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Toward quantization of a "three-string"*
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The linearized classical equations of motion for a system of three relativistic strings, which are coupled at a
junction, are solved. The system is quantized covariantly and general features of the spectrum of states are
explored.

I. INTRODUCTION

After the successful interpretation of dual mod-
els for mesons in terms of open relativistic
strings, ' there were attempts to take over the
quark picture and to put masses at the ends
of the strings. ' Although, owing to nonlinearities,
the equations of motion are not solvable, this
quark interpretation of dual strings is sometimes
carried over to other topologies, such as, for
instance, the "three-string" (three strings coupled
at a junction), which could represent baryons.
Normally fermions are incorporated in the open-
string models by introducing extra degrees of
freedom "by hand. " They also can be described
by starting from a classical Lagrangian, ' but this
has a lack of geometrical interpretation, which is
characteristic of the simple model.

Therefore it is not unreasonable to study the
three-string (or "1' string"). Goldstone' may have
been the first to study this system. Artru' dis-
cussed it together with other topologies and looked
for general properties of the classical solution.
The most general action for the F string has been
studied by Collins, Hopkinson, and Tucker, 6 but
again nonlinearities of the classical equation do not
allow one to write down the general solution, which
would be the starting point of quantization. To see
whether quantization is possible at all, we only
look for those classical solutions which come from
linearized equations of motion.

In Sec. II we write down the action and the equa-
tions of motion, boundary conditions, and con-
straints which follow from it. The general solu-
tion is given in terms of a real function, which is
nothing other than the solution for the open string
(m-string) and a complex function, whose normal
modes take half-integer values only. The Hamil-
tonian formalism is set up, following the methods
of Dirac for systems with primary constraints. '
The classical system is quantized in Sec. III. A
basic in the Pock space of states is realized by

acting with three types of creation operators on a
ground state. The constraints restrict the allowed
(physical) states to only a subspace of this space
in the form of matrix conditions. The problems
arising from the interpretation of these conditions
as conditions on the states directly are discussed
in Sec. IV. Although it leads to a nonclosed alge-
bra of certain operators, physical states can con-
sistently be defined. The gauge conditions are
very restrictive, nevertheless physical states are
shown to exist. Because of the nonclosed algebra,
we did not succeed in proving a "no-ghost" theorem
to get the intercept of the model. Therefore in the
second part of Sec. IV only general features of the
spectrum are discussed. The last section contains
a conclusion and final remarks.

Two appendixes are added. In Appendix A rela-
tions between the commutators of gauge operators
are listed. Although in general our three-string
model cannot be described in terms of transverse
variables, we found the result of the quantization
of a special class of classical solutions in the
transverse gauge' interesting enough to present
it in Appendix B.

II. CLASSICAL THEORY OF A F STRING

We describe the y string by functions x~&, )(a, r)
(i = 1, 32), where 0 & o & )). At the junction they
have to fulfill

+(l)())» ) ~(2)()7» ) +(3)(@»r) '

As for the m-string the action is taken to be pro-
portional to the surface spanned in space-time by
the evolution of the strings

Ff W

8= —y d7 da
0

where
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I, , =[(x(,.) xI,))'- x(,.)'x(;)']'", y=
2

x( ) x(i)& (i) (i) '
(2.3) x„".,(O, r)=0, g x;,",(v. , r}=0

(2.11)

(2.12)

5x(')(ap T ))0 5x())(vp rf)

5x~&,.)(v, r) = e~ arbitrary,

5x(;)(0, T) arbitrary .
The principle of least action yields the Euler
equations

8 9—P .)+ —II .)
—0(i g( (4

(2.4)

(2.5)

where we defined

This action is equivalent to the one written down

by the authors of Ref. 6, save for coordinate
transformation. In order to find the equations of
motion and boundary conditions, x«) is varied by
a small amount x~(,. )

-x~«)+ 5x~(.), such that

For the following, we prefer to work with an al-
ternative set of functions defined by

x" = g" + X Q + A.*Q*" (2.13)

with X, = 1, X, = e'~, A, = e '~ = A,*, and b, = —v is the
"natural" angle of the three-string. These func-
tions have the advantage that their boundary con-
ditions

q„'(0, r) = 0 = g'„(v, v'),

0,'(0 &)=0
(2.14}

are more easily 1ncorporated 1nto a normal-mode
expansion and that the junction condition (2.1) sim
ply takes the form

(2.15)

QI, „81,.
(i) (i)

and the edge conditions

II~(,-) =0 for (7=0,

0"(i)=0 for ()'=m.i

(2.6)

(2.7a)

The (real) functions g'(a, ~) and the (complex) func
tions P'(o, r) also obey the d'Alembert equation
(2.11), and the most general solution with the
boundary conditions (2.14) and (2.15}is

q (cr, 7') = q" + p'P" r
g'+@eitl7'+ gP e inT

+pg " ~" cosna (n integer),
n=1 n

P = Q (doP(, )+dr II(",.)},
(c)

(2.8)

The meaning of these conditions can be under-
stood by defining the energy-momentum current
to be y g @ei r7" + +pe- ivy

Q"(a &) = p
' " costa,

a=i /2

(r half-integer),

(2.16)

(2.17)

where (c) is a curve on the surface. Then Eq.
(2.6) expresses conservation of energy-momentum.
Owing to Eq. (2.7a) no energy-momentum flows
out of the ends of the wings and Eq. (2.7b) shows
that the sum of energy-momentum at the junction
vanishes. Notice that energy-momentum is not
conserved for each wing separately. Calculating
P(",.) and II(",. ) one finds the following identities: [x,",(a), x,"„(a')}= 0= [P"„.,(a), P"„,(a')}, (2.18)

with p = (2n'/3)'~'.
Because we want to quantize this classical system,

we have to find its Hamiltonian. We assume
canonical Poisson brackets and define them at the
junction and at the ends of the strings in a way
compatible with the conditions (2.1) and (2.12),

p(') x(').-0 &( ) + & x(-) -0

(i) x(i) v & (i) ~ x(i)
(2.9) [x(";)(a},P(„)(a')}=-g""[n)(a, a')+ (35,, —l)b, ,(a, a')],

(2.19)

'P, ) 0 ' 2 ) 2x(i) x(i)v & x(i) x(i) (2.10)

This CI101ce ls not possible 1n general for tIle F
string, but includes a large class of solutions
whose quantization can be studied. In these co-
ordinates (2.5) and (2.'I) reduce to

To solve the equations of motion (2.5) we follow
the usual line of reasoning for the m-strings and
choose orthonormal coordinates defined by n)(G, a') = —,

' Q [5 (a —a'+ 2@v)+ 5{a+a'+ 2nv)],

(2.20)

&,(a, o') = —,
' Q (- 1)"[5{a-a'+ 2n v) + 5(a+ a'+ 2nv)] .

Alternatively for |t„,p„,
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I P(I»
'l

4"(a)»&(&))=-g""&,(o, o'),

(4 "(a),P".(&)j= —g ""&.(o, &),

(2.21}

(n integer) and relabel A& = A„, etc. Because of the
exlsteIlee of 'the (pl'inlRI'y) coils'tl'R1Ilts (2.25) [ol' (2.26),
respectively] according to the work of Dirac on singu-
lar Lagrange functions, ' the Hamiltonian which gen-
erates the equation of motion is givenby

a=a, +g (il&"A„+i I')B„+i & &3C„} . (2.29)

The coefficients p„'" are arbitraxy owing to the
gauge freedom coming from the constraints. From

all others vanishing.
Similar to the theory of m-strings, the defini-

tion of e can be extended to the interval [- &I, II] by

P(, &(- o, r)=P(, )(o, r), '

x(', )(- o, I') = —x(',.)(cr, r}.
To translate (2.9) into constraints for g" and It)",
we introduce

(y', A,]= —P+

one can see that A, generates a dynamical evolu-
tion of the system. This allows fixing the gauge
by

TIff —+P + @Pi'fs

PP+ +yg. ff

(2.24)

with the resulting equations of motion

(2.31}

Then the constraints (2.9) are equivalent to

I'„I'"+2g X*"=0,

X.X'+2~ X'"=0

X~X~"+ 2l X"= 0.
The constraint functionals

g

«f(&)(F'+ 2x x*},
4y

3 «f(e)(x'+» x*)*f

(2.25)

(2.26)

commute trivially with the canonical Hamiltonian

Ho g J )f(T(PI)) XII& L )i (2.2V)

since it vanishes identically. Furthex'mox'e, they
form a closed Poisson bracket algebra:

(2.32)

(2.33)

These are again the d'Alembert equations, which
have been derived in the I.agrangian formalism.

For the coefficients of the solution (2.16) and
(2.17) the nonvanishing Poisson brackets can be
calculated to be

(a" a*"J=ig'"6

(I&" I)*"] ig ""6—

(e„",cf")= ig ""6„,,
4",p"l=-g"".

III. COVARIANT QUANTIZATION

The classical system is quantized by replacing
the 0 numbers g",P, Q„, Q„, g„. by opexatoxs and
Poisson brackets by commutatox s, such that

(AI, A~) =A„,
(AI, B~)=B„,
(AI, C,)=C„,

(B„B,j=c„,
(B„C,]=A„,

(CI, C 'i=B„,

(2.26)

[a." a'."l=-g""6...* f~" p"]=-ig"",
[f)Q f)fv] — g PP6 [eg el'] g llv6

(3.1)

all others vanishing.
The quantum Hamiltonian has to be normal-ox-

dex'ed

H='H

= - —,
' n'p' -Qna'„a„—Q I (b'„5„+et ~ e,) . (3.2}

n=l x=1 /2
with II = fg' -f 'g .

In deriving this algebra, the definition of the
canonical Poisson brackets at 0 =0, g by Eqs.
(2.19) Rlld (2.20) gllR1'RIl'tees tile VRIllslllllg Of pos-
sible boundary terms due to partial integration.
In the following we choose the functions f„(o)= e™a a„ iO&=5„" iO&=e," [O&=p" iO&=O. (3.3)

Together with the commutators (3.1) it allows one
to interpret the a„"t,b"„~, c~~ as creation operators,
and their Hermitian conjugate as annihilation op-
erators, acting on a ground state which satisfies
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The Fock space is spanned by the vectors

}=1111 ff 11(a~"")". ()~" )', ,(ct" )'. ,e'"(0},
n=l r-"1/2 p. n=0

(3.4)

where k" is an eigenvalue of the momentum opera-
tor, i.e.,

p iI~&=u iu"&,

and D is the space-time dimension of the system.
The constraint functionals A„,B„,C„[compare their
definition in Eq. (2.36)] are now operators

For later purposes we split them into different
contributions QRDlely

S„=—,} . z":F'( z)F„(z):,
I dz

2p 22 pz

T„=, t . z":V"(z)V„(z):,
1 I dZ

2p 2't Qz

G„=-, . z"-'.V"(z)V„(z):,
I dz

2p 2$ pz

2p

(3.10)

A„=S„+2T„(A„=A"„),

S„=G„+3a„(a„=C„'),

with

«ein() .T (&)T)((&)~

(3.6) 2p 2l 77Z

Since the 1Qtegx'Rnd of H„has R brRQch cut ln z we
make the following reformulation. %'ith the help
of the scalar product

3 «e'"':X.(o)X"(o):,4x ~.
(3.V) H„= ——(e '"', :r, ((r))p" (a):)

Owing to normal-ordering, some of the commuta-
tox s between the gauge opex'ators A„,B„,C„pick up
c-number terms. To calculate them it is conven-
ient to rewrite the expressions (3.V) as integra. ls
in the complex plane in terms of the generalized
Fubini-Veneziano fields

(3.11)

where we have used the fact that the functions

f, = (3n) "'e'~ are complete and orthogonal in
-p&0 & p for either k integxal or half-integx'al.
with

w -=——(& '", :r (&x)x '(o'): )
1

F"(z) = p'p" + IpQn'/'(a'„"z" —a„"z "),
n~ j.

V (z)=fp g (~z)'"(c'„"z'-b",z "),
r=l /2

(3.8)

zr+). /B.F (z)V)l(z} (3 13)
dz

2p 2$ pz

W' = ( z""'F (z)V'{z).1 dz

2p g 2g pz

V"(z) =ip g (rz)"'(f'„'z"- c,»z-").

They correspond to the field which in dual theo-
ries is usually called iI)"(z). In terms of the func-
tions I'", y" they are

(3.13)

(3.14)

I'„(c,r) = y F,(z), z = exp[i(i/+ &)]

x, (c, r) = rz "'V.(z),

Xt (q, 7) = 7z-"'V„(z) .
(3.9)

Notxcmg that for [x[)[y~

F„(z)F.(y) =:F.(z)F,(S): —p',
(3.15)

Vye then find v.(.)v.(y)=:V.( )v.(~):--'p' „,). g...
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whereas for all remaining bilinears in E, V, V nor-
mal-ordering is irrelevant, the method of Ref. 9
can be used to get the algebra of the gauge opera-
tors, including the c numbers. The final result is

for ~o 0

T„=-,' g [r{n+r)]'"(b'„b„,„+c'„c„„)
r=l /2

[A„,A.] = (n m)—A„..+ .'Bn'—b„.,
[A„,B j= (n —m)B„,

[A„,C.]=(n-m)C„...
[B„,B.]=(n- m)C„...
[B„,C.j=(n- m)A„,.+-.'Dn'b„.

[C„,C ]=(n-m)B„, .

(3.16)

n 2

+ —,
' [r{n—r)]' "b„c„„.,

r= 1 2

G„=— Q [r(n+ r)]"'c'„b
r=Z /2

2

+ —,
' [r(n- r)]I~'b, .b„„

r=l 2

G'„= g [r{n+r)]I'lbI '„,„
r=l, /2

(4.lb)

(4.lc)

The meaning of the gauge operators is clear: The
states defined by (3.4) have to fulfill the conditions

(3.17a)

(3.17b)

(3.17c)

for x&0

n 1 2

+ —,
' [r(n —r)j"'c„c„„.,

r=l 2

W„=-,'ipvrp c„-—,
' [s(s+r)]'~'b~;a„„

8=1 2

(4.1d)

wllel'8 a(0) 18 all al'bl'tl'al'y c number, al'lsillg fl'Gill

the normal-ordering of the Hamiltonian. Usually
these conditions are weakened to have conditions
on the states. Before discussing this point in the
next section, we make some remarks on the alge-
bra (3.15}.

A central point in dual models is the conformal
group O(2, 1). Defining

tl Pl+ t' Q„C„„
n=l

r j 2

+ —,
' [n(r —n)]"'a„c „,

W'„= &ip&rP.b„-—,
' g [s(s+r}]'~'cI a„,

s=l /2

(4.1e)

&,=&,+ sD,

[A„,A „]=2nA,+4Dn(n' —1)

(3.18}

(3.19)

——,
' Q [n(n+ r)]"'a'„b„,„

n=l

r 1 2

+ 2 [n(r n)]"'a„—b„„. (4.1f)

and A„A„A, are a realization of the group O(2, 1).
The linear combinations

(3.20}

3ince 8„ is nothing other than the well-known
Virasoro operator I.„, and T„has a similar
structure, the constraints (3.17a) may be weaken-
ed by

fulfill the algebra

[L,„'*',L,."']= b, , [(n-m)f, „",.' + —,' Dnlb„ .] . (3.21)

A.
~

0& = a(0)
~
(&,

A„~ ti» = 0, for n ~ 1.
(4.2)

With a shift similar to (3.18), we therefore get
three commuting conformal groups.

IV. THE GAUGE CONDITIONS AND THE SPECTRUM

To get a feeling how to handle the matrix condi-
tions (3.17}we write down the explicit expressions
for the gauge operators in terms of creation and
annihilation operators.

Fol' A0 tllls 18 81Illply tile Hamlltonlan (3.2).
Furthermore, for n&0

S„=ipW~P a„- Q[m(n+m)]"'a' a„.

It is not possible to write similar conditions for
B„and C„, since each of them contains an infinite
sum of the operators Wr or Wr~, respectively. Ap-
plying these operators to the vacuum, one finds

w„i 0& = w'„io& =0, for r (4.3)

whereas for x& —,
' these expressions do not vanish.

Let us generalize it to

W„~ P&
= WI„~ g&

= 0, for r - —,
' . (4.4)

G„iq&=G'„iq&=0, for n-O. (4.5)

Similarly one can try to impose as further condi-
tions on the states.

+2 PR Pl-PB Q~ 'Qn ~,
m=1

(4.la) These last two equations imply (3.17b) and (3.17c).
Although the set of operators L =(8„,T„,G„,GI„, W„,
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W'„) does not form a closed commutator algebra,
as discussed in Appendix A, "physical" states can
consistently be defined by (4.2)-(4.5). To see
this, we switch to the equivalent set of operators
L =(A„,L„,K„,V„,X„,1'„jwith

A„=S„+2T„, V„=—,
' (C„—C'„),

L„=r„+,'(c„+-c'„), K„=r„--.'(c„+c'„), (4.6)

x,=&2(w„+ w'„), r„=&2(w, —w'„).

instead of b„)c„.
Defining the number operators

P =-Z~na. aa ~ n n~
n=l

(4.14)

[Z, , Z~]=Q v, Z, + Q u„[Z„Z,],
n&o

(4.7)

The commutators of these operators (as far as
they are again in L) together with identities among
them are also listed in Appendix A. These rela-
tions allow us to conclude the following: If Z,- (= L„
with Z, , Ig&=0 andi, j &0 (integer snd half-inte-
ger)

R= — ~rP.P
y= j./2

(4.15)

R
I g& = [u(0}+—,

' n'P']
I g&,

and (4.11) is etluivalent to

(4.16)

R„=— g ryt y„, R=R, +R~+R„
r=X/2

we can write the mass-shell condition (4.9) as

(R —R„)
I
g&=0. (4.1V)

[Z, , Z,.] I
P&

= 0 . (4.8}

This last equation has very drastic consequences.
To see them, let us split the total Fock space E
into disjoint (and orthogonal) spaces F,

Therefore the interpretation of the original matrix
conditions by Eels. (4.2)-(4.5) does not lead to
contradictions. Qne would like to show that they
imply positive-definite norm for physical states.
For the m-string models this is achieved by the
"no-ghost" theorem, "fixing the "critical" dimen-
sion D and the number n(0). But here we have to
pay the price for not having a closed commutator
algebra between the gauge operators, and we were
not able to carry over the methods of the usual
proof of the "no-ghost" theorem. Interestingly
enough, we find for a special F-string system
that it is ghost-free for D=26, u(0) =0 by quanti-
zing it in a transverse gauge (see Appendix B).

In the remainder of this section we will study
the question of whether the gauge conditions allow
for the existence of physical states at all.

First we remark that physical states
I g& are

sufficiently defined by

E= E, 8E2 6E38 E4,

where the subspaces are defined through

F, =(Ie&;R, I
q&= 0, R„Iq&=0),

F =(I p&;R, Iq&~o, R„Iy&=0),

F.=(Iy&;Ra
l e& = 0, R. I e& ~ 0],

F,=(I py&;R, I q&~0, R„I q&~0}.

(4.18)

(4.19)

[y ptu] 2 &ytu
(4.20)

Then from (4.1V) we conclude that there are no
physical states in E, and E„and there may be
projections of physical states only in a subset E
of E4. In particular, on all mass levels charac-
terized by half-integer eigenvalues of the total
number operator R no physical state is present.

The condition (4.12) even strengthens the rela-
tion between ( p)- and (y)-type oscillators. Be-
cause of

A. I4&=o(0)IP&,

A,
I
$&=0=4,

I P&,

(L —K )
I g&

= 0,

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

ftuv —ptu tv p'tv tu (4.21)

Another interesting consequence can be read off
from (4.13). Since

ytu] i&ptu

only those states of E4 have a chance to survive,
which are created by combinations of the form

The commutators and identities of Appendix A
can be used to express all other gauge operators in
terms of these.

It is more convenient to build up the Fock space
with the operators

[X„,a "]= —,
'

[m (m —y)]'"x
P'"„ if m —~&0,

—P if m —y'&0,

(4.22)
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for instance, for a state ground state a spin-2 state exists. This may be
a clue to justify the value a(0) = 0 in our model in
contrast to a(0) =2 for the Virasoro-Shapiro model'
and n(0) = 1 for the open-string model.

V. CONCLUSIONS AND FINAL REMARKS

X„i a& c E, but X„i p„& st. E, (4.24)

a physical state cannot be a superposition of states
1n F1 and E4.

Let us now explore the states for the lowest
eigenvalues M of the number operator A. For
M =0 there is the ground state ~0, k&, which is a
tachyon for n(0) = 1, or has mass zero for o.(0) =0.
On the level M=1 the state

~g, &=a„„f;"~ ok& (e,„=—&„„,k„e~"=0}

(4.25)

is physical and has positive norm, independent of
the value of a(0). Because of the antisymmetry
of the polarization tensor, it is a vector state.
For n(0) = 1 (A' = 0) there is another spin-1 state,

(4.26}

which turns out to have zero norm. No scalar state
appears on this level.

For M = 2, physical states are superpositions of

txf tg

ftknf tv&
~

0
(4.2V)

Rather than work out the states in detail, for
which one would need the intercept of the model,
let us point out another general feature of the
spectrum. Because of the antisymmetry of f,"",
the highest spin appearing on this level is two,
despite the fact that, in

~
P& for instance, four

Lorentz indices can be contracted. For the same
reason the maximal spin for a state on the level
M=K,

(4.28)

n+m =N,

is ¹ This is in contrast to the spectrum of the
string version of the Virasoro Shapiro model (the
closed string), "where the gauge conditions force
the states to be symmetric in two types of oscilla-
tors, and therefore already on the level next to the

(4.23)

and no linear combination of those states vanishes.
This argument can be taken over to all states

~
a&,

such that there is only one physical state, namely
~0} in E,. In other words, the "meson" sector of
the model is empty, and as

We showed that it is possible to follow the meth-
ods for quantizing the m-string for a F-string
configuration too. However, the quantization is
not complete, because we were not able to prove
that ghosts are absent in the spectrum. These
difficulties arise at that point, where an assump-
tion enters into the game, namely the interpreta-
tion of the matrix conditions (3.IV}. The reasons
are the two different orthogonal systems of func-
tions, in which the classical solution has to be
expanded because of the boundary conditions, which
are different from the m-string. They reflect
themselves in the appearance of half-integer la-
beled operators b"„, t..„" besides the well-known os-
cillators a„. This type of oscillators is not new in
dual models. It appeared first in the Neveu-
Schwarz model, "but there they are anticommuting
operators. As Bose operators they were used in
a model for off-shell states in dual resonance
theory. " As a matter of fact, the gauge opera-
tors I.„' of that model are identical to our opera-
tors K„written in terms of y„".

Since we want to keep the analogy to m-models
as close as possible, we formulate physical states
in parts of the original gauge operators, and then
come to intriguing identities between commutators.
The spectrum of states looks quite interesting,
especially the strong connection between p- and
y-type operators, although it is no baryon spec-
trum at all. It is clear that we cannot get half-
integer-spin states by naively quantizing a classi-
cal theory. Of course, one could introduce more
degrees of freedom to make fermions out of the
three-string configuration. It might well be that
the resulting spectrum would agree better with
the spectrum of baryon resonances than the Ra-
mond model. " But one would gain nothing in the
understanding of the classical Lagrangian one has
to start with.

A nice possibility would be to reinterpret the
model at an earlier stage, so as to overcome the
problem of the nonclosing algebra and at the same
time get anticommuting objects. But we do not
see a real way to do this.

We did not show that scattering amplitudes for
three-strings fulfill duality. Going through the

rogram of Mandelstam15 looks really tedious and
may even be impossible, since he essentially uses
the transverse gauge which in general is not ap-
plicable to our model. But one should try to con-
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struct vertices in the model which, as is known
from the rn model, are related to operators which
map physical states onto physical states. For this
construction the consideration on the transverse
gauge of Appendix B could give valuable hints, and
one might also use similar features of our model
with the Virasoro-Shapiro model.
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APPENDIX A

(i) [S„,S ]=(n-m)S„,' + n(n)5„.

[S. T.]=[S. G.) =o

+[S„,W„]=,P (n - m) u..d(„.„...2p

(ii) [T„,T.) = ,'(n--m)T„,.+-,' p(n)6„..„
[T„,G ]=-,'(n-m)G„. „,
*[T„,W„]=-, g (m r}-o. d, „.„,.;

{iii) [G„,G ]=[G„,W"„]=0,

*[G„,G'.]=- —,g(n-r):d'„.~,„,„, „:
1

p

+ z p(n)6„. ,..

*[G„,W„]=-,g (m-r)o..d'. („.„&,
1

(A5)

In this appendix we want to list the relations be-
tween the operators that were introduced in Sec.

The fundamental operators are A„, B„, and

C„, and their algebra is given by (3.16). Then
"compare E(ls. (3.6) and (3.13}]

A„=S„+2T„(A„=A~),

a„=G„+2If„(a„=C'„),
(Al)

To write down the commutators of these operators
ln a compact form use

[n„', n"„]= —np'g""6„

[d,",d,"]= —rp'g""5„, .

In terms of these operators

(A3)

1T„=-„,g:d„d„'„:,
2p

OO

W„= —„,g n.d„
2p

The algebra between these operators does not
close, but we find

d„" = fp~r c„",-d"„=ip~~h'„".

Then n„", d,", and d"t are annihilation (creation)
operators for positive (negative) indices n and r.
Their nonvanishing eommutators are

(iv) [W„, W,]= 4 (r —s)G((„„&,

*[W„,W', ]= .'(r —s)S„.,

+-,' y(r)6„...,

n(n) = —,', D (n'- 1),
p(n)= ~D (2n'+ 1),

y(r) = —,', Dr(r' ——,') .
The commutators which lead out of the set of oper-
ators (S„,T„,G„, W,) fulfill

[s„,w„]-[s„„,w„,„]=ilaw„,„,
[T„,w„] [T„,w.,„]=--,'xw„„,
[G„,G' ] - [G„„,G',.„,) = 2m T„. + p(n)6„. „

{AV)
[G„,w, ] —[G„„,w„,„]=xw', „.„&,

[W„, W(, ] —[W, „,W"(„„&]= ~ N(S„„+T„„)
+ r(r)6,.„..

Fux'thermore, the relations with an asterisk give
the following identities:

[S„,W„)+2[T„»,W„,»]=(n —r —N)w„,„,
[Sn~ W'-,]+[G.-» W-»]={n- -r)f&t'W(",

(A8)
4[W„, W,]+ [G„,G („»&]= (r —s)S„„+2(N —s)T„,

+ 2y (r)6„...+ -,' p(X}6„„,.
To simplify things, use linear combinations of
these operators:
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U„-=-,'(c„+c'„), v„=--,'(c„-c'„),
x„=-&2(w„+w'„), v„=-~2(w„- w'„).

They have the property

(A10)

To minimize the deviation of the above commuta-
tors from a closed algebra, we furthermore take

Then for the set jA„=S„+2T„,L„,Z„, V„,X„,F„f we
fllld

(1) [A„,A ]=(n —m)A„, +[Q(n}+p(n)]&„,

[A„,r,.]=(n-m)r, „,.+ —.
'

p(n)C„„.„
[A„,Z„]=(n m)z„..+-,' p(n)u„,.„
[A„, V ]= (n —m }V„,

[A„,X„]= (n —r)x„,„,
[A„, V„]=(n—r)1'„,„;

(rr) [r,„,r, ]=(n-m)J.„, +-,' p(n)5„...,

[z,„,z.]=0,
[r,„,v.] [r.„„,v...] = —,'xv„...

[L,„,x,] —[r,„„,x„,„]=ex„,„,
[r,„,v„]=0; (A12}

(rrr) [z„,z.]=(n- m)z„..+-.' p(n}n„.„,,

[z„,v.]-[z„„,v„,„]=—,'ivv„...
[z„,x„]= 0,

[z„,v„] [z„„,v„,„]=mr„.„;
(rv) [v„,v.]= —,'(n m)(z, „. +z„. )--,' p(n)(„,„„

[V.»,j —[V.-s X"sj= '&V-, -
[V. V,j-[V.-s V,.sj=~&X."'

(V) [X„,X,]=(y-s)(A„„,-Z„„)+2y(y)f„.,„
[x„,v,]-[x„„,V.,„]=-—,'xv„„;

(Vr) [V„,r,]=-(~-s)(A„.,-I.„.,)+2y(~)S„...

and the identities

(a) [I.„+Z„,V ]=(n —m)V„,

(b) [r„,x„]—2[v„„,Y„,„]=Nx„,„,
(c) [Z„, V,]+2[V„„,X„„„]=XV„.„,
(d) 4[X„, ]V[+L sZ», V„, s]= —(r —s}V„„

+ 4y(x)5„„,
+ p(x)n„„,.

APPENDIX 8: QUANTIZATION IN THE TRANSVERSE
GAUGE

For the m-string models, transverse oscilla-
tors play a crucial role. Goddard, GoMstone,
Rebbi, and Thorn' quantized the model noncovar-
iantly in terms of these operators and required
Poincare invariance at the end. This fixed the di-
mension D and the intercept o(0}. The trans-
verse gauge can also be consistently defined for
a T string, e but in general not in our special case
with orthonormal coordinates on each wing. %e
will consider it in our model, too, with the hope
that the transverse variables lead to a better un-
derstanding.

A system of orthonormal coordinates is specified
by choosing a timelike vector n" (n' ~ 0} and

n, x~(;) = g o. '(n P)T, (B1)

n P'. = —(n J)

(
tr 0'

do'n P(, )(o', r) = —(n P).
0

(Bs)

Notice that these definitions make sense only for
a, Y string in which no momentum in the direction
of n is exchanged between the wings.

Making the GGRT choice' n=(1, 1,0, 0, . . . , 0)
and using light-cone coordinates

u, =
2 (u, *u,) and u,. (i=2, . . . , D 1},=1

the gauge (Br) and (82) is equivalent to

(B4)

.The primary constraints (2.9) relate the ( ) corn
ponents to the transverse ones (u ~ ((=-u,.((():

4'= —(((' P +O' P +0*' P *)

4('= —(g' P +Q' P +4(*' ~ P )

(B5}

P = (P + y g"+2P P (, +2y'(t(' ~ P*')3m

(P(,g + y'4("+ 2P P~+ 2y2$' ~ 4(*') .= 3m

The independent variables are then (g, , p, , P„., P~. ,
P„q }, where q has been added to the set, since

where P is the total momentum of the system. Eq-
uation (Bl) defines a new ~ variable, and Eq. (B2)
defines the o variable
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ls given only up to a (r derivative. No such var-
iable is needed for Q because of the junction con-
dition p.(tr, v') = 0. The poisson brackets are

and the equations of motion follow from the Ham-
iltonian

H= 2(r'P. P~ ((r}do .

For the transverse components they are

P =(1/y)P~g, P~g=yg", (BQ)

and for the (+) components they follow directly
from (B4). The solution of these equations is
s,gain given by (2.16) and (2.11).

Only the independent variables (a„', h'„, c„',p', q',
P„q ) are quantized, assuming canonical commu-
tators for them, which are analogous to (3.1). The
nontransverse oscillators can be expressed in
terms of the operators A„,B„,C„, where A.„ is the
transverse part of A„,

(slo)

and ((„„is again the matrix (3.14). The result is

(t); = (1/W) P, t. ,
i

For the (-) components, they are found by insert-
ing these expressions into (B5)

g =(1/y)P~, P& =yg",
If one looks ai the covariance and takes as genera-
tors for the Poincare algebra

Pll —Q d(r Pll —
P P

i 0

uvM & ~ I dv(x((&P(()+ P((& x((& —x((&P(;) —P(() x«))
i 0

n&0 r&O

Dvv (dtwd v dtvdv)+(de dtv dv dt's}

the Poincar6 algebra comes out in the right way, with the exception oi

[M', M' ]=, Q [3- 8 (D —2)]t& — A„"+ Q [3 —8 (D —2}]t'— D,"n(0), , , a(0).&o

which should be zero. From this we get D=26, the same critical dimension as for the m-model, and a(0}
=0.
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