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From an analysis of the  ~p backward differential cross-section data, which clearly shows a cusplike structure
near the mn threshold, we deduce, using partial-wave unitarity relations, the size and the orientation of the
cusp. The cusp appears because of the strong coupling of the mn channel to an N’ resonance just above its
threshold. Using the above information on the cusp, the 7 N S, partial-wave amplitude is fitted through the nn
threshold and the resonance. The effect of the size of the cusp, acting as a constraint, on the resonance
parameters determined in the fit is emphasized. The fit also determines the phase of the mN production
amplitude at the mn threshold, which then using the knowledge of the orientation of the cusp gives
information on the phase of the elastic no-spin-flip amplitude at the mn threshold. This information could be

a useful constraint in 7 N partial-wave analysis.

Just above the nN threshold (1488 MeV), the
7N S,, amplitude has a prominent N’ resonance
which has a large branching ratio (~65%) for the
nN channel. As a result, n production is large,
and the (7N —nN) cross section, which varies lin-
early with the nN center-of-mass momentum near
the nN threshold, increases very rapidly with the
pion laboratory momentum. This rapid rise in the
production cross section manifests itself as a
sharp cusp at the 7N threshold in the 7N elastic
differential cross section.

Recently Debenham ef al.! have reported mea-
surements of the differential cross section for the
reactions 7°p—7"p, 7%, in the near-backward
direction. The data for the reaction 7°p—~7"p
clearly shows a cusplike structure at the nn
threshold. Consequently, an analysis of the data
around the nn threshold reveals via the unitarity
relation the size and the orientation of the cusp;
more specifically, the production slope or the
rate of the reaction (7"p—nn) as measured with
respect to the nn center-of-mass momentum, and
the phase of the nN production amplitude relative
to half the phase of the backward 7N elastic ampli-
tude are determined at the nz threshold. Further,
by a comparison of the above phase relationship
with the phase of the backward 7N elastic ampli-
tude as calculated from the amplitudes of the Sac-
lay partial-wave analysis,? the phase of the produc-
tion amplitude at the nn threshold is estimated.
This is then used as a constraint in conjunction
with the production slope, in fitting the elastic
7N S,, amplitude through the nn threshold and the
resonance, lying above it. The parameters of the
resonance, extracted from the fit, show significant
dependence on the aforementioned constraints.
The fit also fixes more accurately the phase of the
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production amplitude, which together with its phase
relationship with the backward 7N elastic ampli-
tude, yields information on the 7N elastic ampli-
tude at the nn threshold.

The 7°p elastic differential cross section is ex-
pressed in terms of the well-known no-spin-flip
and spin-flip amplitudes, f and g, as

d
;,%= 72+ g2 (1)

In either the backward or the forward direction,
g vanishes, since in either case there is no spin
flip. Further, the elastic S;, amplitude makes a
contribution only to f in the following simple way:

=2¢ + other partial-wave amplitudes , (2)

where the factor % is due to the isospin coefficients
and ¢ is defined as

_neziﬁ_ 1

t -
2iq

) (3)
g being the 77p center-of-mass momentum. The
partial-wave amplitude ¢ has a square-root cut

(in the invariant variable s, the center-of-mass
energy squared) at the nn threshold. It is the re-
flection of this threshold behavior in the differen-
tial cross section that we want to study here. The
contribution of ¢ to the differential cross section
can easily be extracted if we separate out explicitly
the square-root cut term in ¢£. In other words, if
we write

t=1+it'q,+0(q,? , (4)

where ¢, is the nn center-of-mass momentum and
#° the threshold value of ¢, then using Egs. (1),
(2), and (4), we have in the neighborhood of the
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nn threshold

do _

75= 11017+ 18012+ S Reir*t'q,) + O(g,?)

= [£ol2+ |g°|? - £ Im(ro*t) |q, | + O(g,%)
for ¢,*>0
(5a)

=[r°12+ |g°|* - 4 Re(7°*¢) |q, | + O(g,?)
for ¢,2<0,
(5b)

where the superscript zero refers to the nn thresh-
old. In Fig. 1, we show how the data of Ref. 1 look
when plotted against the variable ¢,2/|g,|. The
cusplike structure at the nn threshold is presum-
ably due to the square-root terms in Egs. (5a) and
(5b). It is now clear that a determination of the
coefficients of the Iq,,l term alone, above and
below the threshold, gives the relative phase be-
tween f° and #’. Since g° vanishes in the backward
direction, one can, further, by determining the
constant term, namely |f°|2, deduce the magni-
tude of #. We now show in the following that ¢’ is
just the square of the (N —nN) S,, amplitude at the
mm threshold.

For a partial wave of angular momentum [, the
T matrix for coupled channels can be written® as

1
TG ©

where @ is a diagonal matrix of center-of-mass
momenta of the coupled channels. The matrix M
is symmetric and real, and thus, does not have
direct-channel unitarity cuts. For s waves, [=0
and T is simply 1/(M -iQ). We take T to be a

3 x 3 matrix because we have effectively three
channels, namely, the 7N, the nn, and a third
channel to account for all other inelastic process-
es, which, incidentally, are inappreciable in this
problem. Consequently, we write

[t ¥ m d q 0
” ]’ M:[ }’ Q:[ }’ (7)
¥T u dT ¢ 0 g,

where ¢, m, and q are 2 X 2 matrices that involve
the 77p and the third channel; the nn channel, thus,
occupies the third row and the third column; v is
a 2 X1 column vector, the first element of which
is the (nN—1nN) S,, amplitude. The corresponding
column vector in M is d. u and ¢ are mere num-
bers. q is diagonal in the center-of-mass momen-
ta of 77p and the third channel. [Note that the
elastic S, amplitude and the 7"p center-of-mass
momentum, which appeared as ¢ and g, respective-
ly, in Eq. (3), are now given by the first diagonal

[ ES 0
T T T
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FIG. 1. 7 elastic backward differential cross-
section data at cosf =-0.9952 plotted against the nn
center-of-mass momentum. Data are taken from Ref. 1.
The normalization uncertainties are not included. The
curve is our fit to the above data.

elements of the f and ¢ matrices, and are thus
denoted by £,, and gq,, respectively, hereafter. ]
Now from Eq. (6), it is easy to show that

v=—td/c(1+iq,/c), (8a)

t=[(m -iq) —-dd"/c —iq,ddT/c?]™ . (8b)
Then, at threshold, where ¢,=0, we have

P =—1d/c (9a)
and

= [(m —iq) —ddT/c]*. (9b)

Note that the ¢ matrix is essentially constant near
the threshold. Substitution of Eqgs. (9a) and (9b)
in Egs. (8a) and (8b) yields

t=10+iq,°r°T. (10)
The elastic S,, amplitude from Eq. (10) is

b= 10 +ig,(rd)E. (11)
Comparing Eq. (11) with Eq. (4), we find that

t=(r))?, (12)

the square of the (7N —7N) S,, amplitude at the nn
threshold; the phase of ¢’ is simply twice that of
7. If we look at the expression for the production
cross section,

o(mp—~mm) = (3)dng, /q,|7° |2 (13)
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(the factor % is from the isospin coefficients),
we see that the square of the magnitude of ) de-
termines the slope of the production cross sec-
tion with respect to the nn center-of-mass mo-
mentum, or vice versa.

For the analysis of the cusp, the input data we
used are the following:

(1) We used the near backward 7°p differential
cross section from Ref. 1 at cosf=-0.9952,
-0.9857, -0.9691 and at pion laboratory momenta
(in MeV/c) 656.0, 662.6, 669.3, 676.0, 682.8,
689.7, 696.7, 703.7, and 710.8. (We properly take
into account the normalization uncertainties which
are about 7% and uncorrelated among the three
angles but correlated over a range of fifteen con-
secutive momenta. There is a 0.1% systematic
uncertainty in the momentum determination, which
is also included in our analysis.)

(2) We also used the backward differential cross
section reconstructed from the results of Saclay
partial-wave analysis® at pion laboratory momenta
(in MeV/c) 657.3, 675.0, 705.8, and 725.4.

(3) In addition, we used the slope (b) of the mn
production cross section versus the nn center-
of-mass momentum: b=21.2+1.8 mb/(GeV/c),
as reported in Ref. 4. In using Egs. (5a) and (5b)
to fit the data, we allowed additional ¢,? and ¢,*
terms for the background. We also tried to pa-
rametrize any angular variations; however, they
turned out to be negligible. The values constructed
from the Saclay phase shifts do not cover the
threshold neighborhood adequately enough to show
the cusp structure. The relative phase between
# and f° is essentially determined by the data of
Ref. 1. The Saclay values, nevertheless, help in
the fixing of the normalization of the data of Ref.
1. The result of our calculation is

arg(#?) —3 arg(f°) =26°+6°, (14)

The slope of b of the mu production cross section
is not well determined from the differential cross-
section data alone, but the value we get [b=24.7
+6.9 mb/(GeV/c)] is consistent with the direct
measurement of Ref. 4. Thus for the fitting of the
S,, partial-wave amplitude, whose features we de-
scribe below, we used instead of our value of b
the value of Ref. 4. The other constraint, namely,
the phase of the production amplitude, is deduced
from Eq. (14), using the value of arg(f°), as given
by the Saclay partial-wave amplitudes. The value
we get is 41°+6°,

Writing

Sp=SgSp, (15)

where S is the S-matrix element for the elastic
channel, and S.,S; are those corresponding to the

o(mp—mm)/q,=21.2£1.8

(i) &

Results of the fit to the S;; amplitude, which resonates in the 1550-MeV region. We used the following constraints:

TABLE 1.
mb/(GeV/c); (ii) arg(r?)

41°+£6°.

)

arg(Top-nn

Residue (MeV)

Real

Pole (MeV)

Real

Width
(MeV)

Mass

Slope, b
[mb/(GeV/c)]

a;

Imag.

Imag.

Elasticity

(MeV)

arg(r?)

x%/D.F.

Type of fit

No.

0.062+0.014 0.36+0.13

13+8

118 +48 0.298+0.029 15623+6 —-59+17 17 +21

2.00 15.1£3.7 42.6°+6.9° 15437

Without

1

constraints

0.067 £0.004 0.48+0.04

-70+16 20+21 1348

1519 +4

0.297 £0.026

1547+6 139133

39.3° +4.7°

20.6+1.8

1.90

With

2

constraints




15

TN S,

resonant and background parts, respectively,

Tp=SpTp+Ts. (16)

Ty is the resonant amplitude, parametrized as

a,¢,
- - - - ,
So=S—ta,p, —1a,¢, —1a;$; —ias0,

where ¢, and ¢, are the phase-space factors for
the 7N and the nN channel, respectively, behaving
like the center-of-mass momentum near their
respective thresholds, while ¢, and ¢, are the
phase-space factors for the 77N and the 7A chan-
nels assumed also to be coupled to the resonance.
The above parametrization for T, and that used
for Tp are identical with those of Cutkosky et al.®
Note also that the amplitudes are parametrized
to conform to the definition S=1+2i7. For the
fit, the Saclay partial-wave amplitudes are used
in an approximate range of 1350-1550 MeV. Be-
low 1350 MeV and extending almost to the elastic
threshold, the data points are those of Carter et
al.,® while above 1550 MeV and up to 1650 MeV,’
the points are from the LBL-CMU collaboration.®

Table I shows the results of the fit with and with-
out the use of constraints. The high value of x2
per degree of freedom is ascribable partly to the
somewhat erratic nature of the data of Carter et
al. and partly to the fact that the errors on the

Tp= 1

—O.L5O —01.25
Re(S11)
1300

T

T

1400

Energy (MeV)

1500}

16001
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data points of Carter ef al. and Saclay analysis
are underestimated. The parameters shown in
the table and the errors on them were calculated,
as mentioned in Ref. 5. It is clear from a com-
parison of the two fits that the use of constraints
enables a more accurate determination of the pa-
rameters. The changes caused in the values of
the parameters are understood roughly as follows:
The contribution of the background amplitude to
the slope is observed to be negligible, i.e., the
parametrized form of slope is resonant in charac-
ter. Consequently, the slope constraint causes

a, to increase. To compensate for this, a, tends
to increase, but is checked somewhat by the phase
constraint, namely arg(#?9), since it depends quite
sensitively on a, in its parametrized form. The
width and the imaginary part of the pole, there-
fore, register an increase. An interesting feature
of the fit is an appreciable difference in the mass
of the resonance and the real part of the pole. To
understand this, one observes that the pole posi-
tion is given essentially by

(Eq = E —i7,¢,(E)~iy,(E- Ep)"?)] BEp-Rp-ilp= 0>

(18)

where E , E are the energies corresponding to the
invariant variables s, s in the denominator of T,

0.75r

0.25

1 1 1 1 1 1 1 1
91300 1400 1500 1600
Energy (MeV)
wN Elastic Sy, Amplitude
Mass = 1547 £ 6 MeV,
Width =139 + 33 MeV

Elasticity =0.297 £ 0.026
Pole: (1519+£4)-i(70116) MeV
Residue =(20%21)+i(13+8)MeV

FIG. 2. 7N S;; amplitude which resonates above the 7N threshold in the 1550 MeV region. The fitted real and imag-
inary parts, plotted against center-of-mass energy, are shown as continuous lines. On the Argand plot, points at in-
tervals of 50 MeV, starting from 1250 MeV, are indicated by arrows. The dot on the plots is the point corresponding

to the nn threshold.



196 RAMESH BHANDARI AND YUNG-AN CHAO 15

E, the nN threshold energy, and E, the pole posi-
tion; terms involving a; and a, are absent because
of their insignificant coupling to the resonance, and
¥, and v, are proportional to @, and a,. Then,

under the assumption of I,> (R, ~ E;) (which ap-
proximately holds) and ¢,(E,) being almost real,
and working up to first order in (R, - E;)/I,, one
finds from Eq. (18) that

Tp\/2 R,-E
erenfy) (i-t), o

which clearly depends strongly on the coupling
of the 7N channel to the resonance. It is worth-
while mentioning that, under similar circum-
stances but with the resonance lying below the
threshold of the channel to which it is strongly
coupled, E,<R,. Ip, on the other hand, is very
nearly equal to half the width T')/2. Explicitly,
up to first order in (Rp — E;)/Ip,

rO [ / IP Lz RP"ET
=2 I,=7,|(E —E)‘z—(— 1+—£2——1)|,
3~ pTVFom By 2 21,

(20)

which is negligibly small. Figure 2 shows the fit
and the Argand plot of the S;; amplitude. In the

latter there is a right-angle turn, as expected.
The phase of the elastic S|, amplitude at this en-
ergy is 44°, which is close to the value 39.3°+£4.7°
for arg(#?), in agreement with the requirements of
unitarity.

In short, the fit we have obtained has the feature
of incorporating whatever information we have on
the behavior of this amplitude near the nn thresh-
old. The resonance parameters thus obtained may
be regarded as more reliable and could be used to
test the predictions of symmetry models on the
partial widths of this resonance for the 7N and the
7N channels. Further, from Eq. (14) we find,
using the fitted value of arg(#?), that arg(f°)
=26°+12° It is interesting to note that with the
availability of data on mN differential cross-sec-
tion data at other angles near the nN threshold,
similar cusp analyses could yield information on
the angular variation of the elastic no-spin-flip
amplitude, f° This information could be of con-
siderable use in further work on partial wave-
analyses.
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