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Invariants and classification of Yang-Mills fields
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We present a polynomial basis for the algebraic invariants of Yang-Mills fields. We also study the asymptotic
behavior of pure Yang-Mills fields and the eigenvector structure of matrices constructed from the fields. Based

on these results we present a classification of Yang-Mills fields. We also analyze the form of the radiation part
of the Yang-Mills field.

I. INTRODUCTION

Yang-Mills fields are beginning to have con-
siderable significance in particle physics, and it
is important to know as much about them as pos-
sible. The closest familiar analog to Yang-Mills
fields, or non-Abelian gauge fields, is the Max-
well field, and one would like to understand hom to
generalize mell-known results for the Maxwell
case to the Yang-Mills situation. In the Maxwell
theory, the two fundamental algebraic invariants,
F„,F'" and F„„F*'",are of great help' in analy-
zing the structure and behavior of the field F„,.
For example, for bounded sources, the asymp-
totic part of the field (the radiation field) is sim-
ply characterized by the vanishing of the two in-
variants. The classification of Maxwell fields is
based on the behavior of these invariants. It can
also be based on the number of eigenvectors of
F&". While this classification has not been of cru-
cial significance for electromagnetic theory, the
analogous classification in general re1.ativity
(Petrov classification) was historically of utmost
importance in understanding what constituted rad-
iation in curved space. '

For the Yang-Mills field, where the gauge group
is SU(2) or O(3), we show that there are 9 inde-
pendent invariants, rather than 2. These are
scalars under both Lorentz and gauge (internal-
symmetry) transformations. We present a poly-
nomial basis for these invariants. Then we study
the asymptotic behavior of pure Yang-Mills fields
and are led to a three-fold classification. We
show hom to characterize these three types of
fields by the behavior of the invariants and by the
eigenvector structure of associated matrices.

Eguchis has proposed a classification of Yang-
Mills fields based on the maximum number of
fields F&, which can simultaneously be made rad-
iative by some gauge transformation. While this
is of course a possible classification, it treats
the Lorentz group and gauge groups on a very dif-
ferent footing. It does not ask whether there is a
Lorentz frame in which the fields satisfy some
simple property under the gauge group. In the

II. REVIEW OF THE MAXWELL FIELD

Given a Maxwell field at a
0

0
Fy. (x)= E H

Ea H~

point x,

-H„

0

(2.1)

present approach, me focus on the invariants un-
der the direct product of I orentz and gauge
groups and so both groups are treated symmetri-
cally. Moreover, the classification proposed
here is connected to the asymptotic behavior of
pure Yang-Mills fields, and to the eigenvector
structure of matrices eonstrueted from the fields.
For these reasons, we feel that the scheme pro-
posed in this paper is the natural generalization
of the traditional classification of Maxwell fields.

One of the crucial questions in non-Abelian gauge
theories is the large-distance behavior, the con-
finement problem. Perhaps the present analysis
mill provide a useful framemork in which to cast
discussion of this problem. In the accompanying
paper, it is shown that the vanishing or nonvan-
ishing of one of the Yang-Mills invariants is cru-
cial in deciding whether the Yang-Mills fields F'„,
suffice to uniquely determine the Yang-Mills po-
tentials A'„.

The detailed outline of the paper is as folloms:
In Sec. II, me review the situation for the Maxwell
field, outlining several equivalent ways of classi-
fying Maxwell fields and showing how this classi-
fication depends on the invariants. In Sec. III, we
study the Yang-Mills invariants and present a
polynomial basis for them. In Sec. IV, we use the
analogy to the Maxmell case to explore several
classification schemes for Yang-Mills fields. These
different classifications do not turn out to be iden-
tical, but they are compatible. In Sec. V, we
study the structure of what seems to be the natural
Yang-Mills generalization of the Maxwell radiation
field. The appendixes contain details of calcula-
tions referred to in the text. The entire analysis
is confined to the simplest non-Abelian group,
namely SU(2) or O(3).
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it is well known that there are only tmo independent
invar iants'

The associated secular equation is

~'- ~'(Z'-H') -(E - H}'=0. (2 3)
(2.2)

F„„F+~=4E H,

where

(2.3)

F gvp 1 +py poF ~ot2s (2.4)

Any other Lorentz-invariant polynomial in F„, is
a polynomial in these invariants. As long as both
invariants do not vanish simultaneously they com-
pletely characterize the field F„„ata point, up to
Lorentz transformation. If both invariants vanish,
one has to distinguish between radiation fields and
the case when F„,=-0.

Since the invariants essentially characterize the
field up to Lorentz transformations, one might
classify Maxwell fields by the value of their in-
variants. That mould give us a double infinity of
fields. In practice, me only distinguish tmo kinds:
a radiation field, and everything else. The radia-
tion field is characterized by the vanishing of both
invariants. There are at least two ways to ar-
rive at this rather gross classification: one by
considering the asymptotic behavior of Maxmell
fields in space, the other by studying the eigen-
vector structure of F„„ora related matrix. Be-
cause we wish to study the Yang-Mills system in
analogy to the Maxwell field, me explain these
briefly.

A. Asymptotics of the Maxwell field

Suppose one has sources bounded in space. Then
one can shorn rather generally that the solutions
of Maxwell's equations far away from the sources

=0, lf

F+At' -0
s U

(2.5)

mhich satisfy the outgoing-wave boundary condi-
tion, can be written for large r as

F'„„(r—t, 8, (j)) F „„(r—f, 8, Q)

"(-.') (2.6)

and one finds that the inva. riants constructed from
the asymptotic field F'&„/r vanish, while those
from the field F'„,/r +F'„,/r' can take on any value.
Thus the classification of asymptotic fields by in-
variants yields the tmo types —radiation and every-
thing else.

One finds that unless both invariants vanish, (2. '?)

gives rise to 4 linearly independent eigenvectors
q, (not all real). However, if both invariants
vanish and F„' does not vanish, then there
are only 2 linearly independent eigenvectors.
Thus a classification of F by the number of lin-
early independent eigenvectors again yields the
two types of fields —radiation and everything else.

There is also an attractive alternate approach
to the eigenvector problem, called the spinor
formalism. ' Define the mairices

10
AA' ~2 0 1

(2.9)

~AA (2.10)

OAA' (2.11)

I 1 0
+AA' $2 0

Then define

4AB, A'a' +AA' aa' p& '

(2.12)

(2.13)

~oo = ~ii =0» &0& = ~io = ~ y (2.15)

and (t) denotes complex conjugate of ft). F„„and
Q» each carry the same rnformatxon. It rs easily
shomn thai

detQ=-Qoog„—Qo)' ————,'(E+i H) ~ (E+i H)

=--,'(E2-H'+2iK H) .

Thus detQ contains both invariants and vanishes
only for a radiation field. This provides us with
an elegant classification of asymptotic fields. For
if we write

PAB+4AB+. ~ ~
'VAB

& &2

then Q' is a radiation field, and so

(2.17)

Under Lorentz transformations, the unprimed in-
dices transform under SL(2, C), while the primed
indices transform under the complex conjugate.
From the antisymmetry and reality of F„, one
shows thai

CAB, A'a' = &ABACA'a '+ &A'a ' O'Aa y (2.14)

where Q is a complex symmetric tensor, e is the
invariant antisymmetric tensor

8. Eigenvectors of the Maxwell field dety' =0. (2.18)
Consider the eigenvector equation

(2.7)
But Q' is a 2~ 2 matrix, and so its determinant
vanishes only if it has rank 1 (assuming Q' e 0}.
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By symmetry,

(t) AB TATB
1 (2.19)

for some spinor r. One can then easily show that in
general

4~a - &~@a+&a 0~
2 (2.20)

for some spinor q. The fact that the spinor ~ ap-
pearing in (2.20) is the same as the spinor appear-
ing in (2.19) is an example of the peeling theorem. '
Since any 2 &&2 symmetric matrix can be written
as in (2.20), Q' is not algebraically special. Now

consider the eigenvalue problem

4gaO =&n»

where

~B ~Bc~ ~01 ~1(} 1 &00 +I 1 0

(2.21)

(2.22)

Again A. is Lorentz invariant. The secular equa-
tion is

g'+detP =0 . (2.23)

detQ vanishes only for the radiation case, and
it then follows from (2.19) that Q has only one
linearly independent eigenvector v.. Otherwise
it has two. Thus whether we study the eigenvec-
tors of F„, or of P», we are led to the dichoto-
mous classification —radiation and everything else.

is certainly both Lorentz invariant and gauge in-
variant, but is not considered when classifying
"the invariants" of the Maxwell field. I will show
that there are 9 independent invariants.

First, a heuristic argument. There are 18 in-
dependent components F'„„. The Lorentz group L
has 6 parameters and the O(3} group has 3. So one
could perhaps choose a Lorentz frame and O(3)
frame in which 9 =6+3 of the components vanished.
There would then be 9 =18 —9 remaining compo-
nents. Any invariant could be evaluated in this
special frame, and therefore be a function of these

III. INVARIANTS OF THE YANG-MILLS FIELDS

Suppose we are given the Yang-Mills fields F'„„(x)
at a point x. For each i, F„, is an antisym-
metric tensor with respect to the Lorentz group L.
For fixed pv, F'„, transforms according to the
adjoint representation of the Yang-Mills (gauge)
group. In this paper, we assume that the gauge
group is SU(2) or O(3), so that F' transforms like
the J =1 representation of the rotation group.

An invariant is a function of the F&„, which is a
scalar under LxO(3). No explicit reference to
Yang-Mills potentials A'„ is permitted, nor are
derivatives. This is in analogy to the Maxwell
case, where for example

9 components.
This argument shows that there are at least 9 in-

dependent invariants. There might be more if one
could show that, for any F'„„, there was a nontriv-
ial subgroup of the group L xO(3) which left F in-
variant. The general theorem is'

No. of invariants =No. of components
—dimension of group
+dimension of little group.

This is what happens in the Maxwell field. There
F&, has 6 components, L has 6 dimensions, and
the little group has dimension 2. For example, if
F„, is not radiative, there is a frame in which
E„cp, H„tp, and all other components vanish.
But this F is invariant under Lorentz transforma-
tions along x and rotations around x, which form
a group of dimension 2.

Returning to the Yang-Mills case, instead of
showing that the little group is trivial, I will give
a more constructive proof. ' Given the arbitrary
components F'„„, one can to go a Lorentz frame
where E' and H' point along the x axis. (1 am as-
suming that there are no relations among the F'„, ,
and so F' is not a radiation field. } Then by a com-
bination of rotations around x and Lorentz trans-
formations along x, one can make H„'=E', =0.
Then F'„„has only 12 independent components in
this frame Now .consider the O(3) tensors

i FjvP -Ei Eg Hi
2 jiV ) (3.1)

J, = -F' F" ""= E H'+E'. Hi.Z PV (3.2)

Clearly both J and K are Lorentz scalars and, un-
der an O(3) transformation 0, they transform as

J-0JO

K OKO

(3.3)

(3.4)

But any real symmetric matrix can be diagonal-
ized by a real orthogonal matrix. Therefore, one
can choose 0 so that J p Jy3 J 3 0 This im-
poses 3 more (independent) conditions on the 12
components r f F'„, defined above, and so there are
no more than 9 invariants. Since there are at
least 9 invariants, there are exactly 9.

The 9 invariants could be taken to be the inde-
pendent O(3) scalars one can form from J and K,
namely

Tr(J), Tr(J'), det(J), Tr(K), Tr(K ),

det(K), Tr(JR), Tr(J'K), Tr(JK') .

Here J and K are considered as 3x3 matrices.
One easily shows that these are independent by
showing that when J is diagonal, it is possible to
find a configuration of the fields F'„„such that any
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one of the components (J«,Kijj can be chosen non-
zero while the remaining 8 vanish.

However, these invariants do not form a poly-
nomial basis. For example, consider the in-
variants

t =
8 ei ja (F~"F„Fp"), (3.5)

(F~ivF yjPF ~kg( } (3.6)

These are invariant under L xO(3). But since they
are odd under F'- -F', they are not polynomials
in the previous invariants which are all even under
F'--F . However, one can check that

2t t' =det( J}—Tr(K'J)+ Tr(K) Tr(JK)

+-,'T r(J )Tr(K') ——,'T r(J)[Tr(K)], (3.7)

Tr(J}, Tr(J'), det(J}, Tr(K),

Tr(K'), det(K), Tr(JK), t, t'.
(3.9)

We now show that these are in fact a polynomial
basis for the invariants. The proof is by exhaus-
tion. The only invariant tensors under L are
c&„z and g&„. The invariant tensors under O(3)
are ~;» and 5&,. Thus the only quadratic invari-
ants must be

Fi Fj x) ijg yp 1JO

pv pa
5 lvpo

(3.10)

which are multiples of Tr(K) and Tr(J), respec-
tively. The only cubic invariants must be of the
form

j
g"'g "Z'"'

aF pv FpaFDta~tga & vpoa Sp (3.11}

These are multiples of t and t'.
A more tedious argument, relegated to Appendix

A, shows that there are no fourth-order invariants
besides those we have already enumerated.

There are no new invariants of degree 5. For if
there were, one of the remaining invariants of de-
gree 6 could be eliminated in terms of this one.
But that would require the existence of an invariant
of degree 1, which does not exist. Consequently
the invariants listed in (3.9) form the polynomial
basis.

t"—t ' = det(K) —Tr(J'K) + Tr(J)Tr(JZ)

+-,'Tr(K)Tr(J') ——,'Tr(K)[Tr(J)]' . (3.8)

Consequently one can take the following as inde-
pendent invariants:

fold infinity of inequivalent fields. To find a more
manageable classification, we pursue the analogy
with the Maxwell field. As shown in Sec. II, there
were at least two different ways to arrive at the
traditional classification: the asymptotic ap-
proach, and the eigenvector approach. As it so
happened, these two classifications agreed. This
need not have been the case, and will not be the
case here. But we will show the compatibility of
the two approaches. Asymptotic consideration
will lead to a classification of Yang-Mills fields
into 3 types. We will show that the eigenvector
structure is different for each of these three types.
But there is no reason to believe that these 3
types exhaust the possible eigenvector structures.

A. Asymptotic of Yang-Mills fields

In studying the asymptotic solutions to Maxwell's
equations, we showed that the 1/r part of the field
was algebraically special, that is, both invariants
vanished. There were no algebraic constraints on
the 1/r+1/r' parts of the field. This led to a two-
fold classification of Maxwell fields into radiation
field (both invariants vanish) and everything else.
In this section, we perform the analogous analysis
for Yang-Mills fields. We find that both the fields
to order 1/r and to order 1/r' are algebraically
special, while there is no constraint on the fields
to order 1/r'. This leads to a three-fold classi-
fication of Yang-Mills fields:

type I: all invariants vanish.
type II: the invariants satisfy

det( J}= det(K) = f = t' = 0,
Tr(JK) =Tr(J)T r(K), ( 4.1)
Tr(K2) —[Tr(K)] ' = Tr(J ) —[Tr(J)]',

while Tr(J), Tr(K), Tr(J') are arbitrary;
type III: everything else.

By analogy to the Maxwell case, we are inclined
to call fields of type I radiation fields.

The calculations follow. Let us define the Yang-
Mills potentials' such that the Yang-Mills fields
F„v are given by

(4.2}

The free-field equations (valid asymptotically)
are

(4.3)

We make the ansatz analogous to the Maxwell
case for outgoing waves

IV. CLASSIFICATION OF YANG-MILLS FIELDS

Having found the invariants, we could decide to
classify the Yang-Mills fields F'„v by the values
of the invariants. This would give rise to a nine-

8'„(u, 8, a} Ct(u, e, a) D~(u, &, n} 1

(4.4)
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B'„(u, 8, a) =0,
B'e, 8& arbitrary.

This implies
iF.e =Hg,

i iFg
—-He,

(4.5)

(4.5)

Computing the invariants listed in (3.9), we find
that they all vanish.

Order I/rs

(u=r —f) .
For simplicity, we choose the gauge so that A,'=0.
This. is always possible. ' Notice that since A& ap-
pears in the field equation, we are forced to make
the ansatz for A& and not directly for F». We
now substitute (4.4) into (4.2), and both into (4.3).
We exclude solutions independent of u since they
do not distinguish between incoming and outgoing
waves. Expressing the vectors in a spherical
basis, we find after some straightforward but
tedious algebra:

Order I/r.

the field, we shall show in Sec. V that

(4. 10)

4 AB T& ~ 8+ Ta tA
(2)i (4.11)

for some arbitrary spinors q'. But this is not al-
gebraically the most general case, since T is still
independent of i. This form leads to the re]ations
(4.1) between the invariants.

B. Eigenvector analysis

The second way to classify Maxwell fields was
by studying the number of eigenvectors of F&" or
of the associated matrix in the spinor formalism

In applying the eigenvector approach to the
Yang-Mills field, we are immediately faced with
a problem. Which matrix depending on F» shall
we study? The problem is to convert the single
index i into a pair of matrix indices in such
a way that the resulting matrix has eigenvalues
which are Yang-Mills invariants. The simplest
way to do this is to define

where g' is a. complex O(3) vector, whereas T is
a, spinor independent of i. Then in agreement with
the peeling theorem'

8 i 1 8 . 8 i 8 8
2- C~+, sing —86 + 8@8u' " sing 88 8g 8$ 8u

M~g = F~D7') 0, (4.12)

Ce, C@ arbitrary.

Then to order 1/r', we find

(4.7)
where D(T') is a representation of the Lie algebra
of the gauge group, in this case O(3) or SU(2). An
O(3) transformation 0 of F'simply becomes a
similarity transform of M by the matrix repre-
sentative of 0 in the representation considered.
Then the eigenvalues of such a transformed M will
coincide with the eigenvalues of the untransformed
M. For simplicity, we have considered only the
spin-s and spin-1 representations of O(3). In each
of these cases, we have studied both the usual
I,orentz tensor formalism and the spinor formal-
ism obtained by writing

8 . i 8H'„= — . —sing Bg ——B'r sing 80 e
& A. BB=Z&A'D(&') s. (4.13)

4~a 4ga 4~a(I}i (2}i (3) i

r (4 9)

Since all the invariants vanish for the 1//r part of

+pe;)q BeJ3gJ

Since only Q'/su') C'„ is determined by the differ-
ential equation, we find that in general E,'wB'„co.

Computing the invariants, we find that the rela-
tions are given by (4.1).

If we compute E', H' to order 1/r', and compute
the invariants to order 1/r', we find that they can
take on any possible value.

This classification is easily under stood using
the spinor formalism. We write

In increasing order of dimension, the matrices
are

I'"A, ss =Z (4 ')„'(&') s, (4 ]

~/A, js ~ (0 )A ~ijs
(6) ~ a a (4.15)

I„"~l s, =g(F')„"(a')„s, (4.16)

(12)~ jp, ,v=~(& )„s;s .

The index of M indicates its dimension as a square
matrix. It is easy to verify that eigenvalues of M
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TABLE I. The secular equations corresponding to the matrices in Eq. (4.18).

Dimension Secular equation

x4+a, z'+ a f a+ ap=0

a 2
=-2 [Tr(K) + i Tr(J)]

a, =-i(t+ it' )

ap= g [Tr(K )-Tr(J )+ 2i Tr(JK)]—p [Tr(K)+ iTr(J)]

A. —2aA, —2bk +a A + 2abk+b =0

a=-4 [Tr(X)+ iTr(J)]
b= —z (t +it')

g —2' -4' +/4(c2 —2e)+4cdg3+g2(4g + 2ce)+4deg+e =0

c= Tr(K)

d= —it

e= —,'(Tr{Jt)—2 [Tr(J)]t}

pe 0

Cf2 1 Cf f 0, Cfp ——2Tr(K), Ct) = 2t

C8= —2 Tr(J )—2K2+ [Tr(K)]

C7=2Tr(K)t- Tr(J)t'

C6= det(K)-2t' —2 Tr(K) [Tr(J )+K2]

C,= t'Tr(JK) t —(K2+ —,
' [Tr—(J)] }

C4= Tr(K) [det(K)-t' ] -t'tTr(J)
+ 4 {K&+2 [Tr(J)]2}(Tr(J )—2 [Tr(J)]2}
—4 [Tr(JK)- Tr(J) Tr(K)]2

Cs ——t'(det(J +)—,' Tr(J) (Tr(Jt) —2[Tr(j)]t})
+ st (det(Z) t' + 4 Tr(J—)[Tr(JZ) —Tr(J)Tr(Z)] }

C, = —,
' det(J) [Tr(JK)- Tr(J)Tr(K)]

+ —,
' [t' —det(Z)](Tr(& )——,

' [Tr{&)l }—x [Tr(J)t] 2

Cf ———2 det(J)Tr(J)t

Cp =4 [det(J)]

K2 =—Tr(K )-[Tr(K)]

are invariant under LxO(3), since these are im-
plemented as similarity transformations on M.

For each dimension, we are looking for solutions
of the matrix equation

M~" g =A, q;

e.g. , for dimension 4,

(4.18)

MaA, BB~SB ~0ah(4)

SB

For each of these matrices, we tabulate the
secular equation in Table I. The way these are
obtained is explained in Appendix B. We will find
that these secular equations for dimensions 4, 6,
and 8 do not involve all the Yang-Mills invariants.

This is not particularly surprising, since the sec-
ular equation is invariant under similarity trans-
formations by the whole group GL(n, C), of which
L xO(3) is but a subgroup. (n is the dimension of
the matrix M. } Clearly the coefficients of the
secular equations, which are the invariants under
GL(n, C), are also L xO(3} invariant, but the con-
verse is not true.

We see that the secular equation in the 4-dim-
ensional formalism depends on 6 of the 9 Yang-
Mills invariants. For the 6- and 8-dimensional
formalisms, the number of invariants drops to
4 and 3, respectively. Only in the 12-dimensional
formalism do all the invariants enter. " Conse-
quently, if we use the eigenvectors to characterize
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the fields, then only in the 12-dimensional form-
alism can we hope to get a complete classification
of the different types of Yang-Mills fields. For-
tuitously, in the Maxwell case, both invariants
entered into the 2- or the 4-dimensional form-
alism.

As yet, we do not have a complete classification
of the number of possible eigenvectors in the 12-
dimensional case. This matter is still under in-
vestigation. However, we can demonstrate that
the 2 algebraically special types of fields found
in IV A do have a different eigenvector structure.
It is easy to take the solutions for the fields in

IV A, insert them into the matrixM. ", and show
the following:

For type-I fields, the secular equation is
g12 0 (4.19)

and the equation My =0 has 6 linearly independent
eigenvectors.

For type-II fields, the secular equation is

l!.'(X~ + l!'Tr(K) — (Tr(J') —[Tr(J)]'/2j)' = 0.
(4.20)

The number of linea, rly independent eigenvectors"
is 8, broken down as follows:

A. =0, 2 linearly independent eigenvectors
& Tr(ff) 2 y2Tr(J2) Tr(J) ~ Tr Q)

2 linearly independent eigenvectors each

Tr(ff) + 2Tr(J ) — Tr(J)] ~~ y Tr(Q, „(! 1 linearly independent eigenvector each.

For a general type-III field, one expects 12 dis-
tinct eigenvalues and therefore 12 eigenvectors.
Thus in the 12-dimensional formalism, types I,
II, and III correspond to 6, 8, and 12 linearly in-
dependent eigenvectors, r espectively.

Presumably, there are configurations of the in-
variants which lead to numbers of linearly inde-
pendent eigenvectors different from 6, 8, and 12.
We have not yet studied these. Anandan" has
shown that in the 4-dimensional formalism there
are field configurations leading to 1, 2, 3, or 4
eigenvectors. Thus our classification into 3 types
of fields is not sufficiently fine. More on this will
be published later.

&. GENERAL FORM OF RADIATION FIELDS

We have defined a radiation field to be one in
which all the 9 Yang-Mills invariants defined in
(3.9) vanish. We shall now show that the general
form of such fields is

sense. Thus, there are unit vectors n' such that

H'=n'xE', E'. n'=0. (5.5)

We can assume that none of the E' vanish, for if
one does one can take n' arbitrarily. It remains
to show that n' =n'=~n.

Substituting (5.5) into (5.3) and (5.4) gives

(n' —n') ~ (E' x E') =0,
(E' ~ E')(1 —n' ~ P) = —(n' ~ E )(n' ~ E') .

(5.3')

(5.4')

where i, ], k are unit vectors along x, y, z, re-
spectively. Then, since n, ~ E, =0, n, ~ E, =O,

Take i =1, j=2. Since (5.3'), (5.4') are rotation-
ally invariant, and the lengths of E', E' scale in
both equations, we can choose

E'=k,
E' =k cosf+i sing,

H'=nxE', (5.1) n, = i cos0+ j sing,
(5.6)

E' ~ n=0, (5.2)

E'. H'+E' H'= 0, (5.3)

where n is an arbitrary unit vector, indePendent
of i.

Proof. From the vanishing of all invariants, it
follows that the matrices J;, and K;, vanish, i.e. ,

n, = I sing+(Tcosp —k sing)cosi( .
Inserting these into (5.3') and (5.4') gives

s in/ (sing —s in/) = 0,
cosP (1 —si ng sing) = cosg cosg .

From (5.7), either

(5.7)

(5.8)

E' ~ E' —H' . H' = 0 . (5.4) p = 0 or p = w, qr sin0 = sing (5.9)

If we take i =j above, this shows us that for each
i, (E', H') form a radiation field in the Maxwell

Inserting any of these into (5.8), we find n' = n~.

Similarly n' = n'.
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PP aO( By Vb
TpvpanBy~ g A g g (A7)

It is easy but tedious to verify that any of the
choices in (A5)-(A7) leads to linear combinations
of the terms in (A1).

which links (pv} with(pa) but not with (aP) or (y5),
can be ignored since it clearly leads to a product
of 2 quadratic invariants. Therefore

APPENDIX A: THE FOURTH-ORDER INVARIANTS

%e shall show that invariants of degree 4 are
linear combinations of

Tr(J'), Tr(K'), Tr(JK), [Tr(Z)]',

[Tr(K)]', Tr(J)Tr(K) .
Any invariant of degree 4 must be of the form

(Al)

Fl FJ FP Ft 5 5 +PvPon Byb

where T is a tensor built from e""P and g"".
Since a product of two e's contracted over any in-
dex is a linear combination of g's, it suffices to
consider T built out of two e's with no repeated
index, or one e, or no e's. Moreover, it is very
useful to note that

(A2)

Fp*PFp ~ Tr(Z)gp,

so that

y~y va B6

T pvp«By~ = pvaB pay&

pv&y pa 85

(A5)

b. One factor e. The different possibilities are

& ppaygpsg&

7'Pv p«B y~ — pvn B py ab

~ pvnygpBga~

(A6)

c. ¹ factors of e. T must be constructed com-
pletely from g's, which must link the pairs (p. v},
(pa), (a&), (y5). That is,

gp pgvagccy gB ~

F'„„F~p,eP
"P"~ Tr(Z)g", . (A4)

Thus if, for example, T"'p' By has afactor ~~"p",

that particular invariant is clearly a product of 2

quadratic invariants.
%e now enumerate the possibilities for T""p

a. Two factors of e. We can ignore any e con-
taining 3 indices of (npy5) or 3 of (pvpo). The
remaining possibilities are

APPENDIX 8: COMPUTATION OF THE
SECULAR DETERMINANTS

The computation of the secular determinants
was carried out by computer. This was particu-
larly necessary in the 12-dimensional formalism
since the expressions were quite unwieldy. The
approach was a hybrid of Fortran and symbolic
ealeulation. For illustration, we eoneentrate on
the 12-dimensional formalism.

The matrix M~' is a 12x12 matrix, which by
virtue of its symmetries has only 72 nonzero en-
tries. Each of the entries consists of a single
component +F'&', each one appearing exactly 4
times. Since the secular equation is an invariant,
it can be evaluated in any frame, I chose the
frame in which E'„, E,', EI', , IJ,', E'„g'„vanished.
This left M" with only 48 nonmero entries in
terms of the 12 remaining variables. I wrote a
simple nonoptimized Fortran program which, for
each power of A, , ran through the rows and col-
umns and returned the list of terms in the naive
definition of the determinant [M-)

~
in which none

of factors was zero, together with the sign of the
permutation for that particular term. This list
was the input for the symbolic program'3 ASHMEDAI.
There the expressions involving the 48 components
were reduced to expressions involving 12 compo-
nents. It was then a relatively simple trial-and-
error process to express this invariant in terms
of the fundamental set of invariants evaluated in
the same frame.

As an indication of running times, the largest
calculation was the coefficient of A,'. The calcula-
tions were done on the University of Pittsburgh's
DEC-10. The Fortran program returned 4800 non-
zero terms in under a minute. The ASHMEDAI pro-
gram reduced these to 1256 distinct terms in 23
minutes. The bulk of the time was spent reading
in the 4800 terms and putting them away on disk
to overcome storage problems. The calculation
itself took less than 4 minutes. Finally, the re-
duction of this expression of 1256 terms to invar-
iants was done interactively by looking at those
terms with large powers of a particularly variable,
and subtracting invariants which canceled those
large powers.
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