=3.2 GeV and n =0.5 GeV
The flattening of the M =9 distribution is due to the dip
in IF~ at k =2 Gev, and is discussed in the text.
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the zero in iF i' is close enough to the edge of
phase space that it has little effect on the distribu-
tion. However, for M=9 GeV, the dip in iF i

has
a pronounced effect on the momentum distributions
of the first few particles emitted in the sequential
decay. This flattening with I introduces the pos-
sibility of large-k~ fluxes and violations of scaling
much larger than already imposed by the edge of
phase space.

The flattening effect is easily understood in
terms of P(M, iM), Eq. (5.4). For M large and k
small (k «M/2), M, is large, M, =M —k, and we
can approximate both of the functions I'(M, ') and
I'(M') in P(M, iM) by their asymptotic forms, Eq.
(4.10). With this approximation, P(M, iM) the
probability for the emission of a secondary with
momentum k is given to leading order in k/M by

P(M, iM)=g'k(1 —nk)'e ~~" ', k«M/2, (6.2)

where p, =1.213 is the root of Eq. (4.11) with the
largest positive real part. If M is large enough,
the zero in P(M, iM } at k = 1/n = 2 GeV is in the
physical region 0(k (M/2 and P(M, iM} has two

maxima, one at small k, and a second much smal-
ler one at k = 3 GeV. The distribution Eq. (6.2) is,
near its first maximum, quite similar to that for
the constant matrix element with g = 3.2 GeV '. In
the region near its second maximum and beyond,
however, the distribution Eq. (6.2) is much larger
than the corresponding distribution for a constant
matrix element ia =0, p =2 in Eq. (6.2)J. The re-
sult is (for M large) a greatly enhanced probability
for the emission of secondaries with k &2 GeV.
This is reflected in the curves in Fig. 3. The dip
in P(M, iM) is washed out by recoil effects in the
sequential decay, and by the integration over k~
which converts 2EdN/dk' to dkr'. However,
the marked flattening of the distribution still be-
gins near k=2 GeV.

'The extreme flattening effect at large k~ seems
to occur only in models in which iF i' shows struc-
ture. There is no flattening, for example, for the
matrix element

In this case, P(M, iM) is given for large M and k
«M/2 by

P(M, iM) = ge ",-k «M/2. (6.5)

iF(M', M, ') i'=2 —(1 —o.k}2 (6.6)

with +=0.425 Gev ', g=1.7 GeV ', gives the
curves in Fig. 5. The lower curve (M=5 GeV} has

(n —1)»,„=9.1; the upper curve (M=9 GeV) has
(n —1),o,„=14.9. The dip in iF i

' at k = 2.35 GeV

lO—

CV

I

c5

Z CV i

The inclusive distributions corresponding to
this matrix element, for g=1.56 GeV ', are
shown in Fig. 4 for M=5 GeV ((n —1)»,v=8.3)
and M =9 GeV ((n —1),o,v = 14.1). The distributions
are somewhat flatter for large k than those in Fig. 2,
corresponding to the less steep fall of the expo-
nential in Eq. (6.5) than that in Eq. (6.2) taken for
n = 0, p = 2,g = 3.2 (the case of a constant matrix
element). However, the flattening is restricted to
values of k~ well away from the edge of phase
space at k =M/2, and is ra. ther slight.

It is possible as in the previous example to ob-
tain quite pronounced flattening of the inclusive
distribution at large k~ by introducing a dip in the
matrix element. For example, the matrix element

2

iF(M', M, ') i'=—(I+o.k)', n)0 (6 3)

even though the large-k behavior of iF i' is similar
to that of the matrix element in Eq. (6.1). The dis-
tribution P(M, iM ) is almost identical in this case
to that for a constant matrix element for k (3 GeV,
and actually falls below the constant case for lar-
ger values of k.

We consider as a second example the matrix ele-
ment

ol—

2

kg (Gev)

iF(M', M, ') i (6.4)

FIG. 4. Inclusive distribution, dN/dkr t, for ~$'[t
= g/(Qnk), with g=1.56 Gev ~. The downward curva-
ture at large k z is similar to Fig. 2.
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2

~F ~'=g—P P„g"k".
2r . (6.'I}

Equation (5.4) for P(M, ~M ) contains I'(M, ') and
I'(M'), which we approximate by Eq. (4.10). Keep-
ing terms to leading order in k/M (M, =M —k}, we
find P(M, ~M } to have the simple behavior

P)M, ~M) = Q „"P"peeep (—,(6.8)
p, gk

n

where p, is the root with the largest positive real
part discussed in Eq. (4.11). Normalization factors
have not been dropped in Eq. (6.8}. Thus we see
that the large (but not too large) k behavior is con-
trolled by both It = pg/2 and ~F

~

'.
The issue now is to compare P(M, ~M) for dif-

ferent models at fixed M, k, and average multi-
plicity for different ~F ~'. We also keep the k de-
pendence of ~F ~' (location of zeros, etc.} similar
in this comparison. The average multiplicity in the
large-M limit is given by Eq. (4.12):

N(M) = pM,
(6.9}

p= —g 2

is close to the edge of phase space for M = 5 GeV,
and the 5-GeV curve is consequently quite similar
to that in Fig. 4. For M =9 GeV, the inclusive dis-
tribution is quite flat for k beyond the dip, k~2. 3
GeV.

We now return to a more complete discussion of
the effect of the shape of ~F ~' on the shape of the
momentum spectrum. In most of our models, !F~'

increases for large k=(M'-M, ')/2M. Qf course,
this does not mean that the probability for a sec-
ondary with large k also increases with k, since
phase-space effects will decrease it. The correct
indicator of the momentum spectrum is P(M, ~M),
given in Eq. (5.4). Even so, it may be a little sur-
prising that two matrix elements with the same
large-k limit, but different intermediate-k depen-
dence, produce very different large-k~ spectra.
We examine this in limits where P(M, ~M) has a
simple form.

Consider the limit of large M and M„with k
=(M'-M, ')/2M«M, . For simplicity we consider
~F ~' of the form in Eq. (4.13),

= p, g/2 in Eq. (6.8) in which p and a„arefixed.
Equation (4.8) allows us to make the identification

A„c= 2"(n —1)!a„,/g " ~, (6.12)

so that the root equation, Eq. (4.11), becomes

~I yg2 g ] tg ~l ll (6.13)

I
—,= pI). gn!a„,p,

-"-'.
tl= 1

(6.14)

Finally, we eliminate g' from Eqs. (6.13}and
(6.14) and find an equation for p:

Qn! (pa„,—a„,))t' "=0. (6.15)

We may compute the exponential decrease in

P(M, ~M) by solving Eq. (6.15}. Consider as an
example Eq. (6.1), where ac= 1, a, = 2n, and a-,
= n'. (o. &0 is the case with destructive interfer-

IO—

g t)6ll

D

.Ol—

This equation depends on g'. An equation for g'
is obtained by evaluating dp/dX from Eq. (4.11) and
substituting it into Eq. (6.10),

Thus g is varied from case to case according to

g =[2p/(&mid&)), =, (6.10)

~n=Pn g (6.11}

which will be kept fixed as g is varied.
The problem now is to find an equation for p.

In order to keep the structure in Eq. (6.7} constant
as we vary g, we define coefficients

k T (GeV)

FIG. 5. Inclusive distribution, dN/dkrt, for ~F~

=(g/27rk)(1-nk) with g=1.7 GeV and n =0.425 GeV
This again shows the flattening due to the effect of the
dip which is located at k =2.35 GeV.
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ence. ) Equation (6.15) becomes

P' —2( p+ 2o) P'+ 6n(2p+ o)P —24pn' = 0. (6.16)

In the calculation for Fig. 3, n =0.5 GeV ' and g
=3.2 GeV '. This gives, from Eq. (6.13), p=1.94
GeV ' and from Eq. (6.14), p= 1.424. If we now

change to n =-0.5 GeV ', which is the case of con-
structive interference, we obtain from Eq. (6.16)
p=3.53 GeV '. [The value of g necessary to main-
ta, in p=1.424 with this matrix element is, from Eq.
(6.14), g=2.72.] There is, therefore, a faster
rate of falloff in the constructive interference
case. The ratio of P(M, lM) for the two cases is
proportional [up to the polynomial in Eq. (6.8)] to
exp(-1.59 k) =1/33 for k =2.2 GeV. This accounts
for the flattening of the M=9 curve in Fig. 3.

In e'e annihilation into hadrons, the mass of the
presumed cluster is simply the e'e center-of-
mass energy. One can simply assume a phenome-
nological coupling for the photon to a spin-1 clus-
ter and then study the correlation parameters
(such as sphericity) which characterize the had-
ronic final states. It is, in fact, possible to give
an accurate account of the sphericities and multi-
plicities with'

APPENDIX

1. Asymptotic solutions of the recurrence relations

Let the function f(x) be defined by the series

a„x"f(x)=+[ (" )], , b&0. (Al)

The results on the behavior of y(y) for large y
which we used in Sec. IV were derived by con-
sidering the asymptotic solution of the recurrence
relation given in Eq. (4.6) for n-~ and the corre-
sponding asymptotic behavior of the series in Eq.
(4.2). We will summarize our results on the re-
currence relation [Eq. (4.6}] in subsection 1, and
we will use these results to determine the asymp-
totic behavior of the complete series [Eq. (4.2)] in
subsection 2. In order to include the possibility of
other than linea, r asymptotic growth of the multi-
plicity [see the remarks following Eq. (4.3)], we
will actually consider series and recurrence rela-
tions somewhat more general than Eqs. (4.2) and

(4.6). In subsection 3, we will discuss briefly
some numerical problems associated with the se-
ries, and indicate how they can be avoided.

2

IF I'=g k(1 —~k)'(I —tlk)', (6.17)
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where I/o. =0.82 GeV, I/P =1.75 GeV, and g=5.8

GeV '.
The study of hadronic collisions is more com-

plicated, since the clusters are produced with a
spectrum of masses and longitudinal momenta.
The detailed predictions of a model with a given
decay matrix element will be sensitive to assump-
tions regarding the production mechanism. How-

ever, some general features are obvious. Because
of the violations of scaling seen in Figs. 3 and 5,
a large-k~ secondary is much more likely to have
come from a high-mass cluster, even if the spec-
trum of high-mass clusters is somewhat sup-
pressed. As a result, the multiplicity associated
with these events should be higher than average.
The violations of scaling are caused by the increa-
sing effectiveness of the dips in lF l'. More quan-
titative and detailed calculations are in progress.

The expression for y(y) given in Eq. (4.2) corre-
sponds to the choice b =1. The coefficients a„[or
the g„in Eq. (4.2)] are to be determined by a re-
currence relation

a„= A, na„„n~j (A2)

starting with given values for ao, . . . , a, , Equa-
tion (4.6) gives the explicit form of the functions
A, (n) considered in Sec. IV. These were rational
functions of n which approached constants for n

We will assume here only that the A, (n} are
such that they can be expanded in power series in
n ' for n-~,

A;(n)- g A; n, n-~ (A3)

with some of the A p nonzero. "
It is clear that the behavior of f(x) for large x is

determined primarily by the behavior of the coeffi-
cients a„for large n. We can easily obtain asymp-
totic expansions of the a„appropriate to this re-
gime. For n-~, the recurrence relation Eq. (A2)
approaches the limiting form

a„- A,-,a„,.
=1.

(A4)

We will suppose initially that this recurrence rela-
tion is exact, and will solve it exactly for a set of
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coefficients a„such that

i7„= A ) a„;.
%=1

(A4')

These coefficients will provide the starting point
for our subsequent construction of an asymptotic
solution to Eq. (A2).

The recurrence relation Eq. (A4') is equivalent
to a jth-order difference equation, and has j in-
dependent solutions. These can be constructed by
determining the j roots p, (» of the polynomial"

that is, to the requirement that p, (» be a root of
the polynomial Eq. (A5), as expected. This re-
quirement is in fact sufficient to eliminate all the
terms in Eq. (AS) with m =q=0 for arbitrary P=0,
and we need consider only the remainder of the ex-
pression with m+q ~ 1. For k=1, this determines
Qf g~

The express')ns for k w 2 determine the B s
through the recurrence relation

(A5) k
1 L) B( {All)

[This relation is equivalent to Eq. (4.12).] If the j
roots p, &» are all distinct, the quantities a„"'
=e,p &»", with / = 1, . . . , j and c, a cons tant, give j
independent solutions to Eq. (A4'). The situation
is only slightly more complicated if a root p, (» ap-
pears with multiplicity m~&1. The m~ independent
solutions corresponding to p, (» are given by a„(k'"
=ckgs p, (p) ~ with k = 0~. . . y PIPED

—1.
Any solution c„ofthe exact recurrence relation

Eq. (A2) can always be expressed as a linear com-
bination of j independent solutions a„"',/=1, . . . j,

where

(a, —p)
n, ,=P (-1)' ~ ~& a-n-+i &&r)

q0 q
=1

This recurrence relation can be used to find Bk(»

for arbitrary k in terms of p, (» and the A, . We
note finally that the expansion of u„(»given in Eq.
(AV) is generally only asymptotic, and should be
truncated after a few terms.

(A V)

We will fix the normalization by choosing Bo(» = 1.
To establish this result, we substitute Eq. (AV)

and the expansion of A, (n) given in Eq. (A3) in Eq.
(A2}, and collect powers of n '. We find that the
recurrence relation Eq. (A2) is satisfied provided

x A, Bp"), (AS)

where ( ~ } is a binomial coefficient. For k =0,
we have m =P =q = 0, and Eq. (AS) reduces simply
to

%'e will fix the basic solutions a„")by requiring
that ~„")have the asymptotic behavior of t e u„")
constructed above, that is, a„("cc p, &»" for n -~.
This is always possible because Eq. (A4') is just
the asymptotic form of the exact recurrence rela-
tion Eq. (A2). It is easy to see that the general
solubon to Eq. (A2) may also involve a power of n
for n-~, so that a„"){x:n"~ p&»". We will in fact
show that Eq. (A2) can be solved to any finite order
in n ' by a coefficient with the asymptotic form

(A13)

where

+ (l )&n

[I ( 1)]' (A14)

As noted previously, the asymptotic form of f,{x)
for x- ~ is determined by the asymptotic form of
the coefficients a„"'.For simplicity, we will retain
only the leading term in the asymptotic expansion
of these coefficients given in Eq. (AV), and will ap-
proximate f,(x} by

f (x)-+[1{„,",}]., »0,
{A15}

The correction terms involve extra inverse powers
of g.

The simplest case to consider is that in which z,
= p(»x is real and positive. We can use Stirling's
approximation for the I' function to write the se-
ries as

2. Asymptotic estimates of the series

The function f(x) defined in Eq. (Al) can be writ-
ten as

~(S) = ~~,O~(i)
-1

{A9) f,(x)-(2v} '~'ge ""',



2016 DURAND, FISHBANE, SIMMONS, AND SI.AN SKY

(Ie) ((n) = -b(n + z} Inn + bn +n ln z, + n( Inn

+O(n '),

and can approximate the sum by an integral,

f (x)-( w)2" fe*' '"'dn (A18)

The integrand has a saddle point [maximum of
(f)(n)] at the point n=n„

z 1+8 —— +l l

b( ebz('ib [I+0(z,'ib)], z, real, z, » 1.

The correction. terms are associated both with the
approximation of the integral, and with the neglect
of the expansion in inverse powers of n in Eq. (A7).
For the case of interest in Sec. IV, b =1, and

f((x) z((8 ( z(= p, (()x»1. (A21)

If p, (» is complex or negative, the terms in the
series for f,(x) oscillate in sign, and we cannot
simply replace the sum by an integra, l over posi-
tive n as above. However, we can convert the se-
ries into an exact contour integral by using the
Sommerfeld-Watson transformation, " and can esti-
mate the integral for ~z,

~

large by using the me-
thod of steepest descent and the asymptotic form
of the integrand. We find that the result in Eq.
(A20) continues to hold for complex z, with ~a.rgz,

~

&b((/2 With thi.s restriction, the argument of z, is
suchthatBe z', ~ &0, and the absolute ma. gnitude of
the exponential in Eq. (A20) increases as ~z(

~

in-
creases with a,rg z, fixed.

It is unfortunately not possible to obtain reliable
results for f,(x) for Rez'(~b&0 using the present
methods. While the expressions above suggest that

f,(x) will behave as a power of z'~b multiplied by a
decreasing exponential in this region, there may
be extra nonexponential contributions associated
with the first few nonasymptotic terms in the se-
ries Eq. (A14}." We cannot estimate these con-
tributions without more detailed knowledge about
the a„"'than we have used.

For the case of interest in Sec. IV, 5=1, and

f,(x) has the asymptotic form given in Eq. (A21),
provided ~argz(~&((/2. The asymptotic form of the
complete series f(x) = Z'I, C, f,(x) is determined
in this case by the root of Eq. (A5) with largest
positive real part. For the class of models we
have considered, it is rather easy to show that the

and can be estimated by using the method of steep-
est descent. " The result is quite simple, "

f (x) (2 )v-( (b)ebb-(/bz (2 ! bb(+ )I(2b
l

3. Numerical treatment of the series

The numerical characteristics of the series Eq.
(Al) depend prima. rily on the roots ib(» of Eq. (A5).
We have seen that the coefficients a„canbe ex-
pressed as

(A22)

where the a„"'behave asymptotically as

g"'-~ )pn (/) y

The largest contributions to a„areassociated with
the roots with the largest absolute magnitudes.
However, Eq. (A20) shows that the dominant con-
tribution to f(x) for real x is associated with the
root with the algebraically largest real part (we
will restrict our attention to the case b =1 con-
sidered in Sec. IV). These roots differ for a large
class of interesting models of the type considered
in Sec. IV, especially those with strong destructive
interference in the matrix element.

As a simple example, consider the model with

I+ I'= (g'/2v)(1 gb) . The function y(y) defined
by Eq. (4.2) with X = 1 is given in this case by a, se-
ries of the form Eq. (Al) with J3=1, and series co-
efficients g„determined by Eq. (4.14b) and Eq.
(4.15). The asymptotic recurrence relation for g„
ls

gn = 4g'n-2 —32gn-3+ 96n-4 ~ (A24)

The corresponding asymptotic polynomial and its
roots are

p,
4 = 4 p.

' —32 p, + 96,

p, , = 2.525 70, p, , = 0.814 54+ 2.912 82i,

p =0.81454 —2.91282i, p. =-4.15486.

(A25)

The asymptotic behavior of the coefficients g„is
determined by p.„and to a lesser extent, by p, ,
and p, However, the series which involves p,

„

p,„and}(,sums to functions y, (y), y, (y), and

y, (y}, which are exponentially small compared to

y, (y) for large y by Eq. (A21). In the present ex-
ample, y,(y)-10' for y=10, ~y, (y) ~=~y, (y) ~-10',
and y, (y) -10'. However, note that the largest
terms in the series for y, (y) have a magnitude
-10", 10' times larger than the entire function
y(y).

The foregoing situation is typical for the large-
multiplicity region in models with strong destruc-
tive interference. The function obtained by sum-
ming the series Z„~g„~y"/n.instead of the series

positivity of ~E ~' ensures the existence of at least
one positive real root, hence an exponential growth
of f(x) [or y( y)] as x -~ ( y —~).
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Z„g„y"/n!for y(y) is usually -10'-10' times lar-
ger than y(y) for multiplicities of 8-15, indicating
a loss of -6-8 significant figures in y(y) because
of cancellations. We have therefore found it nec-
essary to use double-precision arithmetic to ob-
tain meaningful results in our calculations.

It is possible to reorganize the calculation of a
general f(x) of the form Eq. (Al) in a manner
which circumvents the problem above by splitting
f into the functions f, with the definite asymptotic
behaviors specified by Eq. (A20). The individual
series can then be calculated separately, and only
the dominant series need be considered for x
large. Thus, in the example above, we could cal-
culate y, without difficulty for y small, and could
drop it altogether when it becomes negligible rela-
tive to y, .

The splitting of the series is relatively simple.
'The problem is one of finding j linearly indepen-
dent sets of characteristic starting values
ao"', . . . , a) y l 1 . , j, fortherecurrencerelation
Eq. (A2) such that the 1th set gives as asymptotic
coefficient with the unique n dependence a„-a„'",
Eq. (A7). Once these are found, the known starting
values a„.. . , a~, can be expressed in terms of the
characteristic values a,'." and a set of j constants
C, determined by the j equations

(A26)

the exact recurrence relation Eq. (A2) in the back-
ward sense. The overall normalization of the co-
efficients ao"', . . . , a&", determined in this way is
arbitrary. The starting value N should be large
enough that the series f~(x) corresponding to the
root with the largest positive real part will con-
verge to the desired accuracy when only N terms
are retained, and x has its maximum value. This
value of N is easily estimated using the asymptotic
expression Eq. (A20).

The foregoing method may fail for the large roots
because of the cancellations which occur in the
backward recurrence scheme for

~ p, ~» 1. In this
case, we can determine the characteristic starting
values as follows. We first choose j -k sets of
coefficients ao „,. . . , a~, „,r = k, . . . , j —1, which
are linearly independent of each other and of the k
sets determined above. These are used to generate
sets of asymptotic coefficients a„„for n =N, . . . , N
+ j —1 by using the recurrence relation in the for-
ward direction. The coefficients in each set can be
expressed as linear combinations of the asymptotic
coefficients a„"'given in Eq. (A7) for I =k+1, . . . , j.
(The a„'"for I = 1, . . . , k do not contribute by con-
struction. ) That is, we determine a set of coeffi-
cients c„,for each value of x such that

(A28)

n=N, . . . ,N+ j —1, l =k+1, . . . , j.
The function f(x) is then given by

(A27)

Finally, we express the a„"'in terms of the a„„by
inverting the matrix of coefficients c„

where f,(x) is given by the series Eq. (Al) with the
coefficients calculated using the exact recurrence
relation Eq. (A2) and the characteristic starting
set a,'", i = 0, . . . , j —1.

The characteristic starting values a,"' can be de-
termined trivially for small roots,

~ p&» ~-1, by
starting with j successive values of the asymptotic
coefficient a„"'say a„"',aQ ly p a„".',. „andusing

(A28)

This relation implies that the characteristic start-
ing values a,'" associated with the lth root are giv-
en in terms of our arbitrary starting sets
ao r~. ~ . , a& «by

(A80)
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