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Amplitude reconstruction in XN scattering at 6 Gev/c:
Where do we stand and what measurements should be donePe
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We study the problem of amplitude reconstruction at a fixed t (—t -0.3 GeV/c'). The five amplitudes are
reconstructed, up to an overall phase, by 9 observables o, P0, C„„, K„„,D„„, C„, C„, C«, and I(snOs). This set
includes all possible single-scattering measurements. The status of the amplitude reconstruction is discussed.
To study both discrete ambiguities and the effects of the measurement errors, we employ a Monte Carlo
method. We find that Dh and I(nsOs) remove the prominent ambiguities. In addition, given the current
precision, R and I(lsOn} will significantly improve the amplitude determination.

The polarized proton beam of the Argonne zero-
gradient synchrotron (ZGS), when used in conjunc
tion with the polarized-nucleon-target facilities of
the laboratory, provides an opportunity to study
the nucleon-nucleon scattering amplitudes in de-
tail at intermediate energies. These facilities
allow one to make accurate measurements of cer-
tain NN spin-correlation parameters, as well as
to make other measurements that were prohibi-
tively difficult. From such measurements, one
expects to be able to unravel the various nucleon-
nucleon amplitudes. The initial experiments' have
concentrated upon proton-proton scattering at
P,~=6 GeV/c. We shall be concerned exclusively
with the extent to which one may determine pp am-
plitudes from data at that energy; furthermore,
we have concentrated on a particular momentum
transfer, t= —0.3 GeV/e', in this report.

There are five independent (complex) proton-
proton amplitudes, and all two-body measure-
ments may be expressed in terms of bilinear
functions of these amplitudes. Consequently, one
cannot determine an overall s- and t-dependent
common phase, so there are nine independent real
amplitudes to be obtained from data. 'Qfe would
expect that nine precisely measured independent
experimental quantities would either determine
these amplitudes uniquely, or more probably,
would yield only a discrete set of ambiguities in
their determination. Furthermore, these discrete
ambiguities could presumably be eliminated by a
few additional measurements. 2

This rather simple situation is complicated con-
siderably by the uncertainties on the measured
quantities. Experimentally, single- scattering
spin-correlation measurements may be done with

great precision, whereas double- scattering mea-
surements involve detecting the final spin direc-
tion of the recoil proton, and may be obtained only
with limited precision. Theoretically, the five
nucleon-nucleon scattering amplitudes are expected
to be substantially different in magnitude, and
therefore will not be determined with the same
uncertainties by a given set of measurements; in
fact, the exchange amplitudes of most interest in
conventional Regge models are probably rather
small, and thus will be harder to extract from the
data. ' It could a1so happen, and in fact does hap-
pen, that certain measurements provide no new
information not already given by measurements
completed. This 1atter point of numeriea/ inde-
pendence is really distinct from that of algebraic
independence of measurements, since the feasible
level of experimental precision is a crucial factor
1n this matter.

%e shall write the five independent nueleon-
nucleon scattering amplitudes in terms of t-chan-
nel helicity amplitudes: N„N„and N, are "na-
tural-parity exchange" amplitudes with 0, i, and
2 units of helicity; whereas Uo and U, are "un-
natural-parity exchange" amplitudes with 0 and 2
units of helicity. These independent amplitudes
need not be of comparable magnitude; in fact we
expect that at 6 GeV/c and our small momentum
transfer, the amplitude No should be the dominant
one. This theoretical expectation, which is readily
accessible to experimental test, suggests that all
terms quadratic in the "sma11 amplitudes" (N„N„
U„and U, ) will be rather small, and therefore
difficult to determine in direct measurements.
Furthermore, one expects that measurements with
terms involving ~N, ~' will allow us to test whether
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One could establish that Np is the dominant ampli-
tude by measuring the depolarizations D„„and D„,
which are expressed in terms of amplitudes as
(Ref. 4)

oD..= IN. I'+ 'IN I'+ IN. I'-
I U. l'-

I
U. I'

oD„=I(OzOz) = —I(0lOl) cos8~+I(0lOs) sin8z
(2)

= IN. I'- IN. I'+
I
U. I'-

I
U. I' ~

The quantity 8~, the laboratory recoil angle of the
target proton, is close to 90 for small-angle
scattering (1.237 radians at 6 GeV/c for f = —0.3
GeV/c'). Since D»'+ D„' & 1, it is just as useful
to measure the more accessible quantity OD„
=I(OLOs). The amplitude N, is dominant if, and only
if, the quantities D„„and D„(D„)are close to + 1.
The depolarization parameter D„„has been mea-
sured and is close to + 1, but neither D„nor any
other suitable observable has been measured, so
that one may not yet conclude that Np is dominant.
However, we shall proceed under the assumption
that D„has been measured and is close to+1.

Now we present a feasible choice of eight ob-
servables which are dominated by the right sorts
of interference terms:

Np is dominant, but give essentially no other inf or-
mation. Finally, one expects to obtain the most
useful information by observables involving "in-
terference terms, " which are dominated by a term
linear in N, . Eight suitable interference terms
are ReN, N*, , ImNpN, *, ReN, N,*, ImN, N,*,

Upon the basis of these considerations, one may
adopt the following simple strategy for determining
amplitudes from data:
(1) Measure a sufficient number of the observables
that involve INOI, to establish that No is in fact
the dominant amplitude. These measurements con-
stitute a somewhat arbitrary choice, and they may
be relatively crude, since they are not meant for
a precise determination of IN, I'.
(2) Measure rather precisely the eight observables
that involve the eight above interference terms, or
independent linear combinations. While the choice
of these observables is arbitrary to an extent, it
is nevertheless a rather stringent requirement
that one be able to obtain the eight interference
terms from them.

The scale for these amplitudes is determined by
measuring the differential cross section

o'Po =I(0n00) = —2 Im No N,*,
oR =I(OsOs} = —ocos8s —2ReN, N*, ,

I(nsOs) = 21m NON,*,
o'C„„=I(nn00}= —2 ReNO N,*,
I(fsOn} = —2 Im No Uo,

o C „=I(ll00)= —2 ReN, U,*,
I(snOs) =21mNoU,*,
o C„=I(ss00}= 2 ReN, U,* .

(3}

o C„=I(ss00)= 2 Re(N, U,*—N, U,"),
oC„=I(sl00) = 2 Re(U, + U, )N,*,
o C „=I(ll00}= —2 Re(N, U,*—N, U,*) .

(4)

All these quantities
except C, r and C
mined at Argonne.
are taken to be D„„,
expressed as

have been measured accurately
and these will soon be deter-
The other three measurements
K„„, and I(snOs), which are

These observables are approximately linear in N„
as well as linear in the interfering amplitudes.
Thus, there are no severe problems with corre-
lated errors when all eight of these observables
are determined.

This sample scheme may be quite sufficient for
reducing the amplitude ambiguity. However, it
is not known whether, andtowhat extent, N, is the
dominant amplitude. Also, one must be able to
assess the effect of measurements which have al-
ready been completed, but which are not on the
above list. We shall describe a Monte Carlo
strategy for generating amplitudes from data
which is more general than the above.

As an aid in carrying out this strategy, we choose
a "preferred set" of nine algebraically independent
measurements. These measurements alone will
not allow us to determine unique amplitudes how-
ever, since (i} there is an eightfold discrete am-
biguity in determining amplitudes from these data
and (ii) the uncertainties in these measurements
lead to corresponding uncertainties in the ampli-
tudes. Some of the uncertainties will be resolved
by other measurements. It is useful to determine
the level of amplitude uncertainty on the basis of
this preferred set, to assess the effectiveness of
additional measurements in further reducing the
uncertainty.

Our preferred set is chosen to include all the
high-precision measurements which are possible
using a polarized beam and polarized target: o,
P„C„„,C„, C„, and C„, which are (Ref. 5)

OP, = I(0n00) = '—2 Im(NO —N, )N~~,

o' C„„=I(nn00} = 2 Re(U, U,*—NONE) + 2
I
N, I2,
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oD..= IN. I'+ 2 IN I'+ IN. I'- I
U. I'-

I
U. I'

oK„„=—2Re(U U*+N N,*)+2iN,
i

I(sn0s) = 2 lm(NOU2*+ N, Uf) sin8z

+ 2 lm(U, —U,)N,*cos8s .

C„=——,
' Re [(T,+ T,)T~~+ 2T,T,*],

C„=2 Im(T~ —T2)T4,

C»= ——,
' Re[- (T, + T,)T~~+ 2T,T,*].

We add the expressions for C„and C„ to obtain

These three measurements, which involve detec-
tion of recoil spin components, have been com-
pleted.

From precise measurements of the nine quanti-
ties given in (4) and (5), one may determine the
nucleon-nucleon amplitudes (to within an overall
phase) up to an eightfold discrete ambiguity. Be-
fore giving the details of the algebraic solution,
we shall make a convenient change in notation.
First, we shall divide each nucleon-nucleon am-
plitude by 0' ', this rescaling is equivalent to re-
placing o by 1 in expressions (4) and (5). The
calculation is easier in the transversity basis. '
These standard transversity amplitudes are re-
lated to the helicity amplitudes by

C„+Crr
2IT, I IT, I

'

from this expression the phase g, —q, may be de-
termined to within a twofold ambiguity. The data
are constrained such that the right-hand side is
less than or equal to 1 in magnitude. We may ob-
tain, in addition, two independent relations from
(9):

a= — 'I'
I

"=
I

T,
i coerce, +I T,

i
cosr4,

4

i I
»uric —

I
T.

I slurb
2C„

4

Tj T NP N2 2iNy

T2 T Np N2 + 2iN~

T3= T, , =Np+N2,

T4 T++— —Up U2 y

T5= T, ,= Up —U2.

The measurements of o(=1), P„C„„,D„„, and
K„„determine the moduli of these transversity
amplitudes:

(6)

These two trigonometric relations from q, and g2
may be rearranged to give

a'+ b'-I T, l'-I T I'

2I T, I I T, l

(12)

so that the phase g, + g2 may be determined to with-
in a twofold sign ambiguity. Note again that the
magnitude of the right-hand side of (12) being less
than or equal 1 is an inequality constraint on the
data. If we insert the value of g, + q2=—6 into the
relations (11),we obtain coupled linear equations
for cosg2 and sing, which may be solved to give

IT, I2=l

(1+D„„+C„„+K„„)+2PO,

(1+D„„+C„„+K„„)—2P0,

(1+D„„C„„—K„„}, —

I
T, l'=k(1 D„„+C„„-—K„„),

I
T, l'=-. (1-D„„-C„„+K„).

The positivity of the five right-hand terms gives
five inequality constraints which the data must
satisfy.

Let us write the transversity amplitudes in polar
form

(8)

and fix an overall phase by setting g4= 0. We are
to determine the phases g„g„g„g,from pre-
cisely known values of C„, C„, C„, and I(sn0s).
We note that C„, C„, and C» directly determine
three of the relative phases. These observables
are expressed in terms of transversity amplitudes
as

a( I T, I cosb+ I T, I }+b( I T, I sinb}
COSg2 =

a +b

a(l T, I sinb) —b(l T, I cos5+ I T, I )sinq2= 2 b2a+b

As a consequence, both g, and g2 may be deter-
mined from (11), and there are two and only two
solutions of these coupled equations.

Finally, we shall determine the phase g, from
I(sn0s}, using the fact that q„ri„and q, —r4

-=e
are known. This quantity is written in terms of
the transversity amplitudes as

I(sn0s} = —Im T,T4* sin8z

+ —, Re(e "&T,T,*—e @&T,Tf) .
We may cast this equation into the form

I(sn0s) = n cosr4+ p sinr4, (15)

where the coefficients n and p can be written in
terms of known quantities as
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o =
I TB
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+ & I T5 I[ I
T~

I
cos(q, + e&)

I
&21cos(n. —e.)]

p = —
I T,

I
T4

I
sines cosa

+ 2
I

TS
I [ I Ti

I
sin(q, + e&)

I
&2

I
»n(n. —e.)] .

(16)

Relation (15) may be written as

oR= ' I(0s0s)

= - «se.(INDI'- IN. I'+
I U. I'-

I
U. I')

—sine+ [2 Re(N, + N, )N,*],

o K„=I(s00s}

= —cose„[2Re(N, U,*+N, U,*)]

(19)

I(snOs}
2 2 1/2 = cos(05 —Q} q[™+p 1

(17)
—erne„[2 Re(U, —U,)N,*].

with P uniquely determined (modulo 2s) by the
relations

COSQ= 2 21f2& s ~ 2 &I/2 ' (18)p
0. +P a+p

Note that g, is determined to within a twofold am-
biguity by (17), and the data are constrained so
that the magnitude of the left side of (17) is less
than or equal to 1.

Let us label the sign of 0, —q, in (10) by I„ the
sign of q, +q, in (12) by I„and that of q, —P in
(17) by I,. The eight solutions are represented by
(I„I„I,};I,=+ 1. For a given set of (exact) mea-
surexnents, some or all of these eight solutions
may be missing, when one or more of the above
equations has no real solution.

We use the above algebraic solution to construct
an efficient Monte Carlo program, which is used
to study the relation of errors in experimental
quantities to the uncertainties of the nucleon-nu-
cleon amplitudes. Namely, we generate each of
the experimental quantities randomly and inde-
pendently about its measured value within its de-
termined error. We compute sets of scattering
amplitudes for each algebraic solution (I„I„I,).
From these sets, which are consistent with the
nine measurements, we may compute other obser-
vables and decide what additional measurements
should be done to determine the amplitudes more
accurately.

Given the above formalism, we can answer the
question of where we stand on the determination of
the scattering amplitudes at 6 GeV/c. To
use the above analysis, we note that these corre-
lations are constrained4 by the other measure-
Inents to lie roughly in the range —0.10 to 0.10.
We therefore use the values 0.0~ 0.10 for each of
these parameters.

At 6 GeV/c, there are two measurements which
have been completed which were not in the favored
set '

These measurements are not necessary for the
Monte Carlo algorithm, but could provide further
information about the scattering amplitude at P,~
=6 GeV/c; t= —0.3 GeV/c'. Therefore, we in-
corporate them as additional constraints in the
program.

We shall neglect any uncertainty in the elastic
differential cross section o, and use the scale
0= 1.00. The experimental error in 0 amounts to
a small error in the scale factor, which we ignore
here. Qur input measurements are as follows:

o = 1.00,

Po = 0.12+ 0.01,
C„„=0.10+0.02,

D„„=0.95+ 0.08,
K = 0.14+0.08,

C„=—0.15 + 0.10,

C„=0.0+ 0.1,
Crr =0.0+ 0.1

I(sn0s)/a= 0.20+0.08,

R = —0.40+ 0.20,

K, =0.03+0.08.

(20)

From these data we have obtained 200 consistent
sets of amplitudes for each of the eight algebraic
solutions (I„I„I,). The amplitudes N„N„N„U„
and U, are displayed in Fig. 1. We have specified
the unmeasured phase by requiring N, to be purely
imaginary with a positive- imaginary part. For
each of these Monte Carlo amplitudes we compute
the values of the additional measureable quantities,
in order to determine those measurements that
would be the most useful in reducing the rather
substantial ambiguities displayed in Fig. 1. We
find the quantities (D„}and I(nsOs), as given be-
low, to be the most useful.
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FIG. 2. Present spreads in the unmeasured quantities
(a) D» and l(OsOl )/0 and (b) l(nsOs)/cr and Ipl Ol )/0
based on the measurements [Eq. (20)). In (a), the "x's"
illustrate that solutions D„»0 correspond to l(0sOl)/0.
~ 0. In (b), we assume D& is positive.

FIG. 1. Present uncertainties in the five independent

pp elastic amplitudes based on the spin-correlation mea-
surements [Eq. (20)) for a typical t value -0.3 (GeV/c)2.

—2 cose„lm(N, +N,)N+.

The spreads in values of these quantities, as ob-
tained from the Monte Carlo amplitudes, are dis-
played in Fig. 2. The Monte Carlo solutions have
two obvious discrete ambiguities. One ambiguity
is the sign of IN, I' —IN, I' and the other is the sign
of ReN, . Neither of the ambiguities is removed
by present data, or improved measurements of
the set in (1'f). In fact, the ambiguities are crude-
ly, though not strictly, labeled by the phase am-
biguities I, and I„respectively.

The first ambiguity is removed by a measure-
ment of D„, which is very nearly equal to IN, I'
—

I
N, I' since the unnatural-parity exchange am-

plitudes are small. Figure 2(a) shows D„and its
spread for the two discrete regions. A relatively
imprecise measurement will remove the ambiguity.
We of course expect D„=+1 since IN, I

dominates
IN, I

at —t=0, and this dominance is expected to
extend to —t = 0.3 (GeV/c)'. We also note that
1(0sOl) accomplishes the same task, but is harder
to measure at the ZGS. A measurement of I(0s01},
averaged over 0.2 & —t & 0.6 (GeV/c)' has been
made at Saclay." They find a value of —0.4+ 0.5
corresponding to INOI —IN, I'&0.

The second sign ambiguity is resolved by the
measurement of I(nsOs) which is approximately
2IN,

I
ReN„where by convention N, is positive-

imaginary. If the calculation of Field and Stevens
can be used as a guide, I(nsOs) will be negative.
Note that I(nlOl) will also resolve the ambiguity,
though it appears to be less practical. Figure 2(b)
shows the spread in I(nsOs) for the case that D„ is
positive.

To study the sensitivity of our results to the
values of R and K„, we have looked at solutions
with these parameters absent, but with the values
of (20) otherwise unchanged. The conclusions
about the need for D„and I(nsOs} do not depend
on the values of R and K„. Thus, our results ap-
ply at energies for which R and K„have not been
measured.

To make the above points in a more dramatic
way, we show the solutions generated by adding
fictitious measurements for D„and I(ns0s}, ob-
tained with an accuracy 8%, which may be possible
at the ZQS.' In addition the single-scattering
measurements C, C„, and C» are assumed to
be known to 2% accuracy. Specifically, we take
the values:
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o = 1.00,

Po = 0.12+ 0.01,
C„„=0.10+0.02,

D„„=0.95 + 0.08,

K„„=0.14~ 0.08,

C„=—0.15+ 0.02,

C 1
= 0.0 + 0.02,

C, t
= 0.0+ 0.02

I(sn0s)/o = 0.20 + 0.08,

D„=0.90 y 0.10,

I(ns0s)/o = —0.16+ 0.10.

(22)

The solutions (-,+, -}and (-, —,-) are most con-
sistent with these measurements. We find that the
sign ambiguity due to I, results in no obvious dis-
tinctions in the amplitudes for these two solutions.
To get a complete picture, one must of course
study all eight discrete solutions. The resultant
amplitudes are displayed in Fig. 3. They show
that Re U, and ImN, could be measured more ac-
curately.

One of the measurements left out of the set Eq.
(22) is R, which can be measured to 8%, and is

expected to determine ImN, . Another measure-
ment already completed is K„. On the basis of
the values in (22}, these two measurements are
constrained:

—0.5&R & 0.4,
—0.04 & K & 0.08.

(23)

I(ls0n) = 2 Im(UONO* —U2N22'} = —2 Re U . (24)

We see that an 8%%uo measurement of K„gives no
new information about the amplitudes, except in-
directly as a check of consistency of the data. The
R measurement, on the other hand, does reduce
the errors on ImN, .

We have used the values" R = —0.30~ 0.10 and
the values for the observables in (22} to obtain a
new set of Monte Carlo amplitudes. The results
are shown in Fig. 4. The level of ambiguity of
Fig. 4 is substantially better than that of Fig. 1,
even though only a fezv well-chosen observables
have been given reasonable, but fictitious, values.
The most serious ambiguity that still remains is
the determination of Re U, . One may reduce the
uncertainty on Re U, by measuring the quantity
I(ls0n), which involves three measured spine:

~ 0 ~ ~ ~ ll ~~s ~ ~ g li 5K ~

OO ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~

+I -I
~ 0 ~
~ 0 ~

+I

U0 U2

U0 U2

~ ~
~ ~

~ 0

+I

+I -I !2'5
~ ~ ~

~ ~ ~ 0

N

II0

FIG. 3. Typical uncertainties in the amplitudes when
D&~ and I(ns0s) have been measured. The 11 quantities
[Eq. (22)] are used.

FIG. 4. The impact of the R measurement on the set
[Eq. (22)]. We use R =-0.30+0.10. The "&&'s" show how
the uncertainty on the amplitudes is reduced by the addi-
tional measurement I(lsOn); for illustration, l(l sOn)/0.
=-0.10+ .08.
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The additional effect of this measurement on Re U,
is also illustrated in Fig. 4.

We have mentioned earlier that the spin para-
meters must in general obey inequality and equality
constraints. Two good examples involve the quan-
tities D„„and X„„. The 8% errors on these quan-
tities are difficult to reduce. However, for the
solutions generated by (22} plus R and I(lsOn),
D„„and K lie in the restricted ranges

0.94 &D &0.98,
0.06 &K„„&0.12.

(25)

Thus the combined measurements imply a rela-
tively accurate determination.

We have thus arrived at a complete set of mea-
surements necessary to determine the pp ampli-
tudes. Qf course, we used assumed values for the
yet unmeasured quantities. Actual values may
change the set. Also, substitutions are possible.
For example, we recall that I(sn0s), which has
been measured, is expected to give ReU, . An
equally good way to obtain this quantity is through
the observable

I(slOn) = —2 lm(U, No* —
UDICE~)

= —2 Re U2. (26)

This may be useful if the final error on 1(snOs) is
greater than 8%. The urmatural-parity exchange
amplitudes U, and U, are particularly interesting
since they are less well understood than the na-
tural-parity exchanges.

Qur more detailed strategy is rather similar
in its conclusions to the simple strategy outlined
in the beginning, which did not take into consider-
ation all of the available data. In particular, the
detailed strategy would require measurement of
the 11quantities o, D, D„, P„R, I(nsOs), C„„,
I(lsOn), C», I(sn0s), and C„which should be ob-
tained for the simple strategy. In addition, the
detailed strategy brings in the measurements of
K„„and C„, whose value can be thought of as in-
surance against the unexpected. The measure-

ment of K has been completed. It turns out not
to be useful in reducing ambiguity at low t since
K„„=C„„, and K has + 8% experimental uncer-
tainty. At low t, one expects that C„will be
small, since it is quadratic in the "small" am-
plitudes, cf. Eq. (4). However, since C„can
readily be determined to ~ 2% accuracy, or better,
it may be a good strategy to measure it, especially
since at large t it is n~t forced to be zero.

In summary, we find at the level of accuracy
currently obtainable, that the most useful set of
measurements are the 11 in Eq. (22), and that
measurements of R and I(fsOn} reduce the errors
further. Some substitutions can be made in our
set, but there are no additional measurements
which give significant new information.

The Monte Carlo strategy permits us to obtain
the amplitude uncertainties from the data in a
relatively efficient manner and it gives a direct
indication of those measurements that are most
effective in reducing ambiguities. The analysis
can obviously be extended to other values of t (in
particular, large t) and other values of s. How-
ever, it is only a preliminary step in determining
amplitudes from data, since one does not really
obtain the "most probable" values of the ampli-
tudes by such an approach. We expect a standard
X' analysis will be most efficient for that purpose.
Qur main purpose here is to suggest additional
measurements that would be most helpful in un-
ambiguous determination of amplitudes; this work
is a preliminary step to a t-dependent amplitude
analysis. We plan to do a complete amplitude an-
alysis as data become available.
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~At 6 GeV/c a number of spin measurements have been
completed at the ZGS, some of which have been pub-
lished, some of which exist in only preliminary form.
In our analysis we have used values from the following
sources: (a) R. C. Fernow et al. , Phys. Lett. 52B,
243 (1974); L. G. Ratner et al ., Phys. Rev. D 15, 604
(1977); and T. A. Mulera, Univ. of Michigan Report
No. UM-HE-76-26 (unpublished) . These references

contain data at 6 GeV/c on C«, &«, &«, an~
A =Po. Data at 12 GeV/c on C«also exist: K. Abe
et al. , Phys. Lett. 63B, 239 (1976).
(b) G ~ Hicks et al ., Phys. Rev. D 12, 2594 (1975);
D. Miller et al ., Phys. Rev. Lett. 36, 763 (1976).
These references give data on C« from 2-6 GeV/c.
(c) Data from Argonne experiment No. E385 on I(snOs)
and I(s00s) are preliminary. The values we use in our
analysis are a private communication from A. Beret-
vas et al ., and were taken as only an indication. See
B.Sandier, in Hagh Energy Physics with Polarized Beams,
and Targets, edited by M. L. Marshak (A.I.P., New

York, 1976), p. 77. (d) Data from Argonne experiment
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No. E402 on C~ are also preliminary. The values are
based on private communication of I. P. Auer et al. ,
and were again taken as a guide only. Final values can
be found in I. P. Auer, et al. , Phys. Rev. Lett. 37,
1727 (1976). (e) G. W. Abshire et al. , Phys. Rev. D 12,
3393 (1975). This experiment gives 6-GeV/c values
for D~.

R. Oehme, Phys. Rev. 98, 216 (1955);H. A. Bethe,
Ann. Phys. (N.Y.) 3, 190 (1958); C. R. Schumacher and
H. A. Bethe, Phys. Rev. 121, 1534 (1961);S. M. Bi-
lenkii, L. I. Lapidus, and R. M. Ryndin, Zh. Eksp.
Teor. Fiz. 49, 1653 (1966) [Sov. Phys. -JETP 22, 1130
(1966); G. H. Thomas, Ph.D. thesis, UCLA, 1969 (un-
published); W. DeBoer and J. Soffer, Nucl. Instrum.
Methods 136, 331 (1976).

3R. D. Field and R. P. Stevens, in ANL Report No. ANL-
HEP-CP-75-73, 1975 (unpublished), p. 28.

G. H. Thomas, see Ref. 3, p. 83.
~F. Halzen and G. H. Thomas, Phys. Rev. D 10, 344

(1974). A standard reference for discussion of natural-
and unnatural-parity helicity amplitudes is E. Leader
and R. C. Slansky, Phys. Rev. 148, 1491 (1969). The
standard reference to s-channel helicity amplitudes is
M. Jacob and G. C. Wick, Ann. Phys. (N.Y.) 7, 404
(1959).

A. Kotanski, Acta Phys. Polon. 30, 629 (1966).
~Saclay has information on I(0sS) which they call —crR'.
J.Deregel et a/. , Phys. Lett. 43B, 338 (1973). Simi-
lar data at 3.83 GeV/c and more discussion are given in
J. Deregel et al ., Nucl. Phys. B103, 269 (1976). The
6-GeV/c data are also reanalyzed in this reference.

Saclay also measures R {Ref.7).
8A. Yokosawa (private communication) .


