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We study the Hamiltonian form of Reggeon field theory on a lattice in the two-dimensional (D = 2) transverse

or impact-parameter space. The Hamiltonian formalism allows naturally for the privileged character of the

longitudinal variable or rapidity, which is kept continuous. Based on recent results for the one-dimensional

theory, we argue that we may truncate the single-site basis of the Hamiltonian by retaining the lowest two

states only, and we arrive at a lattice spin model. In terms of Pauli spin matrices a.„"at each site n = (n„n2),
our Reggeon quantum spin model has the Hamiltonian H = Xg(5/2)(1 —o.„")
+ Xg.,-AI(1 —2o++')(1 —2'+) —cr," 'o',"], where i represents the lattice unit vectors (1,0) and (0,1). The

parameters 8 and A are related to those of the original field theory. All the approximations are valid for
small Regge slope no in the region of the phase transition at output Regge intercept a(0) = 1. The critical
exponents of the original system can be determined by the properties of the low-energy states of 0 in strict

analogy with the established relation between the $' theory in d = 2 and the ground state of the quantum Ising

model with a transverse magnetic field in D = d —1 = 1 dimension. The general properties of the Reggeon

quantum spin model are exhibited, and several new approximation schemes for Reggeon field-theoretic

calculations are suggested. While the above Hamiltonian is adequate, by universality, to describe the critical

Pomeron, systematic improvements can be made to study the theory away from criticality by retaining more

states in the single-site basis of the Hamiltonian.

I. INTRODUCTION

To account for rising or even constant cross
sections a Regge theory must include Regge cuts
due to mult&-Regge exchanges. ' Qribov's Reggeon
field theory provides a systematic way to include
cuts with the correct t-channel discontinuities.
In the Reggeon field theory, the leading Regge
pole, that is, the Pomeron, is treated as a quasi-
particle with a field g(y, x) in one "time" variable'

y, which is the rapidity, and two transverse space
coordinates x, which are the impact parameters.

It has been shown, by means of an expansion in

a, in a transverse space of dimensionality V=4
—&, thai the Reggeon field theory undergoes a
second-order phase transition as the bare "mass
gap" 4 becomes large and negative. ' (g —= 1 —a„
where no is the bare Regge intercept. ) At the
critical value d,* of b,, the renormalized Regge
intercept is unity and, owing to the many coinci-
dent Regge cuts, cross sections increase logarith-
mically: o;„-(lns)~. Although considerable under-
standing of the phase transition has been achieved
by the & expansion, many questions remain. ' At
the physical dimension where &=4 —D= 2, calcula-
tions for q to second order in z do not indicate
convergence. Indeed, for D= 2 some doubt as to
the existence of a phase transition remains. ' Also
we feel that the nature of a physically meaningful
theory"' in the supercritical' region 4, &~0~ is an
open question in spite of the very interesting re-
cent work by Amati et al.' Finally, there are no
accurate calculations of the critical exponents, or

Qreen's functions for large rapidity, let alone ra-
pidities below the scaling region.

Several attempts to answer these questions have
been made by replacing the Reggeon field theory
by a lattice spin model. "" Just as the Ising mod-
el is in the same universality class'4 as the Qinz-
burg-Landau theory, that is, a Euclidean (t)4 theo-
ry, we might find a lattice model in the universa-
lity class of Reggeon field theory. Then the criti-
cal exponents and scaling functions at D= 2 could
be calculated by statistical-mechanical meth-
ods.""

However, two fundamental dissimilarities be-
tween Reggeon field theory and the fII)4 theory have
impeded progress in this direction: (1) After
Wick rotation, the Reggeon field theory, unlike
ft)4 theory, is not symmetric in the "time" y and
the space coordinates x. (2) The interaction
Hamiltonian is not Hermitian. In addition, dis-
cretization of the rapidity axis induces new un-
physical interaction terms of the form (t}"+ g™),
whose effects are difficult to isolate in the critical
region.

We present in this paper a lattice spin model
which naturally allows for the privileged charac-
ter of rapidity and avoids the problems arising
from its discretization. We discretize only the
x space by introducing a lattice. This implements
a transverse-momentum cutoff. Since it is gene-
rally believed that large transverse momentum
will be suppressed in any dynamical theory un-
derlying the Reggeon field theory, the lattice may
in fact be an improvement. We keep y as a conti-
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nuous variable, so that we can imagine a continu-
ous chain at each lattice site. This is achieved by
working in the Hamiltonian formalism rather than
the path-integral formalism. Whereas the action
is a sum over x space and rapidity y, the Hamil-
tonian is a sum over x space only. Also, we
shall invoke Gribov's "heavy Pomeron" approxi-
mation, "namely, that the bare Regge slope a,'
ls small. As emphasized by Gribov and the CERN
collabor3tors, "0 an expansion in o.o is a useful
one allowing for the treatment of the coupling to
the external particles nonperturbatively. This
approximation of small n,' means that the chains
are weakly coupled.

In the extreme limit no= 0, the chains are de-
coupled. The spectrum of the Hamiltonian of a
single chain has been recently studied by Bronzan,
Shapiro, and Sugar. '8 The direct product of the
eigenstates at every site provides a convenient
basis to represent the fully coupled Hamiltonian.
Then, following the same truncation procedure
used earlier for P~ theory, '9 we arrive at the fol-
lowing effective Hamiltonian for the case of weakly
coupled chains:

B= Z —(1 —o, )

obtain our effective Hamiltonian (1.1). We also
discuss in this section the symmetries of the mod-
el and sketch, as an example, a calculation of the
total cross section in the eikonal approximation.

In Sec. IV we discuss the possible connection
between our D-dimensional RQS model and the
transfer-matrix formulation of the (D+ 1}-dimen-
sional lattice model of Cardy and Sugar. " Although
the models are closely related, they are not identi-
cal. They share the same symmetry properties,
but only the Reggeon quantum spin model strictly
preserves the normal-ordering property of the
original Hamiltonian that accounts for the persis-
tence of the perturbative ground state ~0}(H ~0 }
=0) for all values of the parameters. We believe
this special property to be crucial for the under-
standing of the phase transition of Reggeon field
theory.

Section 7 concludes with a discussion and sug-
gests further calculations and two appendixes con-
tain some calculational details referred to in the
text.

II. HAMILTONIAN FORMULATION AND THE
TRANSVERSE LATTICE

A. Hamiltonian and path-integral formulations

+ ZAI(l —2o, ')(1 —2o,') —o", &rl]. (1.1)
n, f

This Hamiltonian defines our Reggeon quantum

spin (RQS) model in terms of the Pauli matrices
o,', o", , and o'. =- (o„'+ fo', )/2 at the lattice sites
n= (n„n~), while 5 and A are related to the param-
eters of the Reggeon field-theory Lagrangian, and

i represents the lattice unit vectors (1,0) and

(0, 1). In the &f&' case this procedure gives, in two
dimensions (and, as generally believed, in'higher
dimensions too}, critical exponents identical to
those of the Ising model which is in the same uni-
versality class as P' theory. '4 We can similarly
expect that our effective Hamiltonian gives the
same critical behavior as the original Reggeon
field theory, independent of the fact that we have
used a weak-coupling approximation.

In Sec. II we set up the quantum Hamiltonian
formalism and summarize the general features of
the proble, and introduce the lattice in impact-
parameter space. We do a crude mean-field (or
Hartree-Foek) approximation to exhibit a phase
transition, and calculate the critical value of no
for small n, .

In See. DI we first summarize the spin-model
construction'9 for the p theory and review the
relevant features of the D=o Reggeonfieldtheory. ~
Then we truncate the basis of the one-site Hamil-
tonian by keeping only the two lowest states, and

We begin by considering the standard Reggeon
field theory defined by the Lagrangian

lt(y, x), 4(y, x')1= &'"(x -x'), (2.2)

while g(y, x) commutes with g(y, x ) and similarly

-o.'&0 v4-nest- ~24(4+4)4,

(2.1)

in which g= g(y, x) is the Reggeon field (the rela-
tion of g to g is discussed later), y the rapidity,
and x = (x„x„.. . , xD) the D-dimensional impact-
parameter space (D= 2 is the physical dimension).
The parameters a,', no=-1 —/, and ro are, re-
spectively, the bare slope of the trajectory, its
intercept, and the triple-Reggeon coupling.

We are interested in applying the theory to the
Pomeron, for which we assume that the renormal-
ized intercept is exactly unity so that the renorma-
lized n, is zero. We see from (2.1) that n plays a
role similar to a bare "mass gap" of a nonrelativistie
theory, and the renormalized propagator is expect-
ed to exhibit a power-law behavior at large y and

~x ~
characteristic of a second-order phase tran-

sition.
Quantization in Heisenberg's picture is achieved

in the standard way from the Lagrangian (2.1).
The quantum field P and its canonical conjugate
(i$}have the equal-rapidity commutation relation
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for g. The (normal-ordered) Hamiltonian is
~%

H= J' d~x n g p+ —' p(g+ g)P+ n'V p ~ Vg

(2 2)

The formal solution to the Heisenberg equations
of motion2 are

p(y, x) = e'"$(0, x)e '",
P (y, x ) = e""P(0, x)e '" .

%'e note that in general, even for z, =0, the
operator P(y, x) is not the Hermitian conjugate
of i(I(y, x). However, we can choose one par-
ticular y, which we take to be y=0, at which

$(0~ x) = i/) (0~ x). The Hermlttclty properties of
the fields for y 40 are then completely determined
by Eqs. (2.4).

The remainder of this subsection as well as
Sec. IIC are not necessary for the derivation of
our quantum spin model, and the interested reader
may proceed directly to Sec. IIB and then Sec. III
for the derivation. However, we wish to discuss
first the connection between the Hamiltonian and
path-integral formulations of the theory and review
briefly a general description of a second-order
phase transition in the Hamiltonian formalism.

Ne are interested in the calculation of the
Green's functions of the theory, which in the path-
integral formalism may be obtained from the gen-
erating functional

F
dy d D x(J'+ $S+ @)

(2.5}

in which S= S(y, x) and S=S(y, x} are independent
complex e-number sources. The fields $ and g
are here independent e-number functions defined
at the point (y, x), and the meaning of the func-
tional integral is given in Appendix A. %'e have
kept a fictitious rapidity "volume" Y as a variable
in order to define the "thermodynamic" limit Y-~ to obtain the expected phase transition. Also,
as explained in Appendix A, we take periodic
boundary conditions at y=0, Y, so that $(0, x)
= g( Y, x) and g(0, x ) = g (Y, x).

For example, the two-point function is given by

G""(y,x; Y) =- (P(y, x)4(0, o)&

1

Z[0, 0; I'] M(y x)gS(0 0)

xZ[S, S; Y],

f ii&6+(y, x)g(0, 0)exp[f DyrdfdDxl ]
f5$5$ exp[ fo dy fd Dx 2]

and its contrQ)uhon to the total cross section is
proportional to its Pourier transform at zero mo-
mentum transfer,

o„,(s) ~ d~xG""(y, x; Y), (2.7)

in which the symbol T implies a rapidity-ordered
product of the fields as appropriate for bosons.

In the limit Y- ~ only the ground state 10} of
the Hamiltonian survives in Eq. (2.8) and we ob-
tain, for the region above the critical surface,
6, & + (where + is the critical value of n, ),

lim G""(y,x„Y)-=G""(y x)

=(01~4(y x)4(0 0)10)

= 8(y)(01&(0,x)e '" P(0, 0}10),
(2.9)

where we have used 4(0, x)10) =0 and If 10) = 0 due
to normal-ordering.

The asymptotic behavior for large y is obtained
from Eq. (2.9),

G""(y,x) -(01&(0,x)1 ) (11&(0,0)10)e "

(2.10)

and is controlled by the first excited state, H11)
=E, 11). The phase transition occurs as the
"correlstion length" in rapidity, E, ', becomes
infinite as d, approaches 6,* from above and the
lowest level of H becomes degenerate. When n
= ho~ a scaling analysis4' says that the behavior
of C ""(y x) is

G'tlyl)(y x) y'g-vDIBI, (2.11)~ IyP

for large y and IxI with x /y" fixed. Here q and
v are critical exponents which we would eventually
like to compute and I' is a scaling function. It is
easily seen that q and v control the behavior of the
total cross section and the shrinkage of the elastic
forward peak, respectively,

o„,- (lns)", "- (lns)'" IF(o.'t(lns)") I',

(2.12)

where E is the Fourier transform of E and t is the
square of the four. -momentum transfer.

For n & no* there is expected to be a new ground
state which is no longer annihilated by tf(0, x) and

in the limit Y- ~ for fixed y=lns.
In the quantum-operator formalism the two-

point Green's function is given by~

(, , ), , tr[e ""Ty(y, x}q(0,0)] (2.8}
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the fields g and 4 develop nonzero ground-state
expectation values. It may then be more con-
venient to work in terms of a "shifted" or con-
nected Green's function defined by

(2.15)yl (y) = I'"y(y, x= l n)

and similarly for g. We also make the replace-
ments

tre- FH (2.13)

We see that the total rapidity Y plays the role
of inverse temperature in statistical mechanics. '0

In the limit Y — only the ground state of H
survives in Eq. (2.13), and our problem is then
that of the statistical mechanics of a D-dimen-
sional quantum system at zero temperature.

In Appendix A we prove the equivalence of the
operator and path-integral forms of the theory,
and thereby give a precise meaning to the func-
tional integrals.

8. Transverse lattice

A square lattice in x space is defined by the
points

1323k ~ ~ yD

(2.14}

where l is the lattice unit spacing, and the fieM
at the lattice point n is

G' (y'x' Y} S(, ) 5S(0, 5}1nZ~S, S; Y]

even if the physical particles still couple to the
original fields. However, as we said in the Intro-
duction, we feel that the nature of a physical
theory for l],,& +~ is an open question. ' "

Of particular interest is the partition function
of the theory because much information about the
phase transition can be learned from it and it is
generally simpler to compute than Green's func-
tions. It is defined by

Y
Z-=Z[O, O;S]= OO(«)k«O S«f S «Z

(2.16)

Q (C;„-&;-)(f;„=S;),
where the i are the D independent unit vectors,
so that the gradient term is replaced by the sum
of nearest-neighbor couplings. "

The commutation relation, Eq. (2.2), becomes

I. 0;(y), 4(y)1 = 5;,-,
where the 5; - is the ordinary Kronecker 5. Since
gz(y=0)= P'-(0), we identify ~$-„(0)and P;(0) with
the ordinary creation and annihilation operators
a- and a;, respectively. Then, since H is in-
dependent of y, we obtain, by setting y =0 in Eq.
(2.3),

If =
Z ga. a; + ~ (I. (a~+ a~ )a;~g

ft

t
+ p' Q(a; -a'-)(a;„;.—a;), (2.18)

where go=i D~'y .

C. Mean-field approximation for ne ~ 0

We define the two-point function in (E, , k) space
by

o""(z k) f s f ss«*' "'G""(s*)
(2.19)

and a second-order phase transition occurs when
G""(E= 0, k =0) becomes infinite.

The generating functional, Eq. (2.5), expressed
in (E, k) space for Y-~ is

z[s, s] =f «O(zk)oo(z, k),
xexp A+ 2, 8Ek+Jk Ek 4Ek+$Ek SEk+Jk Ek, 220

wllel'8 'tile 111'tegl'Bls ovel' ([II are cutoff at. A = )I/1
and where Ao is the action neglecting all intersite
coupllngs, which are all contained ln the efgg
terms. It follows from (2.15) that

D

J(k) = —,' II cos(lk, )
j =1

(2.21)

for small ~k ~. The connected two-point Green's
function is given by

S"- S-"0

(2.22)

We can determine the critical value ho~ for
small ao by a mean-field approximation, "defined
by the replacement
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Dg 0;,();- 2 (()&0;+P;(0&)
i

in Z[S, S]. Then we get

(2.23)
III. THE REGGEON QUANTUM SPIN MODEL

A. Summary of the construction for the Ginzburg-Landau theory

Z[S, S] = const && [ Z, (S+ DJ( p &, S+DJ(p&)]",

(2.24)

where Z, is the single-site (D=0) generating func-
tional and N is the total number of lattice sites.
The expectation values (P&, (g& are determined
by the self-consistency conditions

A knowledge of the spectrum and eigenstates of
the Hamiltonian (2.18) enables one to compute sll
the properties of the cutoff Reggeon field theory;
for example, the partition function is determined
by the ground-state energy. The two-point func-
tion is given, according to (2.9), by

(p& = - lnZ
5S(E, k S=S=O

(2.25)

G"~)E k=
1 —2DJ(k)G, (E) ' (2.26)

in terms of the single-site Green's function G, (E).
The critical surface is therefore given in this ap-
proxim ation by

)2

2j(0)D 2Dc(0
(2.27)

The single-site Green's function is given by

"' 6S(E, k) '"',
—, ,

It is then straightforward to find the expression
for the Green's function for small o.p',

where the Im) are the eigenstates of the Hamilto-
nian corresponding to eigenvalues E .

It is very difficult to compute exactly the spec-
trum and eigenstates of H, and therefore one
has to pursue approximation schemes. We shall
follow a simple approximation analogous to that
developed" for the Ginzburg-Landau theory, which
we now summarize.

The Hamiltonian for this theory on.a transverse
D-dimensional lattice x= nl is

H = g: —,
' v + V(P;) + c' g (P;„-—P-„)

n

G, (E)= dy(OIae" "''a~ IO),
0

where H, is the single-site Hamiltonian

H, = Boa"a+ —' a~(a+ a~)a .Sg

2

(2.28)

(2.29)

with

d(t)-~~2 n
n

where V(P-„)is the Ginzburg-Landau potential

(3.2)

(3.3)

In Ref. 18 (see also Appendix B) it is shown that,
for 60-- ,

00 2

G, (0)=f dd V ,)v), '&f& +-)( (t) + const, (3 4)

d(d )"* dd, ')exp
i@pl g 2

(2.30)

and therefore Eq. (2.25) tells us that

I qp I lgp fl
4D(2')' "O.'

l. /2

(2.31)

in the mean-field approximation for np small.
The point of this exercise is to show that the

phase transition can occur for weakly coupled
chains and to suggest that it may be studied by
approximating the spectrum of the single-site
Hamiltonian for 60- -. Of course, the critical
exponents obtained in mean field theory are the
trivial ones.

with mo' &0 and g &0 (see Fig. 1). We are parti-
cularly interested in solving the Hamiltonian (3.2)
near the phase transtion which occurs when its
ground level becomes degenerate.

Let us first consider the problem for a single
site, which amounts to solving the theory for no
intersite coupling, c'=0. This corresponds to the
familiar Schrodinger problem for the one-dimen-
sional anharmonic-oscillator potential (3.4). This
has an infinite, discrete, positive-definite spec-
trum whose levels alternate in parity. However,
when f170 is large and negative, it has been shown"
that the splitting owing to tunnelling of the two
lowest levels vanishes exponentially, so the ground
level becomes degenerate in the limit mp' - -.
At the same time, all other excited levels go to
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ly, even and odd parity, it is evident that o ~ is
proportional to o„.The effective Hamiltonian is
then

I

H= —(1+o,')+ Q 4(1 —o„"'cr„'),(3.8)
n

where n = 2c'I( &0 I p; I &,&I'. lt is convenient to per-
form a, rotation which takes (o„a„o,) into(o„o„-o„)so that H is

H= g —(1 —o„')+g 6(1 —&r,'"o',), (3.9)

s=-I s=+I

FIG. 1. The Ginzburg- Landau potential V= Xo(ft)2

+mo /4XO)2 for mo & 0 and A,o&0. The stable points are
at y=+ [m, [ jx&z, .

(3 8)

For the intersite coupling we need the 2 x 2 matrix
which is the representation of f; in the truncated
basis, given by

(& a)~i = ( « I
4'-.

I e~& (3.7)

for i,j =0, 1. Since Ie,& and Ie,& have, respective-

infinity. " The two lowest states
I «0& and

I a, & are
essentially the even- and odd-parity combinations
of states whose wave functions are localized in the
right or left well of the potential, and as m, '- -~,
the height of the barrier increases, the tunnelling
is reduced, and the ground level becomes dege-
nerate.

If we now reintroduce a small intersite coupling,
c' a 0, we expect that the ground level of the full
Hamiltonian (3.2) will become degenerate when
-mo' is large but finite. Thus the two lowest
states at each site play the key role in the phase
transition of the full Hamiltonian. This suggests
tmneating the basis of single-site states by re-
taining only the two lowest ones, so that B is re-
placed by an effective Hamiltonian which is ex-
pressed in terms of 2 &&2 Pauli matrices, and
which is simpler to solve. Critical phenomena
being rather insensitive to the details of the Ham-
iltonian (but only depending on the dimensionality
and symmetries of the system) can be expected to
be described well by this kind of approximation.

The sum of single-site piece of H, Eq. (3.2), is
replaced by

+:[a ~-.'+ 1'(4;)):-+ -(1+o,')+ ~Q, (3 5)
5 n

where &=-&, —&0 is the energy splitting of the two
lowest levels at each site; the states in this re-
presentation are

which corresponds to a (quantum) D-dimensional
Ising model with a transverse magentic field.

For D= j. this quantum spin model has been ri-
gorously shown'~ to be equivalent to the two-di-
mensional classical Ising model with asymmetric
couplings,

n, m

&8„+K&8 &
8 (3.10)

and has also been solved exactly, "giving critical
exponents identical to those of Onsager's solution
of the two-dimensional classical Ising model. This
demonstrates that the two-dimensional P4 theory
and the two-dimensional classical Ising model are
in the same universality class, and it is generally
accepted that this is true of any dimensionality. '4

However, they are not identical models for short-
range correlations. In Sec. IV the possibility
of a similar relationship between the Car-
dy-Sugar" model for d dimensions and our (d- 1)-
dimensional Reggeon quantum spin model is con-
sidered.

B. The D = 0 (single-site) Reggeon field theory

There is a close similarity between thea =OReg-
geon field theory in the limit n - -~ and the D = 0
Ginzburg-Landau theory in the limitmo'-. -, as we
shall see in this subsection.

The only novel feature of the Reggeon field theory
is the lack of Hermiticity of the single-site Hamil-
tonian, Eq. (2.29). Consequently the right-hand
eigenstates

I e;& and left-hand eigenstates (e' I, de-
fined by

(3.11)

are not conjugates of each other,
I
~'&-=((~'I)'c I~;&,

and the eigenvalues ~,. are not necessarily real.
However, since there is the "parity" operator
P= (-1)' ' such that PH, =H~tP, the eigenvalues
must occur in complex-conjugate pairs (corre-
spondt~ to I.,& md I.;&-f I.,&),

Hi I
~~*& = I'4

I ~;& = ~~*
I e~&, (3.12)

and the Green's function G, (E) must be real ana-



BR0%ER, FURMAN, AND SUBBARAO 15

exp (3.14)

while all other excited levels go up in energy (see
Rlso Appelldix 8) ~

An explanation similar to tunnelling is possible
for Reggeon field theory but it is less easy to vi-
sualize for the complex potential

y(p, x) = ff(u.'= -o) = n.(0'+ x')+ trod(4'+ x')

in terms of the "coordinates" Q= (Tt+ g)/2,
x = f(4 —4)/2.

For n &0 the two extrema at x = +
j do/go l

and

P =in /go (see Fig. 2) are stable against real
fluctuations in @,y. Now ere look at the expecta-
tion value in the even and odd combination

l
+&

= (l », & +
l «, &)/W2 of our two lowest states

l «,&,

l «, ) of the operators x=f(a' —a)/2, g= (a'+a)/2.
Again as n, - -~, we find that the expectation val-
ues lie exactly at the "classical'* extrema (see
Appendix 8)

(3.16)

lytic, G,*(E)= G, (Ee). Similar remarks can be
made for the spectrum and Green's functions for
eo @0.

As usual the left-hand (or dual) states are or-
thogonal to the right-hand states for different
eigenvalues, and by multiplying &»'

l by a suitable
constant @re can construct an orthonormal dual
basis from the left eigenstates,

(»"
l », &= 5„. (3.13

Finally Bronzan, Shapiro, and Sugar'8 have de-
monstrated the remarkable properties that, for
god 0 and n &0, all the eigenvalues are 1eal, dis-
crete, and non-negative, that the nondegenerate
ground state

l «o) is the normal vacuum l0) (de-
fined by a l0)=0) with «, =0, and that, in the limit
6,- -~, the first excited level &, vanishes like

However, there is a subtlety in that p is noI,
diagonal in this basis. Nonetheless, by taking the
proper matrix elements we construct in the next
subsection the analog model for Reggeon field
theory by the same procedure as was used for the
Glnzbux'g -Landau theory,

C. Derivation of the Reggeon quantum spin model

If we return to the coupled-site problem nowO,
%6 can x"epresent the exaeI; Hamiltonian in a basis
of states constructed from the direct product of
single-site states,

j~;,f„.. .&= j«, &, e l«, ,&, 3" . (3.17)

For n, = O(luego') and ao small, we can approximate
the Hamiltonian by restricting the basis to the
lowest tnio states

l »,& and
l »,) at each site. The

single-site part of the Hamiltonian then is written
as a sum over 2 ~ 2 Pauli matrices o'„

noanan+ an (aR+ an }an Zi (1 —o s) ~

(3.16)

where 5= 6z —6o is the energy splitting of the low'-
est two states.

To calculate the coupling betvreen sites, we need
the 2 x 2 matrices which are the representations
for g-„and Tt-„(ora;, a-„)in the truncated basis at
the Qth site. These are given, respectively, by

(«' la j «,.& and &»' la' j», & (3.19)

for i, j=0,1.
Since we already know& that the lowest state is

l «,&= 0&, we need only calculate the first excited
state», ). Following the elegant methods of Bron-
zan, Shapiro, and Sugar, "we shower in Appendix B
that, ln the limit no —-~,

l «, ) is given by

l »,&= e,at(ata+1) '
lx& j, ,~~(, , (3.20)

where c, is a normalization constant and jx& is the
plane-wave eigenstate of the operator (at+ a}/W2.
Thell we calculate tile lllRtl'lx elelllellts (3.19) and
the result is [see Etis. (826), (827))

&«'ja j «,.&=2 —' o.+ —(1 —o,)
'

Co 2'
, ]yy (3.21}

&»*la'l«}=2 ~ o + —'(1 o)
go 2

(3.22)

Flo. 2. Extrema for the Heggeon field-theory
"potential" V= (40+igoftt)(ftt2+g2). For 60&0 and go&0
the stable points are X=+no/go, P iso/go=

vrhere we have taken go to be positive.
We find it convenient to make a change of re-

presentation by performing a rotation which takes
(v~q oyer og) Ulto (Dye ogq o )q so 'that 'tile nlRtl lx le
px'eseIltlng g is diagonal. In this new' basis the
fields $ and $ are represented by
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o(, = 2i —[g(1+og) —o ]= o~+ ioI ~

o „=-2i —' [y(l —o,) —o.]=o,-—io„.
0

(3.23) U=exp -im d~x O, x g O, x) =U '=U~,

(3.29)

which has the properties

We note that the (unperturbed) ground state at the
nth site, defined at the eigenstate of (1 —o,)' with
zero eigenvalue,

UHU-' =H',

Ug(y, x)U '=- (tl(-y, x)I,

UP(y x)U '=- 4(-y, x)'.
(3.30)

is annihilated by 0 „',as it should be.
Substituting (3.24) in (2.18) we get our effective

8amiltonian

This symmetry is essential since it has the con-
sequence of making the m-to-n Heggeon amplitude
G'" ' equivalent to the n-to-m amplitude Q' '"'.
%e can find a symmetry operator similar to U

for our spin model, with the properties

Ii n, f

pHP '=II~,
~e

pg n p- 1 — g ~ f pg It p- 1 — ( a f
iII

(3.31)

H= g —(I-o„)'
n

+A 2 [(I —2o )"'(1—2o )'- oI'to'] (3 26)

where we have used the identity 0 &0 „"=0.
In terms of the original constants g„n,and

o(o/I2, the parameters 6 and A are

The lack of Hermiticity of H, E(I. (3.26), is 8,

manifestation of this same property of the original
H811111'tolllan E(I. (2.18). Tile o ls appl'opl'la'te fo1'

go&0; for go--go, H-H~ and o, -o so the original
non-Hermiticity symmetry is preserved.

Tile ol'lg11181 Hallliltoll1811 Eq. (2.3), is lnvar1ant
under the transformations

H-Ht, (i((O, x)- —$(O, x), 7(((O, x)- —II((0, x)

(3.28)

[ recall that 7(((0, x) = $(0, x)t J . This symmetry is
implemented by an operator

where here H is our spin Hamiltonian (3.26) [for
y o0, the relations similar to (3.30) follow from
thisJ . It is easily seen that, in our representa-
tion (3.23)-(3.24), P is given by

p —TT 08 —p 1 —pt
x

which has the property of flipping the sign of o „'.
As we now show, if (0(o„(0)=(O~o-~0) =0, then

the symmetry under the interchange of n with m

for the Qreen's functions Q'"' ' is guaranteed.
Now G "' (y„n„.. . ,y„,n„;y,', n,', . . .y'„,n') is
given above the critical surface, ~ » n,* or u(0)
~j., by

~0

G(n, ml (0
~

To((1(y ) ~, , o n(y )( 1(y().

xo; (y'. ) IO) .

(3.32}

(3.33}

For n, & n,~, as already discussed in Sec. IA, the
Qreen's function is

(~ ~ '"rfl~i'((, (ll ~)(v', ))
Q ~"'~~= llm 1=x 4=1

tr(e r")
(3.34)

in which the limiting procedure automatically
selects the correct ground state. In the first case,
i«oliows f»m P IO) = Io) th«

/ (fthm Ift) I I I,
1& ' ' ' &~sf& n&~1& 1& ' ' &~@& m~ & ~ ~ ~m& fft& ' ' '

& ~j& 1& ~n& tl& ' '
& ~l& l~

For the second case, if (o„}=(oI)eO, it is easy
to obtain the same result using the new ground
state and replacing a~-o& —(o„),o~- o& —(o~) in
E(I. (3.33), or by using E(I. (3.34) directly.

The algebra involved for our quantum spin

model is quite elegant. The Hamiltonian, Eq.
(3.26), is real, though not Hermitian. Also, if
we absorb a factor 2i

~
n, /g, ~

in the definition of

o, and o&, we get from E(is. (3.23)-(3.24) and sup-
pressing the index n,
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These matrices have the properties

cr~'=o„(r,l0)=0, o =cr„-, (0l(r;=0,
A A A

0'"0' —0 0'
r
0'" = 0 + 0' —1 .

4')

(3.36)

(3.37)

the sum in (3.39) is nothing but the Green's func-
tion G(n™(y,, x,.;y„xt)in which all (y„x,) have
been set equal to (0,0) and all (y, , x,.) to (y, x).
I et us cail it G'" '(y, x). If we replace the fields
(}(and (}(by the matrices (3.23)-(3.24), we getfrom
(3.3V)

(."""'(y, )=(2((+ a""(r «} («40)
(go

and then, performing the sum in (3.39},

These properties are preserved by the replace-
ments

oah —I) I) g f«(l, 1 )( y n ) (3.41)

E. Eikonal calculation

I.et us now discuss how we may calculate the
cross section in the simple eikonal approximation
of Ref. 8. The total cross section for particles a
and fi (Fig. 3} is given, in the original theory, by

(l b( y(r)— (iP.)"(rP,)

nfnl f

x «l[4(0, x)]"e '"I 0(0, o)] l0&,

(3.39)

where we assume flat form factors represented by
the positive constants P„P~. The assumptions in-
volved in Eq. (3.39) a.re {1)all Pomerons are
emitted and absorbed in an uncorrelated way, and

(2) all (m) Pomerons are created at one point and

all (n} Pomerons are absorbed at one other point
in rapidity-impact-parameter space. I et, us
examine this in the context of our spin model.

First, we note that the matrix element inside

0' c c +c
n n n

tg g
«ae

where the operators cz, c„have nnticommutation
relations at the same site but commlte at different
sit, es.

where I),. = lg, /2n, l
[1—exp( —2p,. l n, /g, l )] . Thus

the cross section factorizes exactly, and is pro-
portional to a one-Pomeron-exchange contribution,
but with "renormalized" couplings 8,. instead of
the bare one p, Furthermore, for lnol large,
the cross section is independent of the incident
particles.

The exact form of these results, however, must
be taken with caution because they are derived
from Eq. (3.40), which is only approximate. There
are two reasons for this: (1) As pointed out by
Cardy, " it is not, true that (e'1((}')"le,.}= {o„)"except
for rr « In, /g, I, and (2) because the lattice model
is in principle equivalent to the original theory
only when al/ the points x„x,. in C'" ' are far
apart from each other, i.e., the distances in im-
pact parameter are much greater than a lattice
spacing. Thus, when we set all x, 's equal to x in
6'"' ', we are introducing a strong cutoff depen-
dence which might not be justified. Furthermore,
the scaling behavior" for t"'"' ' in general depends
on n and m, so Eq. (3.40} is not correct unless
the scaling limit and the eikonai limit+, ,(}((y,,x,.)
—[(}r(y,x)]" cannot be interchanged.

There is, however, a case in which Eq. (3.40)
m~ght be correct. This happens when the critical
exponents r) and ( satisfy r) —Dv/2 =0. In this case,
all the Green's functions G'" ' scale in the same
way, independent of g, m. Indeed, this possibility
is consistent with the scaling suggested by Amati
et al. ,

'o based on approximate calculations for
the "deep'* supercritical region n, «n,'r. Here
the spin model gives rise to an expanding disk
that saturates the Froissart bound

(Pg) (Pb)' 80 (3.42)

FIG. 3. The eikonal suan for A. ,~(y) reduces to the
single- (renormalized) Pomeron propagator with (re-
normalized) couplings B;=$0/2no~[i —exp(—2[ no/goop())
replacing the bare Pomeron-particle coupling 8;.

In this case, the eikonal result of Eq. (3.41) may
represent a beautiful self- consistency between
s-channel and t-channel multi-Pomeron effects.
The standard s-channel eikonalization absorption
mechanism for saturating the Froissart bound

[p(x0, (z(0) &I, g, ~g»~=0], is reexpressed in

terms of the renormalized single-Pomeron ex-
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change for nonzero triple-Pomeron coupling

(g, e0). This intriguing possibility clearly merits
further study.

IV. POSSIBLE RELATIONSHIP TO THE CARDY-SUGAR
MODEL

The Cardy-Sugar (CS) model" is a classical
Ising-type model with spins s „=+1 at each site
in a transverse (x = nl) as well as rajidity ( y = ml)
lattice (here f is the lattice spacing along the
rapidity axis and tlat ls an integer).

We will study the relationship between this
model and ours in terms of their transfer ma-
trices. The transfer matrix" describes the cou-
plings between spine (labeled s) in a plane at m
and spine (labeled s') in a plane at m+1 (see Fig.
4), and is defined by

FIG. 5. Two rows of a lattice for D=1 with periodic
boundary conditions in the transverse dimension.

r(s', s)= &s'ie-'"'"is&i„-,, (4.3)

For our Reggeon quantum spin model the trans-
fer matrix is

Tc,(s', s) =-
&
s'

i Tc, i s) -=e "cs '"", (4.1)

where Hcs(s', s) is that piece of the Hamiltonian
which couples only spins lying in these two planes
(including single-spin terms).

Let us consider for simplicity the case 8 =1, on
a M xN lattice (m =1, . .. , M and n =1, . . . , N)
Then Tc, is a 2" x 2" matrix, and

—Hcs(s s) = Q(K(s„s„~+8„s„~)
n =l

—(s„'+s„'„)s„s„.,J} . (4.2)

We assume periodic boundaries in x space so that
s„„=s,and s'„„-=s,' (see Fig. 5).

H(o) =—H„+Hss+ ~ ~ ~ +H„,,

H„„., -=—(2 —o„"—o,"")

+A[(1 —2o")(1 —2o "+') —o "o"+']

is&-=is, &e is,&Z "Z is„& (4.4)

and is„)= i
+& is the eigenstate of o",.

To compute the matrix element (4.3) is in gene-
ral very complicated because of the noncommuta-
tivity of the different terms in H(o), but one can
see that Tcs and T are not identical. However, we
might still hope to see their relationship. Let us
consider only the couplings [arising from (4.3)]
within the square defined by the spins s„s„s2,s,'.
These couplings are given by

& s,'s,'
i
e-'"is is, s,) -=e~'l~ r" ' .

Consider a more general form for H»

(4.5)

I

I I I I I

I

l

I

I

I

I/
/

/
/

II II /
/

/
II II

/
~ c

m+I m 2 l 0

FIG. 4. The transfer matrix T(g', g) translates the
state of the plane at y =ml to the state of the plane at
y=(m+1)l on a Mx+x N lattice for D=2. The parti-
tion function with periodic boundary conditions in
rapidity is Z=tr(T ).

H„= ~,.Z,. o', o' (4 5)

where the ~, are real constants and the Z, 's are
the operators which satisfy the basic properties
of our Hamiltonian (3.26), namely

Z, (o', o') = Z, (o', o'),

o'Ir'z (Ir' o')o'o'= z (o' o')'

zI(o', o')*= z, (o', o'), .

Z,.(o', o') i0), i0), =0,

(4.Va)

(4.7b)

(4.Vd)

with i0)„given by EIl. (3.25). It is easily seen that
the operators which satisfy the first three of these
requirements are
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Z, = (1 —o„)'+(1 —a„}',Z, = (1 —o„)'(1—o )',
Z3 = io', (I —cr„)2+io', (I —o,)',

(4.8)
Xi4 = 0' yo y + 0' go'

since any power of Hy2 can be written as a linear
combination of the Z,.'s by using the elementary
recursion relation

+12 & ( 12& 12) (4.10)

Next, one can compute the matrix elements
(s,'s', ~Z; ~s, s,) and show that they are linear com-
binations of the seven polynomials"

Sg = sgsg+ s2s2~ S~ = s~s2s~s2 q

S3 = s(s2(s~+ 82) —(s( + s2)sgs2~

while only the first fou~ Z's satisfy the additional
restriction (4.7d). Then we can prove that

(s,', s2;s„s,), defined by Eq. (4.5), has only the
couplings allowed by the symmetries of the Cardy-
Sugar model within the square, provided we neg-
lect the restriction (4.'Id}.

The key point of our proof is the fact that the
Z,.'s close algebraically under anticommutation,
i.e., the anticommutator of any two is a linear
combination of themselves. This is nontrivial
because the Z, 's do not form a complete set of
matrices for any operator symmetric under the
interchange o'~ —o ~. This closure property makes
it possible to expand

e ' ""—g P Z (o' o') (4.9)

Z, in (4.8). One easily checks that these, too,
close under anticommutation, and therefore an
expansion like (4.9) still holds. However, the
matrix elements (s,'s,'~Z, ~s,s,) for i =1,2, 8, 4 are
linear combinations of the first four S, only, and

one can easily check that these do not close under
multiplication: the full set of S,-'s are needed to
form an algebra.

The exact relationship between the two models
is clearly very complex, and a more careful study
is desirable without the limitation to a finite lat-
tice. However, it is likely that the conclusion one
would reach is the same as ours. Thus it seems
that our model has a higher degree of symmetry
than that of Cardy and Sugar, because the condi-
tion that the perturbative ground state is annihi-
lated by the full Hamiltonian. , Eq. (3.26), is satis-
fied automatically. It may be possible to impose
a restriction on the different couplings of a gene-
ralized Cardy-Sugar model so as to satisfy this
condition, but this seems to be impractical in
actual calculations. Without restrictions, a re-
normalization-group approach for its solution
will evidently involve a larger parameter space
than our model. The problem is probably the
same as the one dealt with in Ref. 13, that any
rapidity discretization inevitably brings in new
relevant operators corresponding to (g)" or (~$') .
Consequently, we feel that the Cardy-Sugar mod-
el is really in a different (less "symmetric" }
universality class than Reggeon field theory, and

it will be therefore more difficult or even impos-
sible to find the appropriate phase transition in
this model.

S4 = 8~82+ SgSn ~

(4.11) V. CONCLUSIONS

7

K(s,'s2; s,s,) = g K,S, , (4.12)

which shows the relationship between the models
if Eq. (4.7d) is neglected and the couplings are
restricted to a basic square.

We believe, however, that the normal-ordering
property (4.Vd), also satisfied by the exact Hamil-
tonian of the Reggeon field theory, is a crucial
one and plays a key role in the phase transition of
the model. Thus if we require (4.7d) to hold, we
are restricted to the first four of the operators

5 I 2 j. 2& 6 13 1 2y 7

which are the complete set of couplings allowed
by the symmetries of the Cardy-Sugar model for
the square. Since the S s also close algebraically
under multiplication, as can be checked using
s,2 = s,'2= 1, we can take the logarithm of Eq. (4.5)
to get

We have constructed a quantum spin model for
Reggeon field theory by discretizing the impact-
parameter space while keeping rapidity a con-
tinuous variable. Our Reggeon quantum spin mod-
el is expected to leave intact the behavior of the
original theory in the critical region. We have
also studied in what case the eikonal approximation
for our spin model gives the entire cross section
in terms of a single renormalized Pomeron ex-
change. Two interesting consequences follow in
this case: (1) If the eikonal model develops a disk
structure for n(0) &1 (Refs. 9, 10) this must be
seen in the single-Pomeron sector. (2) The bare
couplings to the external particles are completely
"shielded" for

~
n, /g, ~

—,so that cross sections
approach a universal constant. This is reminis-
cent of results for the eikonal saturation of the
Froissart bound of Cheng and Wu." Clearly, bet-
ter calculations are needed to substantiate these
features. Several kinds of calculations can be
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pursued in our approach.
Our spin model may be solved with the help of

standard methods in statistical mechanics. " Al-
though it is unlikely that exact solutions will be
found even for D= 1 (like the one given by Pfeuty"
for the quantum Ising model in a transverse mag-
netic field), there are several techniques which
may be employed.

Nevertheless, some rigorous xesults may be de-
rived without an explicit solution. For example,
the Froissart bound (ii~2) and other consistency
conditions of s-channel unitarity probably follow,
as argued by Cardy and Sugar, 'x from little moxe
than the existence of a second-order phase transi-
tion. These important problems may well be set-
tled within the context of our model.

More likely, approximate renormalization-
group techniques using Kadanoff block construc-
tions" will be better tools for the accurate des-
cription of the phase transition, and, in particular,
the calculation of critical exponents. %e feel that
the lack of success with these calculations to date
is due to confusion on the special role played by
the rapidity dimension. In our Hamiltonian for-
malism, however, we are led naturally to renox-
malization-group calculations on the two-dimen-
sional transverse lattice only, in which these con-
fusions are avoided.

Another tactic may be the use of variational ap-
proaches for the construction of the ground state
along the lines of the (II) theory. " Although the
lack of Hermiticity in our problem is a difficulty,
it is probably not insurmountable.

There is also the issue raised by Abarbanel et
al.v and Amati et al. '0 on the nature of the phase
for no&a,* [or &r(0) &1]' and whether one has a
nonsensical model, or in the presence of sources,
one saturates the Froissart bound. Particularly
interesting is the question raised by Cardy" on
whether classical kinks or solutions play a deci-
sive role for no«d*. Perhaps the simplicity of
our spin model will allom a study of these ques-
tions.

Another class of problems we could study are the
approach to scaling and the region away from the
phase transition. These may be dept with the use
of the finite-rapidity formalism" described in
Sec. IA. However, this is a considerably more
complicated problem because in principle all exci-
ted states of the Hamiltonian play a role. Nevex-
theless, me may still use our quantum spin ap-
proximation by keeping more than just two states
at each site, with an effective Hamiltonian given
in terms of spin matrices of higher dimensionality.

%Vhile completing the manuscript we have learned
of similar results from Cardy and from the CERN
collaborators.

We first wish to prove Eq. (2.1S) for D =0 (or
a0=0) and give a precise meaning to the functional
integral. That is, we want to prove

=tre-r"~, (Al)

where H 1 ls givell by E&l. (2.29)

H, =tl, a a+ ' at(a+at)a

and g~, c are the ordinary creation and annihilation
operators, satisfying

[a a ]=1 aI0) =(0(a =0 ~ (AS)

Illlagllle liow that we divide tile illV81'Val (0, y)
into M+1 segments of length & so that & -0, M
-~ but z(M+1) = Y is kept fixed. We associate a
complex variable z&, i =0, 1, 2, . . . ,I+1, to each
of the points at the ends of the segments (see Fig.
6). Consider now the coherent state

»'
Is&

-=exp(- +ma') Io& (A4)

which has the following properties (z is any com-
plex number):

a (z) =z (z), (z )at = (» [z ',
&s.lz, & =exp(- ' —

2
+z,'z) (A5)

(the integral is over the entire complex z plane)
The key point of our proof is the fact that

(z,):F{a',a):~z,) = (z, (z,)F(zg, z,), (A6

where: E{at,a): is any normal-ordered function
of e~, a.

If we nom write

rel —e cele @el~, e ~»1 {M+1 factors}
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we have

~ zM ~ zN-). (A8)

Now for e sufficiently small it is straightforward to prove using Eq. (A6), to order e',

(A9)

which becomes exact as c 0. If we impose periodic boundary conditions so that z, =-z„+,and integrate
over zo we get

cf
oo

0 (z l
e-rs)lz )

77 II~%=0

tr g-FH g

N Af
z l+ ) z ) ~gO

expqe ~ -zg ) —Eoz )z. — zf (z( )+z )z(

(A10)

which, in the limit e-0, M-~ with Y'=e(M+1)
fixed {if it exists), becomes Eq. (Al) and defines
the functional integral.

We see that the integration region for 6(6g is
the entire complex ))) plane with real and imaginary
coordinates )I) =())) +g)/2 andy =i()I) -g)/2. Only

when g, g are considered as Heisenberg oPeratoxs
does the non-Hermiticity of H require )I)(y) to be
distinguished from )I)t(y).

Three comments are in order: (1) Crucial to
our proof is the fact that II, is normal-ordered;
if it was not, the effective Lagrangian we would

obtain from Eq. (A10) would have tadpole terms in

addition. (2) Each of the M +1 integrals in (A10)
is a two-dimensional surface integral over the en-
tire complex z; plane, and is manifestly converg-
ent for small enough &. Another matter is the ex-
istence of the limit M-~, e-0 in the (M+1)-fold
integral (A9), which is a standard problem in path
integrals; we assume that this limit exists. ' (3)
If the two-dimensional surface integral over z; is
written as a two-fold line integral by choosing
some coordinate system on the z& plane, the con-
vergence of the integral may no longer be mani-
fest, and appropriate distortion of contours may
be needed. This problem has a,risen in previous
works'o'» and has caused the need for unconven-
tional redefinition of canonical momenta. We feel
that our method of using coherent states in the
path integral provides a clear starting point for the

discussion of these points.
The method outlined is easily applied to Hamil-

tonians of the "canonical" form,

2r
H =: —+V(x) (All)

where x =- (at+a)/v 2 =xt and x-=i(at —a)/)) 2 =)tt,
and the standard results" are obtained in a rather
straightforward way.

The extension to include D transverse dimen-
sions in addition to rapidity presents no complica-
tions. We start from a lattice with N sites in x
space, x=nl, with H given by (2.18), and divide

the rapidity chains in M +1 intervals of length e

so that 1'= (M +1)c. For each chain at lattice site
n we define M+1 complex variables z-„ in a simi-
lar way as for the D =0 case, and a coherent state

z I'
& t

lz-„')—= exp — ' ' +z-„a-„l0),
2

(A12)

which satisfies the properties
ia-. lz-& =6-„.-„z-„lzl&,

&, 'l, )n n 2 2 n

(A13)

We now write e rz as in (A7) and use the complete-
ness relation for the coherent states. The net ef-
fect is that the intersite coupling part of Hamilton-
ian (2.16),

g+)
I

y y=Y

2 I 0
I I
I I

y=O

I'-=~f2 ~ (a--f a:)(a-..;-
gets replaced by

(A14)

FIG. 6. One row of rapidity divided into M+1 seg-
ments of length q= g/Pf+1). There are M+1 complex
variables z; defined at the ends of each segment.

(A15)

between rapidity sites j+1 and j. In the limit l -0
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and N ~, where N is the number of lattice sites
or rapidity chains, this gives back the integral of
the gradient terms in the action,

g
n, +i ' x

2

n' d XVg ~ Vtlt) (A16) and then find

and the proof is completed as in the D =0 case.
Similar methods apply for Green's functions.

G~(0) =
OO 2

y exp —y~0- '
y (BB)

APPENDIX 8

H, =no+ 0 x, x= (a +a).igo 1

2
'

2
(B2)

Equation (Bl) tells us that Io) is an eigenstate of
H, with eigenvalue zero. In Ref. 18 it is argued
that for 4, & 0 and g, 4 0, all other eigenvalues &,.

are real and positive, so I~o&= Io) is always the
ground state.

I.et us consider the two-point Green's function
defined by

G, (E) = dyes'(0lae '"'a I0&

1 t0 a E-H a'0.

We wish to calculate the first two eigenvalues z„
e, and eigenstates

I eo& I ex& for the Hamiltonian

H, = &,a'a + ' e' (a+ a')a'go
2

and the matrix elements &e'la
I e&&, (c' Ia

for 4,-—~. Our techniques are similar to those
of Ref. 18 to which we refer the reader.

%e write H, = a'H, a, where

which can now be analytically continued to ~,
&0 provided g, 40. For ~, —— we use the method
of steepest descent and get

(B9)

Inserting now a complete set of energy states

(alo)

in Eq. (BS) we get, for small E and n, -
(0 I a I e,& & e'I a'

I 0)
E-& (Bl1)

where we are using the fact, proven in Ref. 18,
that in this limit only the first excited level e,
goes to zero while all the others move up to in-
finity proportionally to —~,.

The divergence in G, (0) as n, ——~ indicates that
e, - exp(- d, '/g, ') in this limit. The leading con
tribution to G, (0) for no- —~ comes from the pole
at x=ip=i' n, /g, in Eq-. (B6) as it moves through
the contour in this limit.

The rapid vanishing of e, suggests approxima-
ting the eigencondition for

I e, & by

H, I.,& =o, &ol.,&=o. (B12)

By inspection we see that the solution is

Using now the identity

aH~ = aa Hoa
Ie,&=a' "

lx&%+1 x-"fp
(ai2)

= (N+ l)Hoa, (B4)

G, (E) = &ol[z (a+ i)H, ]-"Io&

where ¹a a is the number occupation operator,
we find

where Ix) is the plane-wave eigenstate of the
operator (a+ a")/W2,

x' a"
(x)=w"'exp —"-—' ~ *W2 a') )0) (B(4)

2 2

0 (as)
(we have used H=atH, a and H, Ix=ip&=0). Like-
wise, the left eigenvector defined by &

e'
I
H = 0,

&e'I 0) =0 is
At E=O, we insert a complet set of eigenstates

of the operator x and get (e'I= x a
+ x=ip

(B15)

dx 1

n, + (ig,/~g)x '

For & & 0, we write

(B6) &e'le, &= 1.
This implies

(B16)

and we choose the normalization constants c„c',
so that
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1

+ ' xip

x=1p

Likewise

(z' ja'
1 z,) ~ 2i —' .

g0
(B25)

dz 1 2 1 —z

(1 z')x" P
Summarizing our results, (z' ja

1
z,.) and

(z' ja'
1 z,.) are represented by two 2 x 2 matrices,

p2

(B17)~o-- " 2M' p' '

(B18)

therefore, choosing c'= c„weget

=c = jpj(47f)

Now we compute the matrix elements

6, '/0 1

g01 (0

=2 —' o, + —(1 —a, )
i

0
(B26)

~-I /4ep / 2
2

1

(z' ja' j&,.)= 2 —' 0 0

1

2jpj=2 —'
0 0

and similarly

i
= 2 —' a + —(1 a, )

g0 2
(B27)

Finally we compute

(e'ja j&,) =c'c, x a x
+ x=t p

1
=c c1 dz

0

(a19)

(B20)

where the + sign is the sign of g0. Note that they
are the transpose of each other and not their
Hermitian conjugates. This is a manifestation of
the Hermiticity property of H, : Ht(a, a')
=H ( a, a').

It is also useful to consider the matrices for
&t& = (a+ a~)/2 and y=i(a —a)/2:

(&* j@ jz, )=

Now recalling

and

x=s p

~
&('- )

1 d

2 dx' (B21)

—'[+ i(1 a, ) + o„],
0

(B28)

1
(x z" jx')=

[x(i ")]~/2

, , 1 —z
X exp ——,(x+ x')'

1+z

we obtain

, , 1+z——, (x- x')' 1-z (B22)

c1c, ' dz 1 z
,,„,x+. ,

As we may have expected, the eigenvalues of
o„and o o are, respectively, + &,/g, and i 4,/g„
which are precisely the values of the classical
fields y, Q at which the "potential" V(&f&, y)
= (&o+igo&f&) (Q + y') has its stable saddle points
(Fig. 2).

Finally, from Eqs. (B9) and (Bll) for E=O, we
get

2(2»)~/2

Ig, I g0
x exp g2 (B22) or

v2 2P V7T go
(B24) (B29)
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