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In the quark model, hadrons are thought to be singlet states with respect to "color" SU(3). Therefore, in this

paper, we study singlet-singlet scattering in a non-Abelian gauge theory in which color SU(3) is the gauge

symmetry. %'e avoid the difficult bound-state problem by representing the hadron as a scalar field $, a color
singlet, which interacts with the quarks through an eA'ective coupling: GQX,' &P,.Q, %'e calculate the high-

energy (s~ oo, t & 0 fixed) $$ scattering amplitude to sixth order in the quark-gluon coupling constant g. The
calculation is done by using the "infinite-momentum technique" as developed by Chang and Ma. To justify
this technique we also calculate high-energy fermion-fermion scattering in a non-Abelian gauge theory using a
more rigorous method. We compare our result with an "infinite-momentum technique" calculation done by

McCoy and Wu and a similar calculation done by Tyburski. The $P scattering amplitude is infrared finite. The
total cross section for high-energy P$ scattering is found to be cr&& ——64g 'G'(2n) "~'[N,(b)—(3g '/Svr')lnsX2(b)],
where N, (b) and N2(b) are positive functions depending only on b = (p.

' —4m ')'"/LLt, , where p, is the hadron

mass and m is the quark mass.

INTRODUCTION

A considerable amount of theoretical work has
been done on the behavior of high-energy hadron-
hadron scattering amplitudes. Qualitative results
have been obtained using the Begge model' and the
eikonal or diffraction model. ' However, calcula-
tions based on a relativistic field theory are of
more interest, since quantum field theory is the
only well-defined theory which incorporates all
the general principles: relativistic invariance,
unitarity, analyticity, and crossing symmetry.
The question is which field theory do we use'P

Model field theories which have been extensively
studied in this context include Q' theory' and
@ED.' However, these theories cannot be ex-
pected to be realistic models for the hadron since
they ignore its composite structure, Because of
the success of the quark model, it is thought that
quarks are the basic constituents of the hadron.
Therefore, the more realistic field theory is one
in which the quark fields interact through a gluon
field —a non-Ahelian gauge theory in which "color"
SU(3) is the gauge symmetry. With this in mind,
several authors have studied fermion-fermion
scattering in non-Abelian gauge theories. "'

Color was introduced into the usual quark model
to explain the apparent conflict with the require-
ment of antisymmetryfora state of spin-2 fermions,
and the assumption that three quarks bind in a totally
symmetric state in space, spin, and SU(3) coordi-
nates to form a baryon. Each quark comes in three
colors' and the hadrons are then assumed to be
singlet states with respect to color SU(3). There-
fore, it is more interesting from a physical

standpoint to study singlet-singlet scattering in
non-Abelian gauge theories.

Of course, in order to correctly calculate hadron-
hadron scattering amplitudes, we would first
have to solve for the bound states in this theory.
However, this is a difficult low-energy problem
which we have avoided by representing the hadron
as a scalar field (IF), a color singlet, which inter-
acts with the quarks through an effective coupling.
The new term in the Lagrangian is

a(s„p)' 2u'p'+G-p -P 44';.

In this model, QP scattering occurs through the
interaction of the quarks and the gluon field. %e
have calculated, to sixth order in the quark-gluon
coupling constant g, the QQ scattering amplitude
in the high-energy limit (s —~, f —0 fixed), through
the usual procedure of keeping only the leading
logarithm at each order of perturbation theory.
Because we are scattering two singlet states, the

Qp scattering amplitude is proportional to the
nonleading, isospin-nonf lip piece of the fermion-
fermion. scattering amplitude. Also, the pft) scat-
tering amplitude is infrared finite, unlike the
fermion-fermion scattering amplitude.

The calculation was done using the "infinite-mo-
mentum technique" as developed by Chang and
Ma 9,xo This method is extremely si.mple and
therefore well suited for carrying out higher-or-
der calculations. The inf inite-momentum tech-
nique involves taking the limit s —~ before per-
forming momentum-space integrations and re-
normalization. It is not clear that this is justified
when the integrals are divergent. McCoy and Wu'
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calculated the high-energy fermion-fermion scat-
tering amplitude using the infinite-momentum
technique. Nieh and Yao' performed an independent
calculation using the standard Feynman parameter
technique and their result differs from that of
McCoy and Wu. However, the difficulty of the
Feynman parameter technique multiplies with
each succeeding order of perturbation theory.
Tyburski' used a combination of the infinite-mo-
mentum technique and the Feynman parameter
technique to arrive at a result in agreement with
that of McCoy and Wu. Therefore, in order to
justify the use of the infinite-momentum technique,
we have calculated to sixth order the high-energy
fermion-fermion scattering amplitude using a
method which is easier than that of Nieh and Yao,
but just as rigorous.

The calculation of the fermion-fermion scatter-
ing amplitude at sixth order involves two momen-
tum-space integrations. %henever the infinite-
momentum technique yields a spurious divergence,
or whenever a particular Feynman graph needs to
be renormalized, we perform one of the momen-
tum-space integrations using the Feynman param-
eter technique. The remaining convergent integral
is calculated using what Tyburski calls the
'"++ -- approximation" in order to systematically
keep track of the leading terms. The details of
this calculation are outlined in Sec. II of this
paper. Our result agrees with the calculations
done by McCoy and %'u and Tyburski. Therefore,
we are free to use the infinite-momentum tech-
nique to calculate the high-energy Pp scattering
amplitude. The important steps in this calculation
are outlined in Sec. III. Section IV is devoted to
our conclusions and summary.

II. FERMION-FERMION SCATTERING

In order to compare our result to that of McCoy
and Wu, we restrict our considerations to the case
of SU(2) gauge symmetry. The generalization to
SU(3) symmetry is trivial. To avoid the infrared
problem, we introduce a complex scalar doublet
and invoke the Higgs mechanism to give a mass
A. to the vector gluons. The Feynman rules are
those of the usual Yang-Mills theory with the addi-
tion of the vertex and propagator associated with
the Higgs scalar, as illustrated in Fig. 2 of Ref. 5.
The Faddeev-Popov ghost and the Higgs ghost do
not appear in the leading logarithm approximation.
%'e work exclusively in the 't Hooft-Feynman
gauge.

where i,. is the isospin index of the particle with
momentum P,. and ~, is a Pauli matrix which satis-
fies the relation

0 5 05c c Qb

In lowest order we have the Born term, diagram
1 in Fig. 1. In the limit s- ~, the amplitude is

—(~ ). (~ ).g2 1 s
8

(2.l)

where X,. is the helicity of the particle with momen-
tum p, Helicity conservation is a consequence of
taking the limit s-

In order g', the leading diagrams are those
numbered 2 and 3 in Fig. 1. The amplitudes can
be calculated using the infinite-momentum tech-
nique. They are

X6„~6„~K(t)(lns -iv), (2.2)

1+ &A 8, —A' B. The Dirac matrices in this repre-
sentation have the following properties:

(r„r }=4, $~„~}=0, r,'=0.
We consider the scattering of two on-mass-shell
fermions p, +p, -p, +p~ in the limit s-~, I; —0
fixed, where s=(P, +P,)' and t=(P, —P,)'=q'.
For convenience, we choose

l I 1
Py=P —&6' ~ PB=P + &0 ~

1 IPS=P+ &0 ~ Pg=P —&0 y

where the momentum transfer is purely trans-
verse, q= (0, 0, q),

p =(s'", (-', q'+m')/s"', 0, 0),
p' =((-,'q'+ m')/s'~', s'~', 0, 0),

and m is the fermion mass. Let the mass of the
Higgs scalar be M.

%'e define the invariant transition amplitude T by

&p.p, I(S- l)
I p, p, ) =-~(2v)'f'(p, +p. p. -p.)T-,

where N is the wave-function normalization. " We
decompose T into an isospin-flip amplitude T
and an isospin-nonf lip amplitude T'f,

A. Notation and low-order results

The components of a four-vector A„are written
(A„A, A), where A, =Ao+A, and A=(A~, A, ). The
invariant product takes the form A'B = 2A,B

ei I ff(i ~ s)'=+ &'I'l(k —-'i&'+ x'I '

(2.3)



FIG. 2. Internal-momentum labels for diagrams 4 and

The isospin-nonf lip amplitude is always smaller
than the isospin-flip amplitude by a factor of lns.

8. Calculation of Fermion-Fermion scattering in order g~

FIG. 1. Feynman diagrams which contribute to the
leading logarithm of fermion-fermion scattering up to
sixth order in the coupling constant.

We decompose the amplitudes (2.2) into isospin-
flip and isospin-nonf lip parts. Then we add the
amplitudes together and get

~2 s=- —(2") &'—2~i ~ ~. ~ &«) ins

The leading diagrams are those numbered 4-40
in Fig. 1. Qf these, only diagrams 4, 6, 7, 15,
19, 27, 31, 35, and 37 need to be calculated ex-
plicitly. The remaining diagrams are obtained
from these by symmetry considerations. If we

use the infinite-momentum technique to calculate
diagrams 4-6, 15-18, and 31-34 the result will
contain a spurious ultraviolet divergence. Also„
diagrams E-14 and 19-30 need to be renormalized.
Therefore, we must use our method to calculate
the amplitudes associated with diagrams 4-34.
To illustrate the method, we will calculate dia-
grams 4-6 ln detail.

The labeling of the internal momenta for dia-
grams 4 and 6 is shown in Fig. 2. Individually,
the diagrams 4-6 are of order s'. However, if
we add these diagrams together the s' dependence
cancels. The 4-gluon vertex of diagram 6 con-
tains two terms which contribute in the s - ~ limit.
One term has the same isospin structure as that
of diagram 4 and the other has the same isospin
structure Rs thRt of dlRgram 5. %e Rdd these
terms to diagrams 4 and 5, respectively, and

cancel the s dependence algebraically. Then, the
amplitude for diagram 4 is

2&4 ~~+~& 2 ~2+«

&& [(p+u, )' -m'+te] '[(a, +-,'q)' - x'+ ie] '[(u, - -.'q)' —)'+ge]-'

&& [(P'+a,)' —m'+ te]-'.

Since diagram 4 consists of two 3-gluon vertices, the numerator N4 has nine terms
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X,= (q' —2k, ' 2—k, '+&')»»,y, (p'+0', )y„»», »»,y"(p" +k, )y" »»,

+»», y, (»»(+tt, )(2$, +it, —,'g—)u,»»,y"(P' +k, )(P', —ti, +g)u,

+»»,y„(P'+k, )(k, -tt', +q)»», »»,y" (P'+0', )( 2'-, -k', - kq')»»,

+»», (-2k', -ti„——,'»f')(tt+k', )y, »», »», (tt', -k', +f)(p'+it, )y'u,

+ u, ( 20-, —k, —2$)(p'+1'i, )(2k', +it', —p»f)»», »»,y„(p" +t»t, )y'»»,

+ ~,( 2'-, —'k', k4—)(p'+k, )y'»», »».y "(p"+0',)(-2k, -0', —k0)»»,

+»», (k, - ii, + q') (p'+ k', )y„»»,»», (21', + tt, -k»f')(p" + tt, )y" »»,

+»»,y„(p+1»I,)(21',+ tt', —g'g) u, »», (2N, + P, --,'g)(p" +0',)y"»»,

+»»,y„(p'+tt, )y" »», »», (2P, +$, ——
2»f)( p' +k,)(- 2k, —k, —,'g)u—, ,

(2.6a)

(2.6b)

(2.6c)

(2.6d)

(2.6e)

(2.6f)

(2.6h)

(2.6i)

where»», . is shorthand for the spinor»»(P», &») and d =»»,y". The mass factors in the numerator have been
dropped because they do not contribute in the leading logarithm approximation.

Let us for the moment calculate the amplitude (2.5) using only the last eight terms of the numerator
(2.6b)-(2.6i). We combine the denominators which contain momentum k, through the introduction of
Feynman parameters &„G„G„and o'4. Then we shift the origin and evaluate the integxal over d k„
in the usual way. Next, we use the "++-- approximation" to simplify the amplitude (2.5). The "++-- ap-
proximation" corresponds to having fermion-gluon couplings proportional to y, along the upper fermion
line through vrhich flows a large P, and fermion-gluon couplings proportional to y along the lower fermion
line through which flows a large P'. Keeping only the leading logarithms we write the amplitudes as

T«k i)= i-(2-&)—'&' 2&,&—M.«.&d;; (&. &»)»; 6. ~ "~16

2d k2dk2+dk2 S ~

x dn, da, dn, dn, 6(1-Zn,.)[k„k, —(k, +2q)' —X'+ie] '[k,„k, —(1» —2q)'-A. '+i@] '

(&) 2' (2» [2 ~ 4 4]a ~
— a (2.7)

2+& y

X/2 (2.8a)

(2.8b)

&,(t» i) =
8

-(2»») '»»' ,e„,e—„,

1)'» 'g( d)»2'»

xK(t)(~ ln s —i»» lns) . (2.10)

D, = ' s' tkn, n, +(-tn, n, +&') —ie. (2.8c)
When w'e add together diagrams 4 and 5 we get

In writing the denominator D4 we have used the
fact that the integral over the Feynman parame-
ters is dominated by the region o', = &2=0. We
can rewrite the expression inside the curly brack-
ets in (2.7) by combining denominators. The terms
which integrate to ln's cancel, leaving

J [s'"k, n, n, + (-tn, n, + ~') -te]'
Upon integration, both terms in (2.9) are of order
ln's. It is a trivial matter to integrate these
terms, and the result is

T», (f» —i) = =(2»») '»»' —,6, , 6„, ff'(t) ln's,4s5 4 m2 X~X3 X2X4

(2.11)

Now we consider the first term in the numerator
(2.6a). We can write (2.6a) in a more suggestive
form:

(2q' —SX' —[(k, + —,'q)' —1».'] —[(k, ——,'q)' —X']

[(k.+ kq)'-—&'] —[(k, - -'q)' - ~'1 3

xu,y„(p'+it, )y„»»,»»,y"(p" +0',)y"~, (2.12)



Each of the last four terms in (2.12) cancels with
one of the terms in the denominator of (2.5). The
resultant amplitude has the same gluon denomina-
tor structure as that of diagrams 7-18. When we
add this amplitude, together with the similar am-
plitude from diagram 5, to diagrams 7-18, the
1n's dependence cancels. To calculate diagrams
7-18 we use the same method as outlined above,
except that diagrams 7-14 need to be renormalized.
The renormalization is done by subtraction. This
is the same renormalization procedure as that
used by Tybul ski and Nieh and Yao. As they
have emphasized, the point of subtraction has no
effect on the leading logarithm. The result is

x (-t+ —,X')K'(t) ln's,
6

4-34 4 &~&2 X1X3 QX4

x (- t+ —,X')K'(t) ins .

(2.is)

f g 6 41'.S, so= 4
(») & —.{)...,Sg;

&& (- —.'X')K'(t) in's,

The remaining diagrams 35-40 can be calcu-
lated using the infinite-momentum technique. The
amplitude for diagrams 35 and 36 is

6

T,' „=g (2)T)-'s' —,t), , t)„~ K(t) ln's,

(2.13)

6 (2.i7)

6

7,"'„=t (27() '))'~S, „ t), , K(t) lns.
2 I 1 3 2 4

Now we calculate the amplitude associated with
the numerator (2q' —3X')u,y„(p + it, )y„u, zi,y "(p"
+i(t2)y"u2 in (2.12). We can use the infinite-mo-
mentum technique with the result

~ (- —,'~')K'(t) ins .

The amplitude for the @ED-like diagrams, 37-
40, is given by

737-.0= 0
(2.is}

37 40 4 ~~)2 X1X3

x(~'+ —.'X')K'(t) in's,

where

dkdk
g(t) ). 2 [k 2 y2] 1[k 2 y2] 1

& [(q-k, -k, )'+~']-'. (2.19)

4s5 Bl. 1 3 2 4

&& (~'+ —.'~')K'(t) ins .
We combine Eqs. (2.16), (2.17), and (2.1S) to

obtain the leading fermion-fermion scattering
amplitude to order g'. The result is

Diagrams 19-34 are easier to calculate than
diagrams 4-6 because we need only keep the lead-
ing term in the "++-- approximation. " Diagrams
19-30 are also renorma, lized by subtraction. The
result is

6

440 ( } ~ 2 1 3 2 4

x (- t+ ~')K'(t) in's,
6

4 40 4 ~~2 X1X3 X2X4

(2.20)

T,', ==(2m) 'm' —,t), , t), „K(t)ln's,19 34 4 2

(2.i5)

1 3 2 4

Combining Eqs. (2.11), (2.13}, (2.14), and (2.15)
we obtain the transition amplitude associated with
diagrams 4 —34~

&& [(-t+ —,
' &')K '(t) ins J(t) lns] . —

This result is in complete agreement with that of
MeCoy and Wu and Tyburski. If we combine Eq.
(2.20) with the low-order results obtained earlier,
in Eqs. (2.1) and (2.4), we find there is strong
evidence that the isospin-flip amplitude exponen-
tiates. The fermion-fermion scattering ampli-
tude up to sixth order in the coupling constant is

2 4
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haik ~q

N+k-p-
~ q

FIG. 3. Fe~man diagrams %'hlch contribute to ft)p
scattering in fourth order in the quark-gluon coupling
constant.

FIG. 4. Internal-momentum labels for the upper half
of the diagrams in Fig. 3.

III. CALCULATION OF ~ SCATTERING

Because we are scattering two singlet states,
we no longer have an infrared problem. There-
fore, we do not need to introduce the Higgs sca-
lars. The Feynman rules axe those of the usual
Yang-Mills theory with the exception of the singlet-
fermion-fermion vertex, given by ic~», where j
and k ax'e the color indices of the two fermions.
The Pauli matrix & ls replaced by the SU(3) ma-
trix A,„which satisfies the relation

Rnd p, ls the (It) mass.
In lowest order, which is order g, the leading

diagrams are those shown in Fig. 3. These dia-
grams are very similar to the photon-photon scat-
tering diagrams calculated by Chang and Ma. '0 In
fact, we use their method —the infinite-momentum
technique —to calculate the QQ scattering ampli-
tudes. The invRx'lRQt transition amplitude cRQ be
wx'itten as

A.,X =if,~X +d, ~X +~5,~,

%e consider the scattering of two on-mass-shell
color singlets Q, p, +p, -p, +p~, in the limit s-,
E —0 fixed. The kinematics are the same as those
for fermion-f ermion scattering, except

p (sl/2 (Lq2+ ~2)/sl/2 0 0)

((Lq2 &2)/sx/2 sx/2

(3.1)

A, @p x'epx'esents the uppex' hRlf of R pRx'tlculRx' dlR-
gx'am in Fig. 3; B„„represents the lower half. To
calculate (3.1), we must first calculate/1„„. The
labeling of the internal momenta for the upper
half of the diagrams in Fig. 3 is shown in Fig. 4.
A„„for diagram (a) of Fig. 4 is

x[(sv- ~q)'-m'+is] '[( u q+)'~' mic+-j ' [(u, -P)'-m'+i&] '[( uk/)+'- m+i j'e. (32)
The loop momentum u contains a large p, . To be more explicit, we change variables to sv', where

w = (s'/'u '„u/'/s'/', w') .
Then, the terms in the denominator of (3.2) are

[u/~' —(w --,'q)'-m'+is] '[u/~'- (w+2q)' m'+i&] '-
&[(u', 1)(ie' --',-q~ —u') -w'-m'+is] '[s'/'u/~P O(1)+i.e]-'.

VII e integx'Rte ovex' N)„and get a Qonzero result only fox' 0&$0+& l. In the limit 8 ~& we can x'eplRce the
terms which are O(1) by a constant and not affect the leading logarithm. Since cu', 0, we can remove nr',

from the last term of the denominator without changing the sign of ia. Also, the leading behavior of the
numerator is given by y„=y„=y,. Therefore, we can factor out of (3.2) all the dependence upon k.

g2 81/2 t"

/t~+~+= —i TrX~X& k —
/

+ig .I(q, 0),b gXf2
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1

((k„k,) =4 ('*k(k )
'
J k* k, kk, ()(1 —k. ,—,)

0

4m' w ~ (w —k2) + m'
x 2

Q1Q2 Q2

w ~ (w+k, ——,
'

q) +m'
Q1Q2

(w ——,'q) ~ {w+k, ——,'q) +m'
Q1

(w —k2) ~ (w ——,
'

q) +m'

X ~q +p,
(w ——,'q)'+m' w'+m'

Q1 Q2

(w+k, ——,
' q)'+m' (w —k, )'+m'

Q1
(3 4)

(w, =t(),', and k, is the transverse momentum attached to the forward-moving fermion line (quark) and k, is
the transverse momentum attached to the backward-moving fermion line (antiquark), and k, +k, =q.
I (k„k,) contains a spurious logarithmic divergence which is independent of the momenta k, and k, . This
divergence cancels when all the diagrams in Fig. 4 are added together.

Using the same procedure, we calculate g~„", and P~„', and get
1/2

Alki = —i Trek k, —0 —,
&

+ie I (q, 0),
8 (3 5)

2 1/2
&&,,'=z Tr X,x,

We add together Eqs. (3.3) and

C

g 1/2

(3.5), and the result is

-1
+gi+ —tk — +4 I( ki+ ~ q, 2 q —kk) .

) 1

2
@1/2

T 0
/p, 8

, ~ 7
C ~ I 1~ l~+iq + -i't — +iq I'(k, +-,'q, —,'q-k, ), (3.6)

where I'(k„k, ) =I (k„k,) I(k, +k„-0). The function I (k„k,) does not contain the spurious logarithmic
divergence.

Now, A„,B ' = ,'A„B +O(1), —so the invariant transition amplitude T is

T=i (2w) w 2 TrX, Xq TrX Xk

-1
C C
1/o +~/ + @ 1/2 +~g12 pl 2

{3.1)

k ('(k+,'- 'k —
tk( )('( k ——,'k, k ——,'k)I k-

e, ~ 1 - -1
&& &, — », +ie + —&,—,&,

+is [(k+-,' I)' (ic+] '[(k ——,'q)'+te] '.
I

We have included a factor of —,
' in (3.7) because of double counting. We point out, that except for the func-

tions I'(k+ 2 q, 2q -k) and the SU(3) factor T», l)., Tr&, &„ the amplitude (3.'t) is the same as that for the
fermion-fermion, isospin-nonf lip scattering amplitude. Therefore, we use the results of Sec. II to get

T = —2ig'(2w) 'w'(s/t), ')If, (t),
where

(3.8)

1~ 1~k, (t) = I (k+-,'q, —,'q-k)I (-k--,'q, --,'q+k)[(k+-,'q)']-'[(k--,'q)2]-'. (3 9)

In order g, the procedure is exactly the same. The non-Abelian diagrams, i.e., those containing 3-
gluon and 4-gluon vertices are easily generalized. The result is

T = 12ig' (2w) 'w'(s/p')(-t) k, (t) lns,

where

(3.10)

K,(t)=, I'(k, +-,'q, —,'q-k, )I'(-k, ——,'q, ——,'q+k, )

~ [(k I )2]-k[(k k ~)2]-l[(k k )2]-k[(k k )2]-l (3.11)
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The QED-like diagrams are somewhat more complicated. Now, the photon-photon scattering amplitude
order g6 is zero by Furry's theorem. 2 Because we are dealing with a non-Abelian gauge theory we get

a nonzero result, namely,

T =-12ig'(2n) 'n'(s/g')g(t}lns,

J(f)= t ' ' [2P(k q k-)f(-k -q+k )-I(k+k q-k -k )I(-k -k -q+k+k )j

[k,'j-'[k, ' j-'[(q, —k, —k, )' j-'. (3.13)

Each term in/ (f) is separately infrared divergent. However, taken together, the iwo terms conspire to
make g(f) infrared finite.

We combine equations (3.8}, (3.10), and (3.12) to obtain the leading pp scattering amplitude to order g .
The resu1t is

T~~=-Rig'(2w) 'w', (tc, (t) 8, tns[(--t)lf(t)-z(t)]). (3.14)

IV. CONCLUSIONS AND SUMMARY

Ic, (t =0}=8G'(2v) 'v'lV, (h),

Z(f =0) = —8G'(2v)-'v'N, (h},

where h =(u' —4m')'~'/g. The positive functions

N, (b) and N, (b) are extremely complicated inte-
grals which have been calculated numerically for
Q =-,'. N, (2)=8 8, &,(-,')=23..7. Both functions di-

(4.1)

(4.2)

The most important feature of the result (3.14)
is that it is finite in the limit t 0. This implies,
using the optical theorem, that the total cross sec-
tion for pp scattering is finite. To calculate the
total cross section, we need to know the behavior
of the functions K, (f), g(t), and (-f)E,(t) in the
limit t-0.

Now, k, (t)-ln'(g'/-f} in the limit f«p', so-

that (- f)if;(f)- 0 as f- 0. lt is interesting that the

piece of the QQ scattering amplitude which comes
from adding all the non-Abelian-type diagrams
does not contribute to the total cross section.
Whether this feature will persist in higher orders
remains to be seen. The functions K, (f) and I(f),
which come from addlllg together all the QED-
like dlagramsy ale nonzex'o ln the limit t~0y

verge when 5 =0, i..e. , when the fermion lines are
on their mass shells.

The total cross section for ft)(t) scattering is
2

~»=84g'0'(2v)-"v' N, (h) —,Ines, (f) . (4.3)

The non-Abelian character of the theory manifests
itself through the noncommutivity of the SU(3)
matrices X„producing the 1ns factor in sixth
oxder. Therefoxe, the total cross section for the
high-energy scattering of two color singlets is
proportional to a constant with a correction that
decreases like 1ns. Qf course, at this point, it
is impossible to tell how the cross section be-
haves in higher orders. In particular, we cannot
tell whether the cross section exponentiates; this
mould yield a total cross section which decreases
like a small powex" of 8. In contrast, the data for
high-energy pp scattering shows a constant total
cross section with a correction that seems to rise
like lns. '
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