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%e relate the energy-momentum-tensor trace anomaly in spin-1/2 quantum electrodynamics to the functions

P(a), 8(a) defined through the Callan-Symanzik equations, and prove finiteness of 8„vvhen the anomaly is

taken into account.

I. INTRODUCTION

Spin- ~ quantum electrodynamics, characterized
by the Lagrangian density

Z,„,(x) = y{x)(fy S - n~, )P(x) ——,
' Z„„(x)Z""(x)

—e.V~(x)~.4(x8'(x), (1.1)

is one of the simplest field theory models in which
to study RnoIDRlles. Tile axial-vector dlvexgence
anomaly in this theoxy has been extensively
analyzed'; we wish in this note to discuss some
properties of the energy-momentum-tensor trace
anomaly. ' Taking for the energy-momentum ten-
sor ~~„ the symmetr1c form

(1.2)

e'„"„=,' f [ 0 ~.(s—.+ fe.&.)4+ 6;(s.+ fe.&.)4
0(s. fe.&—.)~.4 —4(s. fe.&—.)1.—4],

a s1mple application of the equations of mot1on
gives the so-called "naive" trace formula

(1 3)

As has been shown by the authors of Ref. 3, Eq.
(1.3) is not correct as it stands, but instead must
be modified by the addition of an anomalous term'
proportional to Z, 'E~,E~'. Our aim in this paper
is to derive an explicit formula for the trace
anomaly, valid to all orders in perturbation theory,
expressed in terms of the functions P(a) and &(&)
of the fine-structure constant defined through the
Callan-Symanzik equations.

In Sec. II we give a simple heuristic derivation
of our result, which, as we shall see, is most
naturally written in terms of a subtracted operator
R[E„,E~']. There, we will be thinking in terms
of using massive regulator fields. Some related

details Rre given in the appendixes.
Then in Sec. III we will give a moxe careful

derivation using normal-product methods' and
dimensional regularization. ' In g space-time
dimensions, we have

&„"= —(n —4)&„„-3(-,'igdg —m, g)+m, gg .
(1 4)

The anomaly is the term —(n-4)Z,.„,which would
vanish if Z,.„,were finite. %'e wish to express the
anomaly in terms of renormalized operators.

Our derivation will give as a bypx'oduct a, proof
that 6„„asdefined by Eg. (1.2) is finite to all
orders of perturbation theory even when the trace
anomaly is taken into account. The earlier proof
by Callan, Coleman, and Jackiwv is incomplete,
while the one by Freedman, Muzinich, and%'ein-
berga is not directly applicable to oux case.

The heuristic derivation is obtained by writing
down an operator formula for the trace equation
and then determining the unknown coefficients ap-
pearing in this formula by studying its electron-
to-electron and VRcuuIIl-to-two-photon matr1x
elements. As our initial operatox ansatz let us
write the most general linear combination of
gauge-invariant scalar C-even operators with the
cox rect dimensionality,

&„"=C,mope+ C2Z3 'E~~E '
+&.2f[41' (S+fe,&)4-A"'(S-&&0&)4

—2m, (~g] . (2.1)

The coefficient of C, is formally zero by use of the
equations of motion; it represents a discontinuous
contribution which is present at zexo momentum
transfer, but which vanishes for nonzero mo-
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+ discontinuous term . (2.4)

mentum transfers, and hence does not contribute
to physical matrix elements. The precise structure
of this term will be determined in Sec. IG, but we
will ignore it in the heuristic discussion which
follows. Focussing on the first two terms, it is
easy to see that either C, or C, is infinite, or Eq.
(2.1) cannot be correct as it stands. The reason
is that both 8 " and m, $g are finite operators'
(that is, their matrix elements are made finite
by the usual electron and photon wave-function
renormalizations), whereas a simple calculation
shows that the lowest olde-x diagrams (illustrated
in Fig. 1) contributing to the electron-to-electron
and vacuum-to-two-photon matrix elements of
Z3 Eg I'"' are logarithmically divergent, and
hence cannot be made finite by wave-function re-
normalizations alone. This problem is analyzed
in more detail in Appendix A, where it is shown
that if a photon regulator is introduced to make
the diagrams of Fig. 1 finite, then energy-mo-
mentum-tensor conservation requires the intro-
duction of extra contributions, proportional to the
mass squared of the regulator field„ in the 8„„-
regulator photon vertex. These terms may be
thought of as arising from the energy-momentum
tensor of the regulator field. In the limit of in-
finite photon regulator mass these contributions
survive and, in lowest relevant order, give a
second logarithmic divergence, which just cancels
the logarithmic divergence of the diagrams in
Fig. 1. Thus, C, and C remain finite, and the
correct form of Eq. (2.1) is actually

8„"= C,mogp+ C, No[E~, E"']

+ discontinuous terms, (2.2)

with N, [E„E"]a subtracted form of the operator
Z, 'I'„,F '. Once it is apparent that a subtracted
operator appears in Eq. (2.2), it is convenient to
reexpress this operator in terms of another sub-
tracted operator N[E„,E~] defined by

&.(p) I [iv,E. F')
I

(p')&

=
& (p)lz, -'F„,F"l.(p)&„..=o,

(2.3)
(o Iz[E„E"')Ir(p, «,)r( p', «,})-

(olz, -'F„F"l1(p, «, )&(-p, «,))„„
through a relation of the form

fi,[f',.E" ]=m[r„.E"]+5m,qq

+ photon permutations

(a) (b)

FIG. 1. (a), (b) Logarithmically divergent electron
and photon vertex parts, respectively, of the operator
Zs 1I &~I'~~, the coupling of which is denoted by .
%'avy lines indicate photon propagators, and solid lines
indicate electron propagators.

This leads to the final operator form for the trace
equation

8„"=K,mogg+K, iV[F~F"']

+ discontinuous term, (2.5)

& (p)I8.'I (p')& = n'" p'p"p"p"
O' P 20k

and Eq. (2.3) we find

K, (e(p) Im, gp le(p)& =n~ . (2 7)

However, as shown by Sato" and as explained in
Appendix B, it is easy to see from the Callan-
Symanzik equation for the electron propagator that

&e(p) Im. @ le(p)& = 1,5
(2.8)

r

with 5(n) the function of the fine-structure con-
stant u defined by"

1+ 5(o.) =
w ()

O'I'H
(2.9)

Combining Eqs. (2.7) and (2.8), we conclude that"

3Q
K =1+5(o)=1+—+ ~ ~ .

1 27 (2.10)

Next we take the matrix element of Eq. (2.2) be-
tween the vacuum and the two-photon state, again
in the limit of zero momentum transfer. Now as
Iwasaki'4 has shown, the general form of the
vertex (0 I8„„ly(p„«, )y(p„«, )& is

with the subtracted operator fi[E„E"']uniquely
specified by the conditions of Eq. (2.3).

%e proceed now to determine the coefficients
K, and K2 in Eq. (2.5}by taking matrix elements
of Eq. (2.5) between appropriate sets of states.
Taking first the matrix element between electron
states in the limit of zero momentum transfer, and
UslIlg

&0 I8 ~ I&(p~, «ih'(p„«, )) = h(F". E;,+F:'F'„,) —'n„.F'"E,.-]&(q')

+E'"'~~. (p~ -p.).(pi -p2).&(q')+k(E'. .E'„s+E'. E',g)q'q'C(q')

q= p, +p„p,'=p, '=0, E',s = (p, ),(«, )~ —(p, ),(«,)„ i =1, 2 .

(2.11)
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1= —[1+u(n}]m,
8Q

Q 0

2Q Q= —+ + ~ ~

3m 2m2
(2.15)

Conlpal'lllg Eq. (2.13) wi'tll Eq. (2.14) we leal'll
that

K, =-,' P(a), (2.16)

and thus our final result for the trace equation is

8„"= [1+5(n))m, gg+ P(n}A"[E„,E"]
+ discontinuous term . (2.17)

The first two terms in the power-series expansion
of the coefficient of the E„,E"term in Eq. (2.17)
agree with the fourth-order calculation of Chano-
witz and Ellis."

The above derivation is evidently closely anal-
ogous to the derivation, "by use of the Callan-
Symanzik equations, of the nonrenormalization
theorem for the axial-vector divergence anomaly

+ —' E"(x)E"(x)«„„. (2.18)

However, there are two important ways in which
the trace anomaly differs from the axial-vector
divergence anomaly. First, the trace anomaly is

As lwasaki notes, Eq. (2.11) implies that the
vacuum-to-two-photon matrix element of 8„" is

&o I8." Ir(p «)y(p. «.»
= («1 '

«a Pl 'P2 —«1 'P2 «2 'Pl&

x 8'[- »(8')+ 5 C(8')], (2 12&

which vanishes at q'= 0. Hence, from the vacuum-
to-two-photon matrix element of Eq. (2.5) we get,
using Eq. (2.6),

o=[1+8(n)]&olmoqyly(p «)r(-p «.&)

+ff,&olz, '~,.I'"'Iy(
p, ,) y(- p, ,)&„.. .

(2.18)
Now as shown by Adler et al."and again as ex-
plained in Appendix B, from the Callan-Symanzik
equation for the photon propagator one sees that

&o Im. l|1 IHp, «,)r(-p, «,)}

P(a)
4 1+5(n)

) (-p .)) ..., (214)

with P(a) defined by"'"
1 BQ

P(n) = —m
Q Bm

renormalized in higher orders of perturbation
theory, and in fact would vanish, leaving only the
"soft" operator [1+5(n)]m,gg as the trace, if
P(a) satisfied the eigenvalue condition""

~(n) =o . (2.19)

Second, whereas the axial anomaly involves the
dive~gent operator Z, 'I'"E"~„„,with the con-
sequence that matrix elements of j'„are not re-
normalized by wave-function renormalization
factors alone, the trace anomaly involves the
convergent (once-subtracted) operator At[ I'„,E"']„
consistent with the finiteness of matrix elements
of the energy-momentum tensor. The appearance
of a subtracted operator in Eq. (2.17), as well as
closely analogous results of Lowenstein and
Schroer in (II)4 scalar field theory, "suggests that
it should be natural to derive Eq. (2.17) within
the framework of the normal-product formalism. '
This is the subject to which we now turn.

III. NORMAL-PRODUCT DERIVATION

In all subsequent discussion we assume that the
vacuum expectation value of any operator we con-
sider has been implicitly subtracted off.

In this section we will express 8„"as a linear
combination of normal-product operators. Under-
lying this derivation are the following two observa-
tions:

(1}The expression for 8„' in terms of normal
products is determined entirely by its insertions
at zero momentum into Green's functions: The
only operators that can occur are gauge invariant
and of dimension at most 4; but the only such
operator which vanishes at zero momentum is
8'(&y„(), and this operator has the wrong charge-
conj ug ation properties.

(2) The Callan-Symanzik equation is the Ward
identity which expresses the nonconservation of
the dilatation current20 and the divergence of the
dilation current is essentially 8„. So, if we ex-
press this Ward identity in terms of an insertion
of J8„"d'x, then comparison with the Callan-
Symanzik equation in its standard form will give
8„" (at zero momentum) in terms of renormalized
operators.

We will use dimensional renormalization" to
define both the normal products and the re-
normalized Green's functions. This is by no
means essential: All that is required is that the
subtractions performed implicitly by the normal
products agree with those obtained by an explicit
redefinition of the fields and parameters of the
bare theory.

We will frequently consider insertions at zero
momentum of operators in Green's functions. In
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Lowenstein's" terminology these are differential
vertex operations (DVO's).

First we must define the theory by adding a
gauge-fixing term

Z „-=—,'(B.~)'/t,
to the Lagrangian so the theory is given by

As usual (o is renormalized by writing

=Z3&~-

(3 1)

(3.2)

(3.3)

%e are now ready to start the proof.
Consider the equation of dimensional analysis

for an unrenormalized (but dimensionally regu-
larized) Green's function i",:

8 80= x ——D~+rn + 2 ——,n e — G
BK ' 0 Bmo 0 Beo

0

Here D~ is the mass dimension of Go.
By the action principle we can express B/Be,

and B/Bm0 in terms of operator insertions. Thus,

8„"(0)= (2 ——,'n)er„+ —,'(1 —n)iiV,

+/(2 --,' n}(B A)'/&, +m, gg

+(2 —,'n)e—,gAg] '(0) . (3.1o)

Notice that the right-hand side of (3.10) contains
(a) the operators occurring in Eil. (3.7), (b) fV,
and N„, which have been expressed in texms of
renormalized operators, and (c) (n -4)(B A)'/&, .
The only operator in an inconvenient form is the
last one.

However, "an application of the gauge Ward
identities to each B ~ A in turn proves that (B A)'/
$o has only a single-loop divergence, and that

(B 'A. ) = 1V[(B 'A)i]

the number of external photon lines. Also, p, is the
unit of mass, "which is used by dimensional regu-
larization to make explicit the dimension of eo,
while keeping dimensionless the renormalized
charge e; thus we have e, = y,

' " ' eZ, (e, n) ' '.
These identities are for operations applied to
Green's functions, i.e., for DVO's.

%e can now write

mo = —imogg (0),
BHl o

eo = —ieogA'g (0},
Bpo

(3 5)

(3.6)

$8

)
(PdP+ 2im, gg} .

where the superscript tilde means that the opera. -
tor has been Fourier transformed into momentum
space. Then

0= w ——D -j n~ gg+ 2 ——,'ne PAP 0 G

(3.'f)

where we have multiplied the equation by Z, '~'
for each external fermion line of Go, and by Z3

'~'
for each external photon. Thus, Eq. (3.V) is an
equation for the renormalized Green's function
GR.

To rewrite (3.7) in terms of 8„' we will need
the counting identities. " These are simple con-
sequences of the equations of motion, and can be
written in terms of either bare fields or normal
products. In @ED these identities are

fV, =(-,' g4g+im, PP) (0)

=(2&[4&41+im&[A']) (o), (3.3)

iV„= [-,'iZ„„'+i(B ~)'/g, +~e,q~ y] (O)

=(-' lV[~ '] ~[(B~ ~)'1~.
+ieii' "~'fV[PA'P]] (0) . (3.9)

Here N, and 2V„denote respectively the number of
external electron lines of a Green's function and

1 1
+y~(~ (

—g y2N, —~ y~N G~ . (3.13)

Comparison of the last two equations shows that
8„"(0)is finite at n=4, and that

8 8 . 8
8 „~(0)= —iP —+ i(1+y )m —+ iy, t'„

~@~+ ~ —
2 N, —

2 @3'„

= -P&[t&t]+(1+y )m.A--.'y, &[(B.&)']/hs

- i —,y, +-, — fV ——,iy, fV {0) .~
'1

3 1

16m 2

0= a' ——Dc —i8 ~(0)+ —— s &, QsBx ~ " 2

+ O(n —4) . (3.12)
%e have not yet proved 8„"to be finite, so we
cannot set m=4 here.

Next, we recall the Callan-Symanzik equation2~'2'

for G~.

8 8 80= x ——D -P —+ 1+y m—
BK 88
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Here the renormalized action principle has been
used to express derivatives with respect to e etc.
in terms of normal products. Also, we have used
the result' that mogtIt=mN[~pg].

Finally, we use (a) the identities (3.8) and (3.9)
to express N, and X„ in terms of normal products,
(b) the result P = ey, /2, and (c) the observation
made earlier that the zero-momentum expression
for 8„"determines the expression at all momenta.
We get"

e„"=—,
'

y N[E „2]+(1+y )motIttit

—[y,.3-"t.i(3")].(l~[~A]- NH~]).

8„, T = 8„„ +

(o)

+ photon interchonge

+ photon perrnutotions

8„+photon permutotions

(b)

(3.16)

Use of the fermion equations of motion gives"

e„"=,'y, N[&-,„']+(I+y )m, t(t(,

(c)

p), &

the same operator formula as was found in Eq.
(2.1V) above.

Note added itt Proof After .this work was com-
pleted, we learned that essentially identical re-
sults have been obtained by N. K. Nielsen (unpub-
lished).
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APPENDIX A

We analyze here the consequences of including
a photon regulator to make finite the divergent
diagrams of Figs. 1(a) and 1(b). It proves con-
venient to use a regulator scheme similar to that
used" in studying the axial-vector divergence
anomaly, and specified as follows:

(i) The smallest closed fermion loops illustrated
in Fig. 2(a) are given their usual gauge-invariant,
renormalized values.

(ii) The larger fermion loops, such as illustrated
in Fig. 2(b}, are calculated to be photon gauge-in-
variant and hence finite.

(iii) All photon propagators are regularized:
Photon propagators emerging singly from vertices,
as in Fig. 2(c), are regularized by the replace-
ment

1 1 1
p2 p2 p2 M2 p2(p2 M2)

+ photon perrnutotions

e + photon pertnutations
)Lv

FIG. 2. {a) Smallest, closed fermion loops which are
given their gauge-invariant fully renormalized values.
(b) Larger fermion loops which are evaluated to be
gauge invariant. (c) Photons emerging from single-
photon vertices, which are regulated according to Eq.
(A1). (d) Photon pair emerging from 0», which is reg-
ulated according to Eq. (A2). (e) Fermion-loop diagrams
with photon radiative corrections.

with M the regulator mass. Pairs of photon prop-
agators emerging from the energy-momentum
tensor e„„, as in Fig. 2(d), are regularized by
the replacement

1 1
2 ~vva8 (P» P2)

Pa 3

1 1——
a I'vv~(P»P2}

a P2

1
M2 I'v. t (Pt»2}

p 2 ~2 (A2)
a 2—

with the regulator vertex V~„z chosen so that
(apart from photon gauge terms, which do not con-
tribute to on-shell matrix elements} the algebraic
structure of the gravitational Ward identities im-
plied by conservation of 8„„is preserved. Specif-
ically, the Feynman rules for vertices of 8„„give
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l 1
Vuvn« (PipP2) 2 }uv(Pl P2 ia«PIBP2e}+ 2 (Pi P2 iun 4«+Pl uP«v ie«PI(PP«a Iv«P«PP1«4a

+Pl P2 iva 4«+PlvP2u ia«PlvP«a iu«P2uPl« lve) p

which when contracted with (P, +P,)" gives

(P, +P2)"V „n«(pi P2) =gauge terms+ 2P, (P2 q « -P2 q «)+ 2P2 (Pl,)I « Pl«-rl„}'.
We wish to construct V",„,«(P„P,) so that

(Pl+P2)"V, «(Pl P2)=gauge terms+ (Pl -I }(P2 '9
« P2 -0«}+'(P2 M-)(Pl~i} «-P 1«% )

which gives for the divergence of Eq. (A2)

N 1
(P, +P.) .v g—(PP.*.).—*-, p* u* v-.s(P P.) ~ u*)l l ™ 2—

(A3)

(A4)

(A5)

1 1, 1 1=SnS~(~"n~+ (P.'S
f, P. Sv) —-.— . u, + (P S,s P.sS. ) -p—.-p u ) (SS)

p, P, -M l 1

which has the same structure as the divergence of
(1/P, 2}V„„«(1/P22), apart from the replacement of
the photon propagators by regularized propagators.
One easily finds that the lowest-order polynomial
in momenta satisfying Eq. (A5) is

V"....(P„P.) = V....(P„P.)
1

( vu ie« iun Iv« iu« iva)

(A7)

Thus, the requirement that the regularization
scheme respect gravitational %'ard identities in-
troduces an explicit M' dependence into the 8„„-
photon vertex. This is, of course, just the con-
tribution to 8„,expected from the mass term in
the regulator field Lagrangian.

(iv} The regularization prescription adopted
above makes radiative correction diagrams such
as illustrated in Fig. 2(e) finite for finite I, but
divergent as M- ~, with the divergences canceled
by appropriate counterterms appearing in the re-
normalization constant Z«(M}. We note, however,
that since explicitly renormalized values for the
single-loop diagrams of Fig. 2(a) are always used,
Z, contains no counterterms referring to these
diagrams. In effect, we have adopted a type of
intermediate renormalization procedure, in which

g, contains counterterms only for those vacuum
polarization graphs which involve internal virtual
photons.

Having specified the regularization procedure,
we can now turn to a study of the lowest-order
divergent 8„ insertions of Fig. 1. It suffices to
consider these insertions at zero four-momentum
transfer, since the difference between zero and
nonzero four-momentum transfer will converge.
Focussing on the trace-to-two-photon vertex on
the left-hand side of the dashed line in Fig. 3(a),
we find in one-fermion-loop order that there are
two classes of O„„couplings which contribute, as

-2Q M~
n'"[3(&)) = 3, n.«P, (

. M, ). . (AB)

In the absence of regulators, the trace of Fig. 3(c)
would vanish, but when regulators are included it
is nonvanishing, on account of the term propor-

+ photon perrnutations

p, a

+ (pG pP)

p)&

+ (p,a=p, P)

FIG. 3. (a) The divergent diagrams of Fig. 1, at zero
four-momentum transfer. We focus on the trace-to-two-
photon vertex on the left-hand side of the dashed line.
(b), (c}Classes of one-fermion-loop diagrams which
contribute to the left-hand side of the dashed line in (a).

illustrated in Fig. 2(b) and Fig. 2(c). [ We note in
passing that an explicit check of 8 „conservation
for the diagrams of Figs. 2(b) and 2(c) shows that
the structure of the Ward identities is guaranteed
by the regularization scheme sketched above, with
no need for any additional vertex modifications
beyond that given by Eq. (AV). j Taking the trace
on iiv of Fig. 3(b), using the trace anomaly formula
of Eq. (2.17) to leading order, and dropping gauge
terms gives
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tional to M' in Eq. (A7), and one finds

„„[ ( )]
-4M'll, II"'(p'/»', n)

(p2 M2)3

Setting -p'=x, and using the fact that

II"'(p'/»', a) „~„——lnx —c,3r

(A9)

(A10)

[~;(p&] '
l Q

= —z,»», , z,-'[p —» —z(p)], (B2)

with S~ the unrenormalized electron propagator
and 2 the renormalized electron proper self-
energy, and substituting into Eq. (Bl), we get

with c a constant, the sum of Eqs. (A8) and (A9)
becomes

ll""[3(b)]+ ll'"[ 3(c)]

2n M' 4g ~M'(u/sv lnx+ c)
Sv " ' x(x+M')' (x+M')'

F.(»p& l~=. =»o +». F(p&
P7 Q fPIQ P = fit

Now by the chain rule we have

(as)

/3 in@+ c
)dx (x+M')' (A 11)

Now the leading single logarithmic divergence of
either of the diagrams in Fig. 3(a) comes from an
integral of the form

xdxflli'"[3(b)] + q'"[3(c)])p(x), (A 12)

X =

=M'( .. . (A13l

where P(x) -c /x+ ~ ~ ~ represents the right-hand
side of the dashed line. But substituting Eq. (All)
and the leading term of p(x) into Ell. (A12), we get
a result proportional to

d u/3» lnx+ c
dx (x+M'P

e

ger 8& en 8&
Dl

Q
+ HlQ

~'$77
Q

~'fP7 ~W
Q

~+ P m

while from the fact that Z is homogeneous of
degree 1 inp and n~ we get

Z= m +P —Z.
~'w ep

Combining Eqs. (B4) and (B5), we see that the
renormalization conditions on Z,

=0
BP p

imply that

», Z(p
PB Q

(B4)

(B6)

(B7)

which approaches a finite limit as the regulator
mass M approaches infinity. In other words, the
logarithmically divergent contributions to the
trace coming from Figs. 3(b) and Figs. 3(c) pre-
cisely cancel: in effect, the extra M' term in
the 0„„-regulator photon vertex of Ell. (AV) gen-
erates, in the limit as M- ~, a. subtractioncounter-
term for the divergent operator Z, 'E„,E '. The
mechanism operating here is evidently a photon
analog of the fermion regulator behavior' which
can be thought of as producing the trace anomaly
in the first place.

APPENDIX 8

We give here the derivation of Eqs. (2.8) and

(2.14), and also illustrate Iwasaki's theorem on
the vanishing of &0l8„'lyy& in a special case. To
derive Eq. (2.8) we follow the method of Sato."
Introducing the scalar vertex part I', (p„p,), we
have

[In Eg. (B6) we have assumed the Yennie gauge,
ill whlcll Sp(p) has a 'tl'ue pole at p = PH~ 'tllls l'e-
striction is immaterial, since the final result of
Eq. (B8) is manifestly gauge invariant. ] Thus,
the second term in Eg. (B3) vanishes, giving the
desired result

&e(p) l»».A'le(p)& =». , (B8)

&o l».44 l y(p, )er(- p~. )&

= —,
' n F,(0, ot)

x &o lz. 'F,.F"'ly(p, ")y(-p ")&,..

To derive Eg. (2.14) we follow a similar pro-
cedure. Introducing the zero-momentum-trans-
fer scalar to two-photon vertex I'„„,(p'/»', n), we
have

&e(p&1».tele(p» = F.(p.p&lp- .
Writing

(Bl)
However, I'„„,(p'/»', n) is related to the photon
renormalized proper self-energy II(p /»', u) by
the C allan-Symanzik equation"
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1 8 8 1
1+ 5(n} sagr

m + n p(n) ——[I+ 11(p'/m', a) ]Bof Q

= I',(P'/m', n) . (B10)

71&»(p&/~2 z}

dxx1 —x ln 1—, B16

On setting p'=0 in Eq. (B10) and using the re-
normalization condition

11(0, n) =0,
we get

p(~)QI (0 Q} 1 ( )

(B11)

(B12)

which when substituted into Eq. (B9) gives the
desired relation

(0 I~.4&I r(p, &,)r( p, &.-)&

p(~)
4 1 + 5(o.)

x(0lz, '&„&"Ir(p, e)r(- p, ~,)&„.. . (B12)

It is also instructive to rearrange Eq. (B10) into a
slightly different form by writing

11""(P,—P) = ( P "P"—P'q"")11(P'/~', o'),
n""(p, -p) =(p'p" p'n'")~1'„„-.(p'/»', ~),

+ (p.p, p'n. ,)—p„p„2 sp,
11"'(p'/m', n),

fsvn8 p ( iuv iaB ~su ivB lua ls8}
(B18}

into Eqs. (B10) or (B16), we recover the usual
second-order perturbation theory formula

p(2)(p2/~2 ~)

4e m'
dx x(1 —x), 2 . (B17)

7T p
m' —p'x(1 —x

As a simple, explicit check on Iwasaki's theorem
we have calculated the second-order vacuum-to-
two-photon matrix element of 8„„atzero momen-
tum transfer. (This can either be done directly by
diagrammatic techniques, or more simply by
using the Ward identitiesl following from con-
servation of 8,„.) Denoting this matrix element
by T'„'„' ~(p), with p, -p the (virtual) photon four-
momenta and with o. and P the photon polarization
indices, we find that

T'„'„',(p) = f„„„(p)I1"'(p'/m', a)

giving

(B14) 2~ag~u~v ~evpe~8+ ~If afp&PB

+ iv a ~J B + ~t SP u P Of
+ ~u IPf P Of

'

1 a 8&""(p,-p) =
1+5(n) sp

~ -s —+P(~) ——
&)9Q

x v (p p) — -(p p p'0 ) ~-
Taking the trace we obtain

n""T.".'.g(p) = (p.pg- p'n. g)2 p'

&& 11(2&(p2/~2 o)ap' (B19)

(B15a)

An equivalent form, suggested by Eq. (2.17), is

[1+5(o')] &'"(p, —p)+ p(~)(p"p" —p'n"")

a a2-p —+ p(u) n ——1 II""(p, -p) .
ep BQ

(B15b)

Equation (B15) is an exact expression, at zero
momentum transfer, for the vacuum-to-two-photon
matrix element of the "naive" or canonical trace
pp p P$ $ub stituting the second- order pe rturba-
tion formula

which evidently vanishes for on-shell photons
(p' =0) as asserted by Iwasaki's general argu-
ment. To exhibit the splitting of Eq. (B19) into
"naive" and anomalous trace terms, we substitute
Eq. (B16) and rearrange by comparison with Eq.
(B17), giving

n'"T.".'.g(p) = —(p.p~- p'n. ~)

x &q&» &2 ~~ ~+

as expected from Eqs. (2.17) and (B9) in second
order.
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