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Mass differences between members of isotopic-spin multiplets of hadrons are calculated in the MIT bag
model. All low-mass SU(4) multiplets of spin 0, 1/2, 1, and 3/2 particles are considered. Both Coulomb and
magnetic contributions to mass differences are evaluated without the assumption of SU(6)-degenerate
intermediate states. The mass difference between the "up" and the "down" quarks inside the bag is not
(necessarily) taken to be a constant; we propose a parameterization for it that works well for its contribution
to known hadron electromagnetic mass differences. Based on the parametrization we present a class of sum
rules for charmed-particle electromagnetic mass differences.

I. INTRODUCTION

Calculating mass differences among hadrons in
the same isospin multiplet has intrigued particle
physicists for many years. ' Since such differences
should be due to just the electromagnetic interac-
tion (admittedly in the presence of strong interac-
tions) they are, in principle, calculable in terms
of what is known. However, attempts to perform
these calculations, putting in the strong interac-
tions through form factors or using soft-meson
techniques with the Weinberg sum rules, have met
with very limited success. ' It seems possible to
calculate the pion mass difference and even, per-
haps, all 4I=2 mass differences but &I=1 mass
differences, such as that between the proton and
neutron, come out completely wrong or involve
subtractions in dispersion relations with unknown
subtraction constants.

The problems that the strong interactions create
can perhaps be avoided by calculating in a quark
model. The mass shift due to the electromagnetic
interaction has two parts, one from the electric
and magnetic interactions between different quarks,
and a second from the self-energies of the quarks
themselves. This second part leads to a mass dif-
ference between the "up" and the "down" quarks.
Qne can then try to calculate the interactions be-
tween quarks while fixing the value of the quark
mass difference by fitting to the experimental
value of one hadronic mass difference. This is a
first step which leaves the quark mass difference
to be calculated in a later, more perfect, theory.

Even such a modest attempt, however, requires
a fairly complete quark theory if we are to avoid
simply taking the electric interaction to be nlR
for some R and if we are to calculate the magnetic
interaction at all.

Fortunately, such a quark theory exists. Qver
the past few years a number of workers have
studied the structure and consequences of a con-
ceptually simple and well-defined realization of
the idea of an underlying quark structure for had-
rons —the MIT bag model. ' The quarks in this
model carry color and interact through zero-mass
colored neutral vector gluons. The essence of the
model is the introduction of a new term, -g„„8,B,
into the energy-momentum tensor; B is a univer-
sal constant and 8, is unity inside the bag in which
the quarks are confined and zero outside. This
new term makes color confinement explicit: It
corresponds to the finite part left over after sub-
traction of the space-dependent zero-point field-
theory vacuum energy.

The basic attribute of the bag model is calcula-
bility; a wide range of phenomena can be calcula-
ted in a well-defined way. This follows from the
fact that the model has definite quark wave func-
tions. So far, these wave functions have been
found in the "static-bag" approximation in which
the bag is treated classically, without its coordi-
nates being quantized. This approximation has
yielded sensible results for Regge trajectories, 4

for the spectroscopy of low-lying states, ' and for
high-energy scattering. '

For low-lying hadronic states of both baryons
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and mesons, calculations of masses and magnetic
moments have been made. ' These agree well with
experiment. Predictions have also been made' fox'

the masses of charmed' particles. As the readex
has perhaps surmised, the present paper is an
attempt to extend these calculations to the calcu-
lation of electromagnetic mass differences. Qur
work tests both the bag model itself and the static
cavity approximation to it.

As discussed above, electromagnetic mass dif-
ferences in a quark model are given by

nm=(~m)„+(~3f) +(~M),„,.
Since the bag model commits itself to definite
wave functions, the first two terms can be calcu-
lated explicitly with no free parameters. The up
and down quarks in the bag model are approxi-
mately massless. This feature accounts for the
successful magnetic-moment predictions; here
it makes the second (magnetic) term in (1.1) po-
tentially important. We will find that the magnetic
mass shift is usually much less than the electric
mass shift in the static bag. The magnetic energy
is, however, especially sensitive to the bag radius
and there is reason to believe that it could play a
more important role in nonstatic approximations.
The third term in (1.1) is the mass difference be-
tween the up and the down quarks. This is, in
pxinciple, calculable in the bag theory; it re-
quires knowing (the poles of} the quark propagator
in the bag, but we will not attempt to calculate it.'

The need for a method of calculating electromag-
netic mass shifts has become more acute with the
observation of some charmed mesons. The D and
the D*,' which are the pseudoscalar and vector
combinations of one charmed Rnd one ordinary
quark, are expected to have very close to the same
mass. Thus, what combinations of D and D* are
produced, and how they decay, depends on the
electromagnetic mass SMt. Some decRys of D*
-Dp may have negative Q values, for example.
We will calculate the electromagnetic mass dif-
fex ences for all low-lying hadrons, i.e., for all
the multiplets of charmed and noncharmed
pseudoscalar, vector, spin —,', and spin & hadrons
that in the bag model are formed from 8-wave
quarks without radial excitations or excitations of
the bag's surface.

The paper is organized as follows: In See. II
we review the parts of the bag model that we mill
need, in particular the wave functions and the re-
sults of Ref. 5 for strong masses. In Sec. III we
dexive the equations for the electric and magnetic
mass shifts, Rnd in Sec. IV we present and discuss
the numerical results. Included in the discussion
of Sec. III are tables of coefficients necessary in
any quark model for determining the magnetic

quark-quark interaction contribution to the self-
mass when the approximations of SU(6)-symmetric
intermediate states is nof; made.

II. THE BAG MODEL

The quarks ln R spherleR1 bRg of rRdlus R de-
scribing a low-lying hadron state satisfy the free
Dirac equation" "

(-s y tp'+y'~+m, )q=0, (2 1)

where color" and flavor indices have been sup-
pressed, and m, is the mass of the light (m, —0),
strange, or charmed quark as appropriate. cv is
the frequency of the mode. Equation (2.1}is sup-
plemented by two conditions: (i) a linear condition
that ensures the vanishing of all (vector} currents
carrying quantum numbers at the surface of the
bag, and (ii) a nonlinear condition that ensures
that no energy or momentum is carried across
the surface. The lUlear condition (i) is

fy'-rq(r)=q(r) at ~r~=ft. (2 2)

A similar condition is satisfied by the colored
gluon fields. The nonlinear condition (ii} is

8B= ———P it e ) e Stuuu pressure terms,

at iri=ft. (2.3)

The sum in (2.3) is (effectively) over all quarks
in the particular bag under consideration. B is a
universal constant and thus a free parameter to be
adjusted according to the strong masses in the
theory. Two other free parameters are buried in
the terms not written out in (2.3): the gluon-gluon
coupling constant Rnd the energy associated with
zero-point, fluctuations of the quantum modes con-
tained in the finite but particle-dependent bag
volume. These two constants are similarly ad-
justed to strong masses. The result of solving
(2.1) subject to (2.2) is the ground-state cavity-
approximation wave function for a quark with fla-
vox' Q;

qtp( rs t)
(4 )1/B

(2.4)

where r=~r~. j, are spherical Bessel functions
and the U are two-component Pauli spinors.
q'q, integrated over the bag, is normalized to
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unity for each o. Thus,1, , )
2+, (&o —I/R)+m !R (2.5)

with the frequency of the lowest mode given by
1

&o = —[x '+(m, R)']'~'. (2.6)

Equation (2.2} implies an eigenvalue equation for
the x

x
tanx =

1 —m R —[x '+ (m, R)']"' (2.V)

TABLE I. The radius R and the quark eigenvalues x~,
o'=u, d, s, c (x„=x„)for each of the hadrons. The masses
of the quarks are m„=m&=0, m, =0.279 GeV, m, =1.551
GeV. R is given in units of GeV ~. The experimental
mass and the mass as predicted by the bag are both
given (in units of GeV). The charmed states are also
listed by their quark content.

Particle

Application of the nonlinear condition (2.3) in Ref.
5 then yielded the bag radius, R, for all low-lying
hadrons; (2.V} then determines x for each quark
in each hadron and (2.4) gives the explicit wave
function for each quark in each hadron. In Table
I we list R for all low-lying hadrons and x for
each of their quarks.

It should be emphasized that all quarks are treat-
ed ab initio, by Eqs. (2.1)-(2.3), relativistically.
On the other hand, the condition (2.2) forces the
"small" component of the wave function to be
smaller than the large component throughout the
interior of the bag. [Indeed (2.V} is just the condi-
tion that the large and small components be equal
in magnitude. ] This suppression of the small com-
ponents makes plausible the sometimes surprising

accuracy of nonrelativistic quark-model predic-
tions. The bag model is, at the same time, suc-
cessful in finding hadronic magnetic moments',
for this the small components are essential.

Finally, it should be noted that the masses and
magnetic momenta calculated in Refs. 5 probe
hadronic structures, basically in the "independent-
quark" approximation; quark-quark wave-function
correlations are not tested there directly. Elec-
tromagnetic mass differences are a much stronger
test of the model since they are sensitive to these
correlations.

III. ELECTROMAGNETIC MASS DIFFERENCES

The electromagnetic se1f-energy of a particle
with momentum p is given, in field theory, to
lowest order in e', by

(3.1)

where J„(x}is the electromagnetic current. '4 This
expression is not appropriate to the bag, which is
not translationally invariant. " The states in (3.1)
are normalized covariantly. Introducing states
normalized to unity by

(3.2)

allows the 63~(0) to be absorbed into a spatial co-
ordinate for the second current. In the rest frame,
where the E in (3.2) is M, the correction to the
mass squared, for the bag model, is

2

2M dx' d'xd'yD"" x- y, x'
bag

N
Z
W

N*

C& (cuu)
S' [c(su)~J
A' [c(su)«t&]
X„(ccu)
Cg* (cuu)
S* [c(su)~J
X* (ccu)

X
D
P
X*
D~

5.00
4.95
4.91
5.48
5.43
5.39
4.79
4.75
4.58
4.27
5.12
5.07
4.69
3.34
3.26
2.80
4.71
4.65
4.18

2.040
2.040
2.040
2.040
2.040
2.040
2.040
2.040
2.040
2.040
2.040
2.040
2.040
2.040
2.040
2.040
2.040
2.040
2.040

2.485
2.484

2.515
2.505

2.475
2.465

2.495

2.375

2.465

2.945
2.935
2.935
2.915
2.955
2.955
2.935

0.938 0.938
1,189 1.144
1.321 1.289
1.236 1.233
1.385 1.382
1.533 1.529

2.357
2.507
2.396
3.538
2.461
2.603
3.661

0.139 0.280
0.495 0.497

2.825 1.865 1.726
0.77 0.783
0.892 0.928

2.915 2.0(?) 1.969

The difference of the mass squared is therefore a
difference of (3.3) for two different states T. Di
viding by 2M we have a linear mass difference;
this is the expression we will use.

To evaluate the x' integral we write the photon
propagator in momentum space, expand the time-
ordered product, and insert a complete set of
states between the currents. To be general we al-
low the intermediate state to have a different mass
than the external state and write the expression in
terms of 4 E, with 4 E defined as the mass of the
intermediate state minus the mass of the external
state. The two terms in the time-ordered product
look different; but, after the energy integral of
the photon propagator is calculated, they can be
seen to be equal. This expression is then
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2 d)0

d d'*d'f
N NR

- - ( 7( d(*, )()( ))(r„[ d(y, O)IT), (3.4)

where the k integral is the remnant of the photon
propagator integral. If 4 E is zero, the k integral
1s

"dk
k 2

(3.5)

and the usual expression for the electric or mag-
netic energy, modified for the bag, is obtained:

2

(I xd y — (7 ~Z"(x, 0}J (y, 0)
~

T).2 bag 4' Ix- yl

(3.6}

We will continue to keep 4 E nonzero and work
with (3.4}.

In a quark model the current is

J„(x)= Q q, (x)r„q (x)Q (3.7)

where q is the charge on the ath quark and q is
its field operator. When (3.7) is substituted into
(3.4) there are two types of terms:

(i) terms in which the virtual photon is emitted
and absorbed by the same quark,

(ii) terms in which the virtualphoton is exchanged
between two different quarks.

The first class of terms yields the quark electro-
magnetic self-energies. These are difficult to

calculate because the sum over intermediate states
contains Rn infinite number of terms. An attempt
to compute the quark self-energy has been made
by Chodos and Thorn, ' but further work is needed.
Finding the correct sign for the up-down mass
differences will be a strong test of the bag (or
any other) quark model. Here we note its depen-
dence on R. To the approximation that the light
quarks have zero mass they would have no elec-
tromagnetic self-energy if free. When they are
confined, however, one expects them to have an
electromagnetic self-energy and there to be an
up-down mass difference. Since the existence of
this mass difference depends on the quarks being
bound, we expect it to vary as 1/R. This variation
is not very important in the mass differences of
the baryons because they all have roughly the same
radius. It can be a large effect, however, for the
mesons where, as seen from Table I, the radii
have a large spread. This 1/R variation may be
modified bythe presence of strange and/or charmed
quarks since the latter provide an alternative mass
scale. In the following section we will find the
known hadron mass differences are well described
by an up-down mass difference of the form A/R
+B&& (number of strange quarks).

From the discussion of Sec. Il the currents (3.7)
are easily found. For the charge density we have

d'(*())=Q g d' &'.( )QJ'.(-) ("." .
) ). *;*) (".".

) );(*„.*)
I

(3.8)

where x is the magnitude of x, 0. denotes the type of quark, R is the radius of the bag, and x and ~ were
defined in Sec. II.
J (x, 0) is a diagonal operator, so in (3.4) we must have T„equal to only T, n E is thus zero, and (3.5)

can be used. The shift in mass due to the electric energy between the quark pairs is a sum over the com-
binations of quarks

(&M)~ = Q C ~[I g(R)+Iq (R)],
+)B
e&B

(3.9)

where C B=Q QB, the product of the quark charges. We must omit the quark self-energy part from the
sum over c( and p, but we do not restrict a& p. The —,

' in (3.1}means we must take the sum of I ~(R} and

I~ (R). This means the coefficient is symmetrized in o and p. The quark-quark interaction is

ld(R)= —N'N~'j dddI( ~

) j(~ ) +(d d) j(~ )

x 2 —sin

~

~

~+ 2y+ —sin —4 (3.10)

The angular integrals were done by expanding ~x- y~ as a sum of a product of spherical harmonics in the
usual way. "
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The spatial part of the current is

(3.11)

where the b, (m} are destruction operators for (Iuarks of type c( with spin projection m. Z', of course,
can connect different states, and the full expression (3.4) must be used. The shift in mass due to the mag-
netic interactions between quarks is then a sum over intermediate states

(d, kf) = P (aM)"o,

where the only states Q that contribute are those whose quarks are in the same spatial states as those of
the external particle.

The contribution to the magnetic energy of particle I' from an intermediate state Q is the sum ovex the
quark-quark interactions

(d M) ~~= —Q C+o [J ()(d E,R)+ Zg (r) E, R)],
o, B
e&B

where the comments about the sum over 0(. and p
J' ~(d E,R) is given by

e 8 2 2 8
Jl~(b Et&R) = ——N„N~ ~ dk

given after (3.9) also apply here. & E is mo —m„.

(3.13)

The angular integrals were evaluated by using the expansion"

@tjklx-yl
=4mik Qj ((kx)kI"(ky) Q Pg" (8„,Q,)I', (8, Q ),x&yIx-yl !=0 e-"- l

where A, is a spherical Hankel function.
The coefficients in (3.13) are given by

(3.14)

(3.15}

C:= Z 2 &f'lk'. ( )q.k.( ') fq&&qf6'. (k)qA(k ) /»U'. .'Ii., I ',.'Ii,
m, m' 0, 0'

(3.16)

These coefficients and the electric coefficients
C z-—q, q~ of (3.9) play the same role as the SU(6}
coefficients given by Thirring. " In the electric
case, since the wave functions for different quarks
are different, it is important to keep separate the
contribution from each pair of quarks and to per-
form the space integrals before summing the con-
tributions. K the magnetic case, each intermedi-
ate state must be considered separately. For each
intermediate state one must evaluate the interac-
tion of each pair of quarks, being careful not to
include self-energy effects. The explicit wave
functions written for SU(6} in Ref, 17 are very
useful for this purpose. %'e have used the gen-
eralization of these wave functions that includes
the multiplets of SU(4). We limit ourselves to 0
and 1 intermediate states for mesons, and spin- —,

'
and spin-& intermediate states for baryons. Ef-
fects from neglected states shouM be quite small
because 4 E for such states is larger, reducing

their contribution to the magnetic enex'gy which
is itself usually much less than the electxic ener-
gy. The neglected states can contribute, even
though they are in a different xepresentation of
SU(8), because of the restriction a4 p on the sum
in (3.13). To see this consider

g g &f (q.o. (.&.( (q,o, (»

= agqa

Q /(Zfq. o. [n&)'. (3.1V)

In the first term on the right-hand side of (3.1V)

the intermediate states must be in the same rep-
resentation as the external state since the operator
is an SU(8) generator. In the second term, how-

ever, since q o for one (luark is not an SU(8) gen-
erator, the intermediate state need not be in the
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TABLE II ~ The magnetic coefficients of the mesons.

Particle
P

Intermediate state
Q

Coefficient
CPQ

0

K0

D+

DO

p0

Kg0

K*'
Kg0

Dg+

g)g0

p0

K+

K+0

g)g0

DO

2

3

5

12
5

1Y

2

1

3
2
T
4
3
4

2

9
5

5

18
5

W6

5
36
4
Y
2

9
2
9

1
9
4
9
2
9
8
Y
4

same representation. We have included as inter-
mediate states only states in the same represen-
tation. Thirring, on the other hand, takes a com-
plete set of intermediate states and thus implicitly
assumes a degenerate mass for all the states
which can contribute to (3.17). Other states will
contribute to (3.17) only for the cases where the
external state involves two or more identical
quarks. Thus, for mesons no other intermediate
states come in, and the sum of our coefficients
for a given particle equals Thirring's coefficient
for that particle. The SU(8) representation in the
decomposition of 8 x 8 & 8 that includes the spin--,'
and spin-& baryons has the only wave functions
that are totally symmetric in spin and flavor.
When the external state contains two identical
qua"ks the operator q 0. does not preserve this
symmetry. Thus the sum of our coefficients for
the interaction between identical quarks in a
baryon will be greater than Thirring's coefficient
since he effectively includes more states in the

Particle
P (qiq2q3)

Intermediate state
Q

Coefficients C~~&

qiq3 q2q3

p (uud)

n (udd)

Z' (uus)

z- (dds)

Z' (uds)

(uss)

(dss)

(cuu)

C,' (cud)

Ci (cdd)

X„"(ccu)

X„' (ccd)

S' (cus)

$' (cds)

A+ (cus)

A (cds)

N++

N*

z0

zg0

~0
M

C"
1

Ci* (cuu)

C+
0

C,* (cud)

c'
1

Ci (cdd)

X++
8

X„* (ccu)

X„+

X„* (ccd)

$+

$* (cus)

$0

S* (cds)

$+

A* (cus)

S (cds)

A+ (cds)

16
27

8
27

4
27

8
27
16

27
8

27
4
27

2

27

8
27

6
27

4
27

4
27
8
2?
2

27

4
27

8
27

16
Yr

8

27

16
27

4
27

8
27

16
27

8
27

16
27

8

8
27

16
Y7

4
27

0

8
27

4
27

8
27

27
8

27

4
27
8

27
2

27

4

4

27

8
27

4

27
8
27

2

Yr
4
27
8
27

16
27

27

8

27

4
27

8
27

8
27

16
27

4
27

8

27
4

27

8

4
'Tr

0

8
27

0

4
27
8

27

4
27
2

27

4

27

8
27

2

27

4
27

2

27

4

27

4

27

2

27

4

2?
2

27

16
27

8
27

8
27

6
27

4
27

4
27

2

27

8
27

16
27

4

27
8
2?
8
2?

6
27

4
27

4
27

3
27

2
27

6
27

12
27

3
27

6

27

TABLE III. The magnetic coefficients of the spin—
2

baryons.
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TABLE IV. The magnetic coefficients of the spin-3
2

resonances.
TABLE V. Electric-interaction integrals, I~~I)

+ I@„(R), for mesons. I ~(R) is defined in Eq. (3.10) of
the text.

Particle
P* (qiq2q9)

Intermediate state Coefficients C~~&

qi q2 qi q3 q2q3
Particles

I~p(R)+ Ig~(R)
(MeV)

N+" (uuu)

N*' (uud)

N* (udd)

N* (ddd)

z*' (uus)

Z+0 (udge)

z*- (dd~)

"-+0 (uss)

=* (dss)

Ci (cuu)

Ci
' (cud)

Ci (cdd)

S*' (cus)

S* (cds)

X„*"(ccu)

XN4 (ccd)

N+++

N*'

p
N*'

N+

zoo

zo

Ww
IV

Ci (cuu)

C"
1

C~i
' (cud)

C t
1

C'
0

Ci (cdd)

Ci

S+' (cus)

S + (cds)

s'

X„*'+ (cuu)

X++

X„*' (ccd)

20

27

20

27

4
Yr
10
27

4
27

5

27

20

27

4
27
10
27

2
T
4

27

5

27

1

27

10
27

27

5

27

2
27

20
27

8
27

20
27

8
27

io

27

20
27
8

27

10
27

4
27

20

27
4

27

20

27

27

20
27

io
27

4
27

10
27

27

5

27
10
27

4
27

io
27

2

5

27

2

27

10
27

4
27
5

27

2

20
27

8
27

10
27

4
27

io
27

27

10
27

4
27

io
27

4
27

20

27
8

27

io
27

4
27

20

27
10

4

27
5

27
1

27

5

27
io

4
27
5

27

2
27

5
27

2
27

5
W2

1

27
5

27

1
27

20
27
4
27
io
27

2

27
2

9
5

27
1

10
27
2

27
2

5

27
1

27
1
9
20
27
8

2?
10
2?

27

negative-definite second term of (3.1V). Our re-
sults for the magnetic coefficients C~~ are sum-
marized in Table II for mesons, Table III for spin-
—,
' baryons, and Table IV for spin- —,

' resonances.

X
D
P
X*
D*

2.78
2.95
3.68
1.97
2.07
2.47

IV. NUMERICAL RESULTS AND DISCUSSION

TABLE VI. Electric-interaction integrals, I~(R)
+ I@„(R), for each quark pair in each baryon. l stands
for the light quark, either up or down.

Particle
P (qiq2q3)

Integrals Ii(R)+ I+„(R) (MeV)

qiq2 qiq3

N (ill)
z (lls)
" (lss)
N* (ill)

-* (lsd)
Ci (lie)
X„(lcm')
s (lsc)
a (lsd)
C* (llew)

X„~ (lac)
S* (lsc)

1.86
1.87
1.99
1.69
1.71
1.78
1.94
2.32
2.05
2.12
1.81
2.15
1.93

1.86
1.96
1.99
1.69
1.81
1.78
2.25
2.32
2.08
2.30
2.07
2.15
2.13

1.86
1.96
2.11
1.69
1.81
1.86
2.25
2.62
2.23
2.47
2.07
2.49
2.30

We have calculated numerically the integralsI,(R) [Eq. (3.10}]and J,~(n E,R) [Eq. 3.14)]. The
results are given in Tables V and VI for I z for
mesons and for baryons, respectively, and in
Tables VQ, VIII, and IX for J,~ for mesons, for
spin--,' baryons, and for spin- & baryons, respecti-
vely. The consequent values of (i) (b M)„and (ii)
(b, M) ~ are given in Table X for those isotopic
multiplets with measured mass differences. Also
shown in Table X are (iii} R, (iv) the experimental
value of each mass difference, and (v) the size of
the up-down mass difference deduced from (i), (ii),
and (iv} for those with the more reliable measure-
ments, N, Z, :-, and K, K*but not

The pion mass difference does not depend on the
up-down difference. As previously discussed" the
pion is not well described by the bag parameters
used here, so that we do not expect a good answer
for the pion electromagnetic mass difference and
we do not get a good answer. By using values for
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Particle
Intermediate J~~(DE, R)+ J@„(DE,R)

state (MeV)

TABLE VII. Magnetic-interaction integrals, J~&(6E,R)
+ J@„QE,R), for mesons. J ~(AE, R) is defined in Eq.
(3.14}of the text. For the pseudoscalars the 4~&(G, R)
are included for comparison purposes even though the
C~~ in {3.13) are zero.

Particle Intermediate state
P (q&q2q3) Q

Integ rais
Z, {ZE,R)+ J~g,E,R)

(MeV)

TABLE IX. Magnetic-interaction integrals,
j~&(EE,R)+ J@„gE,R), for spin-z baryons.

K
K
D
D

P~~
K
K*
D
D*

P, QP

n

K
D*
D

0.295
0.147
0.270
0.155
0.186
0.114
0.209
0.333
0.450
0.161
0.176
0.476
0.093
0.231

X* (/E/)
X+ (/E/)
Z* (//s}
Z* (//s)
Z+ (l/s)
M 4 (/ss)

(/s s)
C( (l/c)
Cg (l/c)
Cg {//c)
S~ (/sc)
S* (lsc)
S* (lsc)
X„* (lcc}
X„~ (/cc)

N+

z
A

H

1

C)
Co

s
A

x

0.180
0.381
0.182
0.329
0.379
0.145
0.277
0.193
0.262
0.379
0.161
0.212
0.292
0.074
0.107

0.180
0.381
0.148
0.268
0.309
0.145
0.277
0.067
0.093
0.133
0.069
0.089
0.127
0.074
0.107

0.180
0.381
0.148
0.268
0.309
0.116
0.225
0.067
0.093
0.133
0.058
0.075
0.107
0.028
0.040

TABLE VIII. Magnetic-interaction integrals,
~~p(+E, R)+~p@QE,R), for splQ-~ ba~ons. l stands for
the light quark, either up or down.

Particle
P (q)q2q3)

Intermediate state
Q (q(q2q3)

Integrals
~~g{AE,R}+Jg Q,E,R)

{Mev)
qgq3 q2q3

the quark masses which give a better value for
the pion mass' a much better value for the mass
difference is obtained. The I=2 part of the Z mass
difference is also independent of the up-down dif-
ference. From TaMe X we find

Z + Z- 2Z'=1.61 MeV

in very good agreement with the experimental
value of 1.78+0.20 MeV.

A=-8.95~ 10-',

a=-1.64~0.12 MeV.

(4.3a)

The error quoted for B is 1 standard deviation; we
consider it remarkably small.

Following the discussion of Sec. III on the vari-
ation of (4M), with g and the number of heavy
quarks, we parametrize (nM), by

(r ~).=xlz+ an, (4.2

where n is the number of strange quarks. Consider
first the baryons. Fixing A from the proton-neu-
tron mass difference and I3 from the other three,
we find

N (/ll)
X (///)

z {//s)
Z (E/s)
" (/ss)
= (/ss)
C, (//c}
C, (//c)
C, {llc)
X„(Ecc)
X„(lcc)
S (lsc)
S {Esc)
S (Esc)
A {/sc)
A (/sc)
A (lsc)

N
N+
z

Cg
C*f
Co
x
X*
s
sg
A
A
s

0.197
0.123
0.199
0.141
0.167
0.114
0.206
0.168
0.221
0.086
0.068
0.173
0.143
0.231
0.181
0.149
0.128

0.197
0.123
0.164
0.116
0.167
0.114
0.076
0.061
0.082
0.086
0.068
0.061
0.060
0.090
0.081
0.064
0.056

0.197
0.123
0.164
0.116
0.140
0.094
0.076
0.061
0.082
0.034
0.026
0.071
0.057
0.084
0.070
0.055
0.048

Mass
difference QM)„(~M) R (AM),„» g M)

P-n
z' z'
z' z-

Wa

~go

r' -7r'
K —Ko

Kg+ K go

0.62
0.60

-1.28
-1.32
-1.19

1.39
0.99
0.69

—0.12
-0.28
-0.02
—0.18

0.04
0.22
0.16
0.04

5.00 —1.29
4.95 -3.10+0.14
4.95 -4.88 + 0.06
4.91 6.4 +0.6
5.39 -3.3 +0.9
3.34 4.60
3.26 -3.99~0.13
4.65 -4.1 ~0.6

-1.79
-3.42
-3.58
-4.90

-5.14
-4.83

TABLE X. Mass differences for which experimental
values are known. Each of the columns is in units of
MeV except for R which is measured in units of (GeV) '
The values for (4M}~ are those deduced from the experi-
mental values, using (1.1). (hM)~ is the mass of the up
quark minus the mass of the down quark.



The parameterization (4.1) is an improvement
over the (b, M), = constant we used in Ref. 18 for
mesons. There me have only tmo pieces of data,
but we can use them to fix A and B for mesons.
%'e find

A~= —3.38x 10 3,

B~= —4.10.
(4.4a)

In Table XI we give the predictions of the model
for all noncharmed electromagnetic mass differ-
ences. Our only bad answer is the =* mass differ-
ence which is measured as -3.3+0.9 MeV. The
N* mass differences are worth examining. It now
seems reasonably well established" "that E,(N*'}
is greater than E,(N*") where E, is the real reso-
nance parameter in the Breit-signer formula,
while E,(N*") is greater than E,(N*') where E, is
the real part of the pole position. Consistency with
the treatment of the quoted E* mass difference in
Ref. 19 and with the calculations of Ref. 2 would
indicate comparison with the difference of the
former while, at first glance, the latter difference
would seem the comparable quantity. The ques-
tion obviously deserves further study. It shouM
also be noted that our results for the noncharmed
baryons are close to those that Celmaster' has
found from a gluon perturbed linear potential mo-
del.

It is interesting to note that the bag model "ex-
plains" the validity of the Coleman-Glashow re-
lation"

(b M), =A/R+ Bn+ Cn, , (4.5}

where n, is the number of charmed quarks. Once
one charmed mass difference is measured relia-
bl, thereby fixing C, the experience above with
strange particles indicates that (4.5) should be
successful in giving all the remaining differences.
Two possible estimates for C are:

C=B,
C = (m, /m, )E.

(4.6)

(4 f)

The predictions based on these two possibilities,
which would seem to be opposite extremes, are
given in Table XII. It mill, of course, be particu-
larly intexesting to verify the parametrilation
(4.5) in the case of baryons with two charmed
quarks or one charmed and one strange quark.

This is satisfied by (hM) „, (4M) ~, and (&M),
individually because the dynamics of the model
give, in Ref. 5, degeneracy, to a good approxima-
tion for the N, Z, and = bag radii, B.

Finally, "me consider the predictions of the
model for the electromagnetic mass differences
of charmed particles. In Ref. 18 we predicted
7.82 MeV and 6.81 MeV for the D and D* differ-
ences based on assuming a constant value for
(n M), of —5.14 MeV determined from the K mass
difference. Lane and Vfeinberg, 23 also keeping
(b M), constant, but determining the electromag-
netic energy from symmetry arguments give 6.7
MeV for the D mass difference. Here, however,
we extend the simple, but more effective, para-
metrization (4.2) by writing

TABLE XI. The predicted mass differences for all the
noncharmed particles. Each M is in units of MeV.
(AM),

&
is calculated from (3.9), (bM)~ from (3.13).

(&M)«~& then comes from (3.1) using the parameteriza-
tion (4.2). The N, E', and K* mass differences are in-
put. The p mass difference does not include a contribu-
tion of -1 MeV due to p-photon mixing.

TABLE XII. Predicted mass differences for the
charmed particles. Each ~M has units of MeV.
(AM)tot~ and (AM)tot~ correspond to the bvo extreme
values, (4.6) or (4.7), in the parameterization (4.5).

Mass difference (EM)e] {~)gggg QM)tpf+ (AM) top+

Mass difference

P-nz'- z'
z' z-

Ww

N ~ —N*+
N*'-N+'

zoo
z+0

x' x'
P -P+ 0

z++ z+'

(6M) )

0.62
0.60

-1.28
-1.32

2.26
0.56

-1.13
0.54

-1.17
-1.19

1.39
0.99
0.99
0.69

-0.12
-0.28
-0.02
-0.18
-0.23
-0.14

0.27
-0.15

0.06
0.04
0.22
0.16

-0.05
0.04

-1.29
-3.13
-4.75
-6.60

0.40
-1.21
-2.69
-2.90
-4.40
-6.09

1.61
-3.99

0.94
-4.10

(b,M)~ (nM) „« C("-C('

C) —Cg

s -s'

C*~ C *+

C +0
1

X*++ X*+
8 Q

gg+ /+0

D D'

Dy+ ago

2.79

0.85

2.59

2.87

1.64

-0.12

0.17

0.13

0.12

-0 ~ 14

-0.22

+ 0.02

-0.10

-0.02

0,22

0.03

-0.84

-2.49

-2.15

-4.34

-4.54

-1.02

-2.60

-2.42

-4.30

7.99

6.58

-8.32

-9.97

-17.10

-11.82

-12.02

-8.50

-10.08

-17.37

-11.77

26.68

25.27
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It should be remarked that the parametrization
(4.5) is a purely phenomenological one unrelated to
the bag model.

The predictions in Table XII for D and D* corre-
sponding to the choice (4.8} for C are very much
the same as those of Ref. 18 which were based on
the assumption of constant (4M), . The possibility
(4.7) leads, however, to dramatically larger
charmed mass differences. In the absence of dy-
namical saturation considerations in the calcula-
tion of (EM)„ it is perhaps to be preferred on

just dimensional grounds. Qn the other hand, one
would be surprised if, when calculated, C could be
very much larger than A/B.

In the absence of any knowledge about C one can
eliminate C between two charmed-particle mass

differences, thereby obtaining a sum rule relating
the two. The most useful of these at present is
that between the D and the D*

m~~+- m~go=m~. —m~0 —1.41 MeV. (4.8}
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