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The interaction between a scalar field and a set of n fermion fields in three space dimensions is investigated

by decomposing the total Hamiltonian H into a sum of two terms: H = Hq„+H, „,whe e H„„denotesthe

quasiclassical part and H„„the quantum correction. General theorems are given for H„„concerning the existence

of soliton solutions, the general properties of such solutions, and the condition under which the lowest energy

state of Hq„ is a soliton solution, not the usual plane-wave solution. The eAects of the quantum-correction

term H„„,are examined. It is shown that the quasiclassical solution is a good approximation to the quantum

solution over a wide range of the coupling constant. The approximation becomes very good when the fermion

number N is large. Even for small N (2 or 3) and weak coupling, the quasiclassical solution remains a fairly

good approximation. In the strong-coupling region and for arbitrary N, the quasiclassical approximation

becomes again very good, at least when the fermions are nonrelativistic. The question whether the relativistic

quantum field theory has a strong-coupling limit or not is not resolved.

I. INTRODUCTION

In this and the subsequent paper of the series,
we shall extend our studies of three-space-di-
mensional nontopological solition solutions'~ to
include also the fermion field. As before, our in-
terest lies primarily in renormalizable relativistic
local quantum field theories.

Fox' deflnlteness let us consldex' the lntex'action
between a single scalar Hermitian field (t} and a
set of Dirac fields ~t}", where 0=1,2, . . . , n. The
Hamiltonian density K is given by

X=-,'ll'+ —,'(~y)'+ U(y)
If

+g p~(-iZ &+ pm+ gpss}p"
k=1

where the dagger denotes Hermitian conjugation,
II and (II} satisfy the usual commutation relation

[Il(r, I), P(r', I)] = -iP(r —r'),
while P and g satisfy the usual anticommutation
x'clat ion s

4 *(r, I), 0'(r', I))= 0

(P'(r, I), P+(r', I) j =5,~P(r —r'),
and a and p axe the 4&4 Dirac matrices. Because
of renormalizability

The constants a, b, c, m, and gaQ refer to the

appropriate renormalizable constants, and the
counterterms in (1.1) are for renormalization pur-
poses (defined entirely in the conventional sense,
without any consideration of the soliton solutions).

Part of the purpose of this series of papers is to
investigate whether all obsex ved hadrons can be
regarded as soliton solutions in an appropriate
field theory. The above system then serves as a
prototype of such models, with P~ simulating the
"quark" field and 0 =1,2, . . . , n the "color" in-
dex. Clearly, the Hamiltonian (1.1) is tots. lly un-

realistic; other more physical models will be
given in the subsequent paper.

The vacuum state is, by definition, the lowest-
energy eigenstate of the system when the total
fermion number %=0. Through the transforma-
tion (t}-P+ constant, we may always assume for
the vacuum state

(vac
~
p(x)

~
vac) = 0 .

Note that U(P) does not contain a linear term in P.
However, because of (1.5), there is a linear term
in the counterterms. Throughout the paper, we
assume the constants

a&0, @~0, and b'~ 3ac,
so that the absolute minimum of U(@) is at Q =0.
Also, n~ is taken to be &0.

In order to find whether the low-lying quantum
states consist of solitons or not when the total
fermion number %+0, we introduce an operator
X(r, t}, defined by

X(r, I) =- 4(r, I) —4,(r),
where P,(r) is a time-independent c-number func-
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tion, that satisfies

(1.8)

(1.9)

(1.10)

the detailed form of Q, is yet to be determined.
Because of (1.2), we have

[II(r, t), x(r', f)]=-iP(r —r') .
It is convenient to expand the operator P~(r, i} in

terms of a complete set of orthonormal c-number
time-independent spinor functions zzz(r) and z)z(r):

eral conditions, &, w0. In the standard Dirac rep-
resentation, ' P= pz and a =-p, (z, the spinor z)z(r) is
related to the complex conjugate of the spinor
zzz(r) by z), = p,o,zzf .It is clear that «„zz„z)„zz'„
and bz( are all functionals of (f),. By using (1.3),
one sees that the operators a~ and b, all anticom-
mute, while

(1.13)

In terms of X, H, a~„and b,", the total Hamiltonian
H may be written as a sum of two terms, a quasi-
classical part H„,and a quantum correction H„

where u, and v, are determined by

[-iZ 0+ p(m+gp, )]x '=«, x
8) -V)

in which the subscript l =1,2, . . .~ is arranged
so that

where K is given by (1.1},

H ~= ~ V'Q 2+pp y

0 &&z ~ 6&~ E3 ~ (1.12) + ~, a'g'a', + b", b~g,

As will be shown in Appendix A, under rather gen-

8

H„„= —,II'+ -V'f, +U' f, +g p'~pp'X+-,' Vx 2+-,'p y X2+ U y Xs+
1

—g zz«z+ counterterms.
1

Here, the counterterms refer to exactly the same
ones introduced in (1.1), and U'(P) =dU/d([)),
U" ((t)}=d'U/dP', etc. The total fermion number
operator N is given by

where « =«,(P,) as given by (1.11}and (1.12). By
labeling the corresponding spinor u, =- $„wefind
that the minimum occurs when

In the quasiclassical Hamiltonian H „,P, is a
c-number function, but a~ and b~q are quantum op-
erators. Thus, the particle-antiparticle symmetry
holds for Hqz& y as we ll as for the total Hamiltonian
H. Because of the pa, rticle-antiparticle conjugation
symmetry, only states with N~O will be discussed.
Furthermore, keeping in mind the eventual appli-
cation to hadrons, we shall restrict our subsequent
discussion to the sector' in which

(1.18}

The lowest eigenvalue E of H, can then be de-
rived by distributing the N fermions to the same
spinor state zz, (r) of (1.11), but with different
"colors"; consequently, E is the minimum of

(1.19)

[ zQ ~ V+ P()zz+g(i),)]$,=«$„
where «&0 and jpz)i)p'z =I. As before, ' ' we

defizze the soliton solution to be one in which both

P, and $, are permanently confined in space. ' Gf

course, (1.20) always has the usual plane-wave

solutions, in which $,=0, P, proportional to
II ' exp(zp r), «=(zzzz+pz)' z, and II-~ is the
volume of the entire system. As we shall see,
besides these plane-wave solutions, the above
quasiclassical Hamiltonian H„,~ also admits soli-
ton solutions. Because of the boundary condition

(1.8), these solitons are of nontopological origin.
In the literature, ' ' equations identical to (1.20)

have been studied for some specific choices of
U(P) and N; e.g. , the well-known SLAC bag model
of Bardeen et a/. ' is but a special type of soliton
solution. However, our concern is of a broader



R. FRIEDBERG AND T. D. LKK

~Nm

C

I

Nc

I

Ns

l SPACE DlMENSlON

SPACE DlMENSIONS three-space-dimensional case (with details to be
given in the next section), and in Fig. 1{b)for the
one-space-dimensional case (with details to be
given in Appendix C). One sees that for the three-
space-dimensional soliton solution, the curve
E vs X exhibits a characteristic "spike" shape,
similar to the corresponding curve for the boson
case."' There are two critical values N~ and

N~, with X~ &N~. The value N~ gives the location
of the spike; for N&N~, there is no soliton solu-
tion. The other value N~ is related to the stability
point 9; for X&N~, the soliton solution has a lower
energy than any of the plane-wave solutions. Thus,
at least in the quasiclassical approximation, the
soliton solution is absolutely stable against decay
into plane waves. As will be shown in the next
section, it is also stable against fission into sev-
eral smaller solitons. For N~ &N&N~, the low-
est soliton energy is higher than Nm, but never-
theless, it remains stable against infinitesimal
perturbations. Furthermore, N~ can be &1, pro-
vided that the fermion mass w is sufficiently
large; e.g., in the weak-coupling region {4v) 'g'
«1 and c= 0(g'), we find Nz &1 if

(1.21)

(b)

FIQ. 1. Schematic drawings of the rest energy E vs
the fermion number N, where N ~n and n = number of
fermion fields. The solid curves are for the quasi-
classical soliton solutions and the dashed curves for
the plane-wave solutions (of zero wave number). Along
the solid curve, e —=dE/dN varies continuously from 0
to m-; in the three-space-dimensional case, r is also
continuous at the spike C.

nature; we are interested in the general condi-
tions under which the low-lying states of Hq, ~

are solitons, not the usual plane-wave solutions.
The results are stated in a number of theorems
given in the next section; these theorems are ap-
plicable to an arbitrary U(P). Furthermore, in
(1.20), the parameter N can be regarded mathe-
matically as a continuous variable. By studying
the minimum energy E as a function of N, some
new insight into the general character of the soli-
ton solution may then be derived. A schematic
drawing of E vs N is given in Fig. 1(a) for the

For physical applications, N must be an integer.
Consequently, if N~ is &1, the lowest-energy
state of H„~ changes its character abruptly from
the vacuum state (%=0) to any other Nc 0 state

An important question is whether, when one
includes the quantum correction H„„,the quasi-
classical solution remains a good approximation
to the exact solution of the total Hamiltonian H«I
+H„„.Assuming that the soliton solution is the
lowest-energy state of H„,), a relevant parameter
is the ratio R between the binding energy (E,) of
the exact solution vs that of the quasiclassical
solution:

R -=(E,).„... /(E, )„,. (1.22)

As will be established in Sec. III, and also shown
in Table I, in the weak-coupling region B-1 if
N» 1, and R =0.768 if %=2 (assuming, for sim-
plicity, the boson mass a' 2 «mg2/4w). In the
strong- coupling region, the exact relativistic
quantum solution is not available for comparison.
However, we may consider a nonrelativistic fer-
mion model, replacing the Dirac part of the Ham-
iltonian density, P'~(-ia &+Pm)$' in (1.1), by
its nonrelativistic limit P (--,V'/m)P . In the
weak-coupling region, the nonrelativistic model
is the limit of the relativistic theory; in the strong-
coupling region, the nonrelativistic model gives
8 -1 for arbitrary ¹ Furthermore, when N» 1,
8 -1 for arbitrary coupling. Thus, the quasiclas-
sical solution appears to be a fairly good approxi-



15 F ERNIION-F IE Lo NON TOPO LOGICAL SO LITON S 1697

mation over a wide range of coupling constants,
even when N is small.

The usual perturbation series is an expansion
around the plane-wave solutions. When N &N~, the
plane-wave solution of H„jceases to be the lowest-
energy solution; consequently, the convergence of
the corresponding perturbation expansion is ser-
iously in doubt. If N~ is & 1, this would be the
case for all states with Nw 0, which is rather
surprising. This somewhat unfamiliar situation
is, of course, due to the essential nonlinearity
of the problem, and is by no means restricted to
field theory, as will be illustrated by the following
simple example in elementary mechanics.

Let us consider a single-point particle moving
on a plane. The position vector of the particle is
r =(x, y) and its conjugate momentum is p. The
Hamiltonian is assumed to be

A. Existence of solitons

Theorem 2. There exists a critical value N~.
For N &N~, the lowest-energy state is a soliton,
not the plane-wave solution. Furthermore, as
N

E—~~3w&2N «[U( n-l /g) ] ' »«. (2 1)

m &-'(-')'a' '(4w/g') (2.2)

Proof of t»Morems 1 and Z. From (1.19) and

(1.20), it follows that

E~N ' ~H 'P tt»~tt»P 'r

Theorem 2. N, is &1 if the fermion mass w is
greater than a critical value m, =m, (a, b, c,g).

In the weak-coupling region (4w) 'g' «1 and
c~ 0(g'), an upper bound of m, is given by

(1.23)lp + 2r'[(1 —gr)'+ &'],

where r=
~

r ~, and g and & are real parameters.
The angular momentum T=—r x p is conserved. At
a fixed value of I =

~
T~, (1.23) becomes

+ —VP +U(f) d r

for arbitrary Q, and P„where

Hz = —i~ ~ V+ Pm+ PP, .

(2.3)

(2.4)
2P,'+ V)(r), (1.24)

where P„is the radial momentum and

V,(r) =-,'(l/r)'+-, 'r'[(1- gr)'+ d']. (1.25)

For l and d both not too large, V, (r) has two lo-
cal minima, say at r =r, and r, with r, &r, . As
l-0, one sees that r, -0; hence, r, denotes the
absolute minimum when l is small. It is easy to
show that there exists a critical value l~. For
1 &l~, the absolute minimum of V,(r) changes
from r, to r, . Now, in a quantum theory, l takes
on only integer values. Thus, if l~ is &1, the
character of the 1=0 state can be drastically dif-
ferent from all l~0 states. This is quite analogous
to our field-theoretic problem, in which depend-
ing on the parameters, the vacuum state (N = 0)
may also be significantly different from all N4 0
states.

Throughout the paper, we adopt the natural
units 0 =velocity of light=1.

and

('(2wR) '»'(u/r) sin«r for r~R
'[0 for r R, —

(2.5)

where in the standard Dirac representation,
z = p, o and P =p„

(2 8)

R and d are parameters, and

To establish theorem 1, we consider a trial func-
tion:

(-m/g for r~R

J-(m/g) exp[-(r-R)/d] for r~R

II. QUASICLASSICAL SOLUTIONS
&R =n. (2.7)

In this section, we consider only the quasiclas-
sical Hamiltonian H«~, which is given by (1.15).
At a given fermion number N, the lowest energy
of its plane-wave solutions is Nm. Throughout
our discussions, we assume (1.18) holds, and

therefore the minimum energy E of H„~is deter-
mined by (1.19)and (1.20). As discussed intne pre-
vious section, for mathematical convenience N may
be regarded as a continuous variable, varying from
0 to~.

+—gc — R + &Rd+ sd d, (2 8)

where Uo = U(-m/g). As N increases, the optimal

By using (1.4), (2.3), and (2.5), we find for arbi-
trary R and d,

4m 2 mE & —+ —U, R'+ w(d '+ a) —(R'+Rd+ &d')d
R 3 ' g

m 3
—wwb —(R3+ 3Rd+ ad2)d
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value of 8 increases, while that of d remains
O(a '~'). For R large, we may therefore keep
only the first two terms in the sum on the right-
hand side of (2.8); their minimum is ~+a/It, and
it occurs at

Let s—= (~K( and X=—0)K~™,where 1&a&—'. Keep-
ing g, q, and n fixed and 0 0, one sees that as
K-O, F„-1and

—E„-g 10.
z = (-,'N/U, }'«.

Consequently, for X large,

Z = 'vv-2 U '"N'~'+O{N'~')

(2.9)

{2.IO}

The minimum of E„must then be less than its
value at K=O, which is 1. Therefore, (2.12) holds.

At arbitrary N, by using (1.19) and (1.20), one
can readily verify that

Theorem 1 is then proved.
In deriving (2.9), and therefore also the upper

bound (2.10), we assume U, &0, as would be the
case if U(Q} has only one absolute minimum at
Q =0. A better upper bound may be derived if
there are two absolute minima for U(P). As will
be shown in Appendix B, if, in addition, the value
of m+g(II) changes sign between these two absolute
minima, then when N-~, instead of (2.10),

Z —3a'"(2v/c)"'N-~'. (2.11)

E & m when N =1 and v»m, . (2.12)

We choose, instead of (2.5), the following trial
function:

P, =Km exp(-Xmr)

p, = (xm)'~2@' '~'u exp( xmv}, -
where u js given by (2.6) and K, X, and K are dl-
mensionless parameters. When X= 1, by using
(2.3) we find for arbitrary values of K, X, and x

E(1)/m &F =- v+ (vK' j&)

1 1 a 4 yz e g~
2 X2m2 81 &'ns 192 &2

As we shall also see in Appendix 8, the minimum-
energy solution in this case is similar to the SLAC
bag models although in the SLAC bag model
N is O(1).

To prove theorem 2, we first establish the ex-
istence of a critical value n~„sothat the lowest
soliton energy satisfies

—E(N) =e(N}, (2.14)

Thus, neglecting the O(g') term, we find F =1
[i.e., E(I}&mj when

g A~ 2x ' F2—
2

= h = —
2 g2+ 2gK + . (215)

It is straightforward to verify that h is maximum
when

v = A = (-,')'g' j(2v)

and

where E =E(N) and e =&(N) are both functions of
N Acco. rding to {2.V) and (2.9), as N-~, e(N)
-O(N ' ') -0, while at N =1, for m &m„we have
c(1)&E(1)& m because of (2.12) and (1.19). Thus,
when & decreases from c(I) &m to 0, N increases
from 1 to ~. Since, on account of (2.14),
d(E —Nm)/dN =a —m, which is negative for c be-
tween &(I) and 0, we find, for N&l, E(N) —Nm

&E(1)—m &0, provided m &m, In this. case, by
definition, N~ is &1, and that leads to the first
statement of theorem 2.

Next, we examine the weak-coupling region
(4w)-'g'«1, but assume (a'~'/m) =O(g') and c
= O(g'). In accordance with (1.6), h' is O(ag')
«a. Since the inequality {2.13) holds for arbitrary
~, ~, and K, we may assume x and ~ to be both
O(g'), and K=O{g'). The function F in (2.13) be-
comes

2v ' mK~ aF = I+-,'~'+gK + 1+, , +O(g') .

(2.13)

where E(1) denotes the value of E at N =1, and

2Y 2 2 Kv2 =1+&a+2gK
2g+X K+~

+g2K2

In order to show E(1)/m &1, when m is suffi-
ciently large, we may take the limit m -~; in
this limit, I' approaches

F„=v+ (vK~/X) —+ 19
1 c K'

the corresponding maximum value is h =&'. Con-
sequent1y, when m =a'~'/X, E(l) is &1. The proof
of theorem 2 is then completed.

B. Soliton solutions when e is near m

From {1.20) and the boundary condition (1.8),
one sees that in order to confine P, in space, &

must be &m. On the other hand, for e &m (and
when the volume of the system A-~), (1.20) has
only plane-wave solutions. To find the connection
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p, =p,u, +p u

where

(2.18)

and g, and P are both two-component spinors (in
'the o' space) thRt, SR'tlsfy

[ V'vg-o ~ (VP )+(m+gP )']g =q P (2.19)

eP, =(m+gP, ao 0')g, . (2.20)

One sees that (2.20) implies (2.19), but not vice
versa.

%hen 6 appx'oaches fP&-
~

lt ls convenient to de-
fine several dimensionless variables:

g =(wP —e')'~'/m, &f&, =- 'PPxm/-g, r = )mr,

between these two types of solutions, we shall in-
vestigate the soliton solution in the limit when &

But before taking the limit, let us first convert
the Dirac equation into a more convenient form.
We multiply the lower equation in (1.20) by H„
= —in ~ &+ P(m+gP, ) on the left. This leads to

H~'P, = &'g, , {2.16)

where, in the representation n =p,e and p=p„
H„'=-V'+ {m+g@,)'- gp, o ~ (0P,) . (2.1'f)

The solution P, may be decomposed in terms of the
eigenfunctions u, of p2:

By ~sing (2.21}and f Pg,d'r=1, we find, when
& -0+,

N = —,'a(g'm2)) ' y'd'r . (2.26)

C. Stability

To study stability in the quasiclassical approxi-
mation, it is convenient to use the positive-definite
form (2.3) for the energy. We define

Similarly, in the same limit, by using (1.19),
{2.21), and (2.24), we obtain the difference be-
tween F. and ¹n to be

(2.26)

Now, f

lorn

the dlscusslons glveQ 1Q the px'evlous
section, we know that, when e -0+, N- and E
is &Nm. On the other hand, according to (2.25)
and (2.26), when &-m-, N also -~, but E is
&Km. Thus, when c varies from 0 to m, the curve
denoting the soliton energy E(N) vs N must cross
the straight line E =Km at some point say S.
furthermore, since dE(N)/dN =e is always posi-
tive and N -~ at both limits e -0+ and ni-, there
must be {at least) a spike developed at some point,
sRy C, oil the E(N) vs N cuI've, Rs sllowll 111 Flg.
l(a}. Similar curves with "spikes" have also been
found for the boson problems'"; such features
are, therefore, characteristic of all three-space-
dimensional nontopological soliton solutions. (See
Appendix C for a discussion of the corresponding
one- space-dimensional problem. )

(2.21) f =N'~'g (2.2'I)
N' ~'P, = (-,

' am)' ~'(& /g)yu+ O(f, '),
where u is the spinor given by (2.6) and y =y(r) is
assumed to be radially symmetric. Thus, the last
equation in {2.21) implies, in the notation of (2.18),

the soliton energy E(N) is then, because of (1.19)
and (2.3), given by the minimum of the functional
G(f„g,) at a fixed N, where

X/2

G(f„(f).) = N' ~' fl,H, ' f,d 'r

In the limit $ -0+, by using (2.21), one finds that,
to the lowest order in $, the upper equation in
(1.20}becomes simply

(2.22)

+ 2 &Q~ +Up dsx,

N= f~lfd r.

(2.28)

(2.29)

1 d —y+y3 =0
r d7' dv'

(2.23)

Both (2.22) and (2.23) hold for an arbitrary U(P)
of the form (1.4}. Solutions of (2.23) have been
given explicitly in Ref. 2; by using the virial theo-
rem proved there [Eq,. (2.49) of Ref. 2], one has

y'd'7 =4 y'd'7. (2.24)

Likewise, the lower equation in (1.20) [or its equi-
valent, (2.19) and (2.20)] can be reduced to

For simplicity, we assume that the curve E(N) vs
N has only one spike, as shown in Fig. 1(a). By
following exactly the pl.oof given ln Ref. 2 fox its
theorem 2, but replacing I, A, and B there by N,
P„andf„respectively, we can establish, for
N &N~, the stability of the lowest-energy soliton
solution against all infinitesimal perturbations.
Since dE(N}/dN =e(N), and since along the entire
branch CS in Fig. 1(a)

—&0
dN
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TABLE I. Ratio 8 between the exact binding energy
and the quasiclassical binding energy. Details are given
in Sec. III. For K=2 and weak coupling, 8 =0.768 is
calculated by assuming, for simplicity, the boson mass
a'~2 «mg /(4v)

even in the quasiclassical approximation, the soli-
ton can decay into plane-wave solutions.

III. QUANTUM CORRECTIONS

coupling

strong
weak
weak

arbitrary

2

~ = t~t»exact~~+b~qcl
nonrelativistic relativistic

not known

0.768

So far, we have considered only the quasiclassi-
cal Hamiltonian H„,; the quantum correction will
be examined in this section. %'e shall evaluate
the binding energy, including the quantum effect,
in various limiting cases, obtaining the results
shown in Table I.

For clarity of presentation, we shall assume the
renormalized coupling constants

(3.1)

Thus, (1.15) and (1.16) become
E(N, +Iv2) &E(X,)+E(Ã2) (2.30)

for all positive values of Na and Na. Consequently,
the soliton is also stable against fission into sev-
eral smaller ones. For Ns &N&X~, the soliton
energy E is &¹n; thus, under finite perturbations,

H „= ~ &$, 2+ay Q, d'y

+ a,(a)'a)+ b", b', ),
a

H = -'II2+-' V'X 2+ —p2X2 d'y+ -V'2(t} + p,eg, +g ~~P4~ Xd'r- n c, + counterterms, 3.2
a

where the boson mass p. =aa~'.
In the following, we shall divide our discussions

into two parts: (A) assuming the fermions to be
nonrelativistic, and (8) the full relativistic Hamil-
tonian (1.1).

its conjugate momentum II(r, f) in terms of their
Fourier components:

X(r, t) =P (2 &v,fl) ' '[c (t)e"' + ct (t)e "']

A. Nonrelativistic fcrmions

For nonrelativistic fermions, we replace m (1.1)
the energy density of the Dirac field by its non-
relativistic expression:

Q g' ~(- n 0+ p m + gp@)y'

The commutation and anticommutation relations
(1.2} and (1.3) remain valid, and as in (1.V) we de-
fine X

=—P —P, . However, instead of (1.10) and
(1.11) we have

ll(r, t) =-f g (-'~ /fI}'~~[c.(f)s'"~ — tc( )f-e"']

where 0-~ is the volume of the system,

(u, =(q'+ p,')"' and q

Thus, a~(t) and c.(t} satisfy, as usual,
o

(a', (t), a",.(f)'] =5„.5,
„

and

[c.(t), c., (f)']=5 .. .
The fermion number operator N is given by

(3 5)

[-(2kB) V +g(f)~]Q) =tgg( (3.5)

in which the eigenvalue &, has a degeneracy with
respect to the spin orientation of u, . It is conven-
ient to expand the boson field operator g(r, t) and

y'(r, f}=Q a)(f)ug(r), (3.4)

where u, (r) satisfies the Schrodinger equation

nr=gp a', ta', . (3.V)

To avoid ambiguities with ultraviolet divergence,
we impose an upper momentum cutoff A in the
Fourier expansion of the boson field. If one
wishes, one may regard the system as consisting
simply of electrons and phonons in a lattice of unit

size A '. For N=n=j. , our problem reduces to
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P(r, I) —P(r, f) =— f(r —r')@(r', t) d'r'

(3.8)

the mell-known polaron problem, "except for the
relatively minor differences in {d, and the inter-
action form factor. [See the discussions given be-
low after (3.49).] With the momentum cutoff A,
the field operator P in {3.3) and the c-numberfunc-
tion P, in (3.5) are replaced by„respectively,

occurs when

[-(2m) 'V'+ g(f&,]g, =&&, ,

where Q, is given by (3.8),

o(r) = f(r —r')g(r')4, (r') &'r',

(3.14)

(3.15)

0 (r) 4 (r) = f(r —r )4 (r )«

f(r) = ](4v) '3A' if r A '

0 if r&A'
The total Hamiltonian H can be decomposed into

a sum of two terms:

(3.9)

Hqc1 Heorr &
(3.10)

where the form factor f(r —r') -5'(r- r') if A-~.
As an example, we may take f(r) to be

and $, is normalized according to f P~g, d'r=l.
(i) (4v) 'g'«A/(Nm). In this case, we may

take A to be ~; the form factor f(r r') be—comes
simply 53(r —r'). To simplify our calculations
further, we assume, in addition

p, «mg'/(4v) . {3.16)

Consequently, we may neglect the terms —,
'

p.'P,'
and p, 'p, in (3.13) and (3.14), respectively. It is
convenient to introduce the dimensionless scaling
variables p, A(p}, and B(p):

just as in (1.14). However, instead of (3.2), we
have

a &4, '+ zv'4. ' d'&+ ~i~i'~s
=1 =j.

(3.11)

cd c~cwq q q
q

+ -&'e.+ v'e. x+g x
1

p =—2mg'Ny,

A=—(2m@'N ) 'p, ,

B = (2mg 2N)-six

Hence, A(p) and B(p) satisfy

A =82
p

and

(-V, +A)B =eB,
where J B2d'p=l and

& =2mg4N'z .

(3.17)

(3.18)

(3.19)

X(r, t) = f(r —r')X{r', I)~'~' . (3.12)

1. Quusiclassicul solution

As in (1.19}, the guasiclassical energy is now
the minimum of

E(4.)=N~+ k[( 4V.)' p+'4.'ld'~,

where & =e(4,}denotes the lowest eigenvalue e, in
(3.5), and N is assumed to be ~ n, as before.
Just as in (1.20), by labeling the corresponding
eigenfunetion u, =—g„wefind that the minimum

For clarity, we have dropped the counterterm in

H„„,as we should if we were considering the
electron-phonon interaction in a crystal. [See the
discussions given below after (3.49).] In any case,
this is allowed because the divergence has been
removed by the momentum cutoff A. Notice that
in the nonrelativistic fermion model, 5 = c = 0 en-
sures that there is no diagram leading to the re-
normalization of b, c, and p, =a'~'.

The coupled equations (3.18) can be solved nu-
merically. For the nodeless radially symmetric
solution,

~ =0.0814/(4v)2 . (3.20)

{Eg) „=—p(0.0814)(N' —1)Nm[g2/(4m)]2 . (3.22)

{ii) (4v) 'g'» /(AmN). When g is very large,
the size of the fermion orbit becomes comparable
to the lattice size A '. The potential energy gft},
is Q(g'N'A), while the fermion kinetic energy is
Q(NA2/m), which is relatively unimportant.
Thus, we may neglect -(2m) 'V' in the ecluation
for P, ; (3.13) becomes, then,

By using {3.13) and (3.18), one finds

(V,A)'d'p =-3 (V, B)'d'p = —,
' AB'd'p .

(3.21)
Hence, for the N-fermion state, the binding energy
E(N) —NE(l), in the guasiclassical approximation,
ls
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F(4.) =gN ff(r)@.(r)d'r+ 2 P'4.)'+ p'4. 'g'r,
whose minimum ls

The matrix element of H, is zero for /=1, because
of the quasiclassical equation (3.14); it is also
zero for k&N because of (3.28). Consequently,
the first-order perturbation energy is

-(8v) 'g'N', exp(- p, ir —r' i)d'rd'r' .f(r)f (r')
lr- r'l

(3.23)

QEEQPl PAEAN 80P'I'Pc) l0lls

Z, = (N iH, iN& =0,

and therefore

Z, =(NiHiN&.

(3.33)

(3.34)

In order to evaluate quantum corrections, it is
more convenient to rewrite the total Hamiltonian
(3.10) as

(3.24)

(3.25)

-&'4.+ u'0, x+zx

~N & =]g o,"
~
0 &,

where N n, as before. The state IN) clearly
satisfies

(3.28)

H, ~N& =H„,~N& =Z, ~N&, (3.29)

where E, is the guasiclassical energy. For
(4a) 'g'«A/(Nm) and n«mg'/(4v), we have,
according to (3.1V)-(3.21),

H„,is given by (3.11) and X by (3.12). In the fol-
lowing, we shall regard H, as the zeroth-order
Hamiltonian, and H~ the perturbation. "

let ~0& be the state that satisfies

a~f0&= ic0&=0 (3.27)

for all I, k, and q. Recalling that (3.5) and (3.14)
are related through & =&, and ~, =u„the quasi-
classical state for a given fermion number X is
simply

Egq =Eo+E~+E~+' ' ' (3.35)

In the following, higher-order quantum correc-
tions will be discussed for various limiting cases:
(i) superstrong coupling (4w) 'g' » A/(Nm), (ii)
strong coupling (4v) 'g'» in{A/m), or just »I,
(iii) N»1, but arbitrary coupling, and (iv) N =2
and weak coupling. As we shall see, in the first
three cases, the quasiclassical solution is a very
good approximation to the quantum solution; in
case (iv), it remains a fairly good approximation.

(i) SuPerstrong couPling (4x) g» A/(N/m). A
lower bound of the ground-state energy of H can
be derived by neglecting in H the fermion-kinetic-
energy term JZ$ (-2 V /m)$ d r, since 1t ls a
positive-definite operator. We may then take a
coordinate representation for the X fermions, and
regard their position vectors r„.. ~, r„aspure
parameters. The minimum of H, without the fer-
mion kinetic energy, can be readily obtained, be-
cause H depends only quadratically on the boson
operators. The minimum occurs when r, = r,

= r„,and this leads to (3.23) being the lower-
bound of the quantum ground-state energy; we
recall that (3.23) is also the quasiclassical energy
E, in the superstrong-coupling limit. On the
other hand, according to (3.34), E, is also an up-
per bound of the ground-state energy. Thus, in
the superstrong-coupling limit, the ratio of the
quantum ground-state energy to the quasiclassical
energy E( approaches 1.

(ii) Strong coupling (4v) 'g~» tn(A/m), orjust
We may expand the ground-state energy E,

„

formally in powers of H, :

&.= --'(0 0»4)N'n~ lg'/(«) l'. (3.30) The second-order perturbation energy is

For (4v) 'g' » A(/Nm), F., is given by (3.23).
From (3.26), one sees that H, ~N& is a linear

superposition of states, all of the form

~
t, );q) = o,"o,'c', ~N&- (3.31)

The corresponding matrix element (I, k; q ~H, ~N&

can be readily derived by setting

if I= j.

(3.32)

F., = Q (e, —e, —(u,) '((l, A, ;q~H, ~N&P. (3.36)

Because of (3.32), tel in this sum. Also, since
the interaction H, is spin-independent, there is
no spin-flip matrix element. I.et 4 be the minimum
of &, + , - &, for all ~~1 ~tates with the same spin
orientation as that in the initial state ~N). In the
strong-coupling region, we may neglect p. If the
coupling is not superstrong, (3.1V)-(3.22) a.re ap-
plicable; therefore,

g Xu ~u, d'~ otherwise. & =O{N2g'm) . (3.3"t)
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In the sum (3.36), l extends over the excited
bound levels as well as the continuum of (3.5).
For the bound levels, the integration over q is
finite because of the orbit size R. From (3.1V),
one sees that

ft-' =O(Ng'm). (3.36)

=[a.+ &u, +(2m) 'q'] ', (3.41}

and there are three such factors in E,. To obtain
the perturbation energy for the N-fermion system,
one has to multiply their product by Ng' jd'q, d'q, /
(&u, &o,); this leads to a fourth-order energy
= O(Ng'm'/4) = O(m/N). A much larger contri-
bution comes when in (3.40), I, =1; in that case,
only two of the energy denominators are of the
form (3.41), the other one is simply (&u, + v, ) '.
Hence, it gives a fourth-order energy =O(mg').

By using (3.26) and (3.32), one ma.y extend the
fourth-order energy calculation to include also
diagrams in which two different fermions are
excited. One such diagram is obta. ined from (3.40)
by setting /, =1 and assigning the first pair of
transitions to one fermion and the last pair to
another. This simply introduces another factor
N-1, yielding a fourth-order energy

(3.42)

Thus, each excited bound level contributes a term
=O(g'/(R'&))=O(g'm) to the sum. For the con-
tinuum and large q, the recoil energy of the fer-
mion is --,'q'/m. Hence, the q integration would
diverge logarithmically if there were no momen-
tum cutoff A. Vfe find for A large:

E, = —,'(g/—v)'Nm In[A/(mh)' ~']+ O(Ng'm) .
(3.39)

If the coupling is strong, but not superstrong,
then E, is O(N'g'm). Consequently, E,/E, «1,
at least in the region (4v) 'N'g' » ln(A/m).

By pure power counting of momenta, one sees
that all higher-order perturbations E~,E„etc.
are convergent when A —~. For definiteness,
let us first examine E~. As a typical example,
we may consider a single fermion making the fol-
lowing sequence of transitions:

(3.40}

where /„~,denotes that the fermion is in the level/„plus an additional boson of frequency v„and
/„~„~,denotes that the fermion is in the level
l„plus two bosons of frequencies ~, and ~„etc.
Because of (3.32), I, o 1 and I, o1, but I, is arbi-
trary. For / t 1 and ~„~,both large, each energy
denominator in the perturbation formula gives a
factor of the form

E~;=O(mÃg~}, all j~ 2. (3.44)

For coupling (4v) 'g' » ln(A/m), but not super-
strong, E, is O(N'g'm). By using (3.39) and (3.44)
we see that for arbitrary N and for all j~ 1,

A second diagram of the same order of magnitude
is obtained by crossing the boson lines, so that
(l„&u,) in (3.40) is replaced by (l„&v,). Any other
diagram can be obtained from one of these two
without changing the topology, simply by altering
the "time ordering" of vertices on two different
fermion lines. The result of such an alteration
is that all three energy denominators become of
the form (3.41). The result differs from (3.42)
by a factor O((m/~)'~') = O(Ng') ' «1. Thus,
(3.42} is the dominant contribution to the fourth-
order energy.

Likewise, for E„E„.. . , the dominant contri-
bution always comes from diagrams in which two
or more fermions are never simultaneously ex-
cited. Any other diagram can be obtained from
one of these by a change in the "time ordering" of
the transitions, but without altering the topology
of the diagram; such a change merely introduces
an extra factor O((m/&)' ') = O(Ng') ' «1, as in
the above fourth-order calculation.

In each of these dominant diagrams, the se-
quence of transitions can be broken down into
clusters. In each cluster, a single fermion makes

. a sequence of r+ 1 transitions from / =1-l, -
—I„-I=I, where f, 41 (i =I, . . . , r) This .yields
a factor

O (Ng x+1/n r) O(Ng @+1/(mN 2g 4)r)

= O((Ng)-'"-"(mNg')-").

(We are grouping together all diagrams obtainable
from one another by shifting entire clusters from
one fermion line to another. )

The product of (3.43) over all the clusters is to
be multiplied by a number of factors d'q/u&, and
divided by energy denominators Zv, for the states
between clusters, and integrated. The integrals
converge, as seen from (3.41), over a region
q ~ O((m 6)'~') = O(mNg'). Therefore, the value of
this group of diagrams is of order (Ng) (mNg*)',
where s is the sum of r- 1 over all clusters, and
t must be 1 by dimensional analysis. We now ob-
serve that the first line of (3.32) holds good as
w'ell when there are additional bosons present in
the initial and final states; i.e., on account of
(3.14) and (3.26), the matrix element of H, is zero
if the fermion is making an /=1-l =1 transition.
This means that clusters with r =0 are forbidden,
and hence s ~O. The dominant diagrams are there-
fore those in which all clusters have x=1. Thus,
s=0, and
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E„.E,«1. (s As)

Hence, apart from the convergence question of
the series E,+E,+ ~, the quasiclassical solution
is a very good approximation to the quantum solu-
tion.

For coupling (411) 'g' » 1, but not greater than

ln(A/nt), the quasiclassical solution remains the
same. The second-order energy E, is, however,
no longer small compared to E,. The dominant
term in (3.39) is ,' (g/m-)-x-Nm ln(A/m), which is
linear in N and is independent of either the fer-
mion level or the mutual interactions between
fermions. Thus, it is useful to separate out this
particular level-independent part of self-energy
per fermion; we define

E,' =E, —.'( g/v)be—m h (A/m),

E,' =E, + ,'( g/v)'N-m In(A/»1),
(3 A6)

E,',.=E~,- for j~2.
The ground-state energy E~ can be rewritten as

E =E'+E'+E'+ ~ ~ ~
gd 0 2 4

Clearly, for all j~l,
/EI« I

provided (411) 'g' » 1. Because this rearrange-
ment (3.46) is independent of level excitations, in
all other aspects, e.g. , scattering form factors,
mobility, etc. , the quasiclassical solution remains
a good approximation to the quantum solution.

(iii) N» 1 and arbitrary coupling From. (3.3V),
one sees that except in the weak-coupling region,
cV»1 implies ~» nz. Therefore, in the series
expansion (3.35), the dominant contributions to E„
can be derived by following the same argument
given above in (ii), which leads to (3.39) and (3.44).
Since Ec is O(N gem), one obtains E,&/Eb«1 for
all j~ 1, provided that N is sufficiently large. The
quasiclassical solution is, therefore, a good ap-
proximation to the quantum solution.

In the weak-coupling region, as g'-0 for fixed
N, the orbital size of the fermion -~, and there-
fore its kinetic energy -0. Thus, the nonrelativ-
istic fermion case is the limit of the fully relativ-
istic problem. To avoid repetition, we shall defer
our discussions to the next section, B, when we
study the relativistic ease. As we shall see, the
quasiclassical solution remains a good approxima-
tion to the quantum solution.

(iv) N=2 and weak couPling In the weak-coupl. ing
region (411) 'g '«1, in order to have a soliton
solution for N=2, t1, /m must be «1, in accordance
with theorem 2, given in Sec. II. To simplify our
discussions, we shall assume p, =0. The inter-

action energy between two fermions at distance ~
apart is Coulomb-like, (4-11} 'g-'/r The exact
binding energy (E,) to leading order in g' is de-
termined by the ground-state solution of the fa-
miliar two-body Schrodinger equation:

g Pl

(Eb}exact (3.4V)

From (3.22), we see that the corresponding quasi-
classieal binding energy is

g 2 2

(Eb) „=-0.326m (3.48)

Their 1atlO 1S

(Eb)exact 0 768
(Eb}cc1

(3.49)

3. Polaron

For the electron-phonon interaction in a polar
crystal, we have n =1, ~, = constant and the Four-
ier transform of the interaction form factor f(r},
defined in (3.8), is proportional to q ', where q is
the phonon momentum; in addition, there is a mo-
mentum cutoff A due to the lattice size. The soli-
ton solution of such a system is the well-known
polaron. " Because of the factor q ', for large A

the second-order perturbation formula, unlike
(3.39), is A-independent. Let E(P) be the lowest
energy of the state N =1 and total momentum P.
We may expand E(P) in powers of P:

E(P) =E(0}+~P'/M+ ~ . , (3.50)

where E(0) is the same E„,defined in (3.35). We
note that E(0) is related to the work function of the
electron, and M to its mobility; both are measur-
able. This explains why in (3.11) there is no coun-
terterm in H„„.

B. Relativistic case

H, =H, + ~,&'-c. ,0 qcl (s.52)

g
q,

(3.53)

We now turn to the fully relativistic Hamiltonian.
Although the quasiclassical solution can exist in
both strong- and weak-coupling regions, the ex-
act relativistic quantum soluti. on is available for
comparison only in the weak-coupling region. It
is convenient to expand X(r, t) and its conjugate mo-
mentum II(r, t) in terms of their Fourier compo-
nents, as in (3.6). Similarly to (3.24), the rela-
tivistic Hamiltonian H can also be written as

(s.51)

where
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and H„„H„„aregiven by (3.2). In the following,
we shall regard Ho as the zeroth-order Hamilton-
ian, and H, the perturbation. " The unperturbed
state ~N& for a given fermion number N remains
given by (3.28); i.e.,

~x& =IIs» ~0&, (3.54)
1

where the state ~0& satisfies

a', ~0&=b,'~0&=c.~o&=0

for all l, 0, and q. Clearly, ~N& satisfies, just as
in (3.29),

H, ix & =H„,ix&

=E, [H&, (3.55)

where E, is the quasielassical energy.

Yeuk coupling and N && 1

E,/E, =O(N'g') «1 . (3.63)

In this estimation, N is assumed to be of the same
order as n; otherwise, E,/E, is O(nN'g').

We now turn to the second term H, , in (3.59).
It is convenient to introduce

where E, is ~ {gP,)~. Each E, ma. y, in turn, be
further expanded in terms of the gradient operator
V', and we shall retain in K,. only the lowest-order
V term. Because of the counterterms, X, =o,
and P,', (&Q,)', P,', P,' are all absent in the sum
QE, Hence, E, g'-(&'f, )', E, - g'Q, (VQ,)', E,

g'P'{~4 )' and E -(gP )~for j~ 5 amongthese
according to (3.61) the largest ones are E, and E, .
In (3.62), the integration m J d r brings in an-
other factor -(g'N) '. Consequently, the order of
magnitude of E, is O(n. m(Ng')'), which is much
smaller than E, =O(N'g'm); their ratio is

As we shall see, in order that the weak-coupling
expansion holds when N» 1, we need to assume not
only (4v) 'g'«1, but also

(4v) 'g'«H ',
where N~ n, as before. According to theorem 2
of Sec. II, soliton solutions exist in the weak-cou-
pling limit only if p/m«1. To simplify our dis-
cussions, we assume

H»= g g'tPP"Xd'r,

H, = (- v'P, + p, 'P, )yd'r;,

H, , =H~+ H„+counterterms .

(3.64)

(3.65)

p, «mg'/(4v), (3.57) By using the qua. siclassical equation {1.20), we
obtain

so that the main features of the relativistic quasi-
classieal solutions are approximately described
by the p =0 nonrelativistic limit (3.1V)-(3.22).

By using (3.2) and (3.53), we may separate H,
into two terms:

H =H]+H;, , Hq+ Hq N =0,
-1

(3.66)

(3.67)

H, = -n g e, + counterterms
1

&'4.+ p'-4. +g P 0"8"Xd'r

+ counterterms .

(3.59)

{3.60)

~lV, q&=c'., ~lV& . (3.68)

From (3.66), one sees that the first-order pertur-
bation energy of H« is zero. The second-order
perturbation energy can be written as

(3.69)

in which

The first term H, denotes the fermion-loop con-
tribution in the presence of Q, . According to
(3.17),

' =O(g'N') and ' =O(g'N)) V'ft)

m mQ,
(3.61)

which are both «1. We may expand the diagonal
matrix element of H, in powers of gQ, :

+0-&~ '

+ &N~counterterms ~N&,

E„„,= g Q (-~,)-'&X~H„~X,q&&lV, q~H„(H&,
JY/k

{3.VO)

Z, = &H~H, ~H&=nm f-JEST'r,
1

(3.62) E»= -m, ' N, qH~N
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exact binding energy to the quasiclassical value
is 0.768, which is a fair approximation.

&&&N ql&~IN)+c c )

(3.71)E« =O(m(Ng')' In(1/Ng')},

which is much smaller than E, = O(N'g'm) in the
weak-coupling region. From (3.54), (3.64), and

(3.68), it follows that (N, qlH„lN) is independent

of k for k~N, and 0 for k &N. Thus, by using
(3.67) a.nd (3.70), one sees that

N —1
E«,+ (E»+E,„)=0 . (3.72)

For N» 1, we have

E«+E~q+E«O(EO/N)

which can be neglected. Combining (3.71) and

(3.73), we see that

(3.73)

E, , «E, , (3.74)

which together with (3.63), imply that the effect
of H, can be neglected in the weak-coupling limit,
provided N» 1. The quasiclassical solution is,
therefore, a very good approximation to the quan-
tum solution.

We note that by using (3.64), (3.70) and by elimi-
nating the operator X in terms of its propagator,
it can be readily verified that

where the sum Z„in E«extends over all eigen-
states lA) of H„provided lA) & lN). The eigen-
value of lA) is E„.

In (3.69), the first term E« is exactly the same

as the second-order "Lamb-shift" calculation of

the ground level of a fermion in an external attrac-
tive potential = &I),. By following the standard argu-
ments, "we find

IV. REMARKS

From our discussions, we see that the quasi-
classical solution is a fairly good approximation
to the exact quantum solution over a wide range
of coupling constants, even when N is small (2 or
3). It is important to note that, when N is small,
the quasiclassical-soliton description of an N-body
bound state is quite different from the usual de-
scription in terms of solutions of the Bethe-Sal-
peter equation (say, under the ladder approxima-
tion}. Each of the N bodies is "bloblike" in the
former description, while "pointlike" in the latter.
In the weak-coupling region, the usual Bethe-Sal-
peter description is exact; otherwise, the soliton
description appears to be a better approximation.

Note added in proof. A simpler and more gen-
eral proof than the one given in Appendix A that
the eigenvalue e, e 0 in (1.11) has been given by A.
Nishimura [Univ. of Tokyo Report No. 275 (un-
published)] and independently by G. C. Wick (private
communication). We wish to thank Dr. Nishimura
for communicating his result to us before publica-
tion.
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APPENDIX A: ABSENCE OF ZERO-ENERGY FERMION
LEVEL

In this appendix, we show that under rather gen-
eral conditions, the eigenvalue e, of the Dirac
equation (1.11) is not zero.

We consider first the one-space-dimensional
case. The corresponding Dirac equation is

E..=--. [(&4.)'+ 4
'4.']d'~ [ i~,d/dx+v-, (m+gP, )]g=eP, (Al)

and

E~& =- gNP, Pg, g, d'x .

where '„7r„adnr,are the standard (2 x2) anti-
commuting Pauli matrices, and, as before, rn is
assumed to be &0. If e =0, (A1) becomes

Thus, in effect, E» and E~~ just cancel the cor-
responding terms in the zeroth-order energy E,;
these canceled terms are restored by E~„,, but
multiplied by (N 1)/N. —

Z. Weak coupling and N = 2

Fo»= O(1},(3.73}is no longer small; the series
expansion in which H, is treated as a perturbation
is not a valid one. Nevertheless, in the weak-
coupling region, the nonrelativistic calculation is
the limit of the relativistic problem. From (3.49),
we observe that, even for N =2, the ratio of the

7', —= —(m+gQ, )g .dp

x

$, = const x exp v (m +gP,}dx
l 0

(A2}

Let u, and u be the two eigenvectors of ~,:

T2u~ = k u~

In terms of u„gmay be written as

P=$,u, +g u

where g, and g are c-number functions that satisfy
dP, /dx =v (m+gP, )P,; hence,
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For the nontopological soliton, P, =0 at both lim-
its: x=+~ and -~. Consequently, $, diverges at
x=-~, and g diverges at x=+~. As a result,
e c0.

On the other hand, as is well known, '""4
& can

be 0 for the topological soliton, provided that the
two limiting values of (m+gP, ) at x=+~and -~
are of opposite sign. For example, if when@ -+~,
(m+gg, )-m, &0, and if when x--~, (m+gP, )
-m &0, then P = P,u, is a good solution of (A1)
with & =0.

Next, we consider the three-space-dimensional
case. For simplicity, we assume

M =- (m+gP, ) =M(r)

to be radially symmetric. If in (1.11), the eigen-
value e, =0, then the corresponding eigenvector g
satisfies (in the representation n = p, o and P = p, )

p2(o' %')g = M1t1 .- (A4)

Let us examine the S», solution. (Generalizations
to other angular-momentum solutions are straight-
forward. ) We may write

p = p,u, + |t} n

In contrast, as shown by Jackiw and Hebbi, "in
the case of the topological soliton, zero-eigen-
value fermion solutions can be found in three
space dimensions, just as in one space dimension.

APPENDIX 8: %HEN THE MINIMUM OF U{y) IS
DEGENERATE

In this case, the parameters a, b, and c in
(1.4) satisfy 5'=Sac. Thus, U(P) becomes

f/(4) =4, c1t'(0+2L)',
1

where f =(Sa/c)' '. The minimum U(1t1) =0 now
occurs at both Q =0 and -2L, . There is, of course,
a choice (at least on the quasiclassical level) in
defining which minimum should be the vacuum
state. For definiteness, we choose P =0 to be the
vacuum state. Let us define, as in Appendix A,

(B2)

In the following, for convenience of notation, we
shall omit the subscript c for the quasielassical
solution, and denote simply

Q=,P, and $=|t}, .

A, (r)+ (o r)B,(r),
where A, (r), B,(r) are c-number functions, u,
satisf ies

(A5)
%e first consider the case that the values of M

at these two minima are of opposite signs; i.e.,
n»0, but m —2gJ &0 .

p~Q~ = kQ~ and 0'3Q~ = 44~

wltll tile sallle ~ fol botll a, and Q. . (~ call be eltllel'
1 or -1.) By using (A4} and (A5}, we find that A,
and B, satisfy

M'
pe + gt ~~2g 0

where a prime denotes d/dr.
For the nontopological soliton, when x —~, Q,

-0, and therefore M-m &0. Thus, at infinity,
A, and 8, have each a regular solution -e " and
an irregular solution -e ". Near the origin, let
us assume that M —const xr', where s~0; then
it follows that, as x-0, A, - const ~ x and 8,
—const &&r~, where

y =r, tanh[-,'a'"(r-ft)]- L+O(&-') . (B4)

lt will be vel ified later [through the discussion
following (B12)], that if one neglects O(R '), the
solution 1t1 thus constructed does satisfy (1.20); i.e.,

——r ———cA(4+&)(@+2L}=g&4 &0 .1 d ada
y' dy Ch 31

(B5)

For arbitrary values of a, e, m, and g, if N is
sufficiently large [though ~n, in accordance with
(1.18)], the minimum-energy solution of (1.19) is
similar to that of the SLAC bag model. ' [Though,
in the SLAC bag model, N is -1.] We can divide
the soliton solution into three regions: the inside
region x~ R —l, the shell region R+ E ~ ~ ~R —/,
and the outside region r~R+I, where I is O(a ' ').
In the inside region Q is —=-2L, while in the out-
side region P is =—0. Vfhen N is»1, R becomes
»E. Therefore, in the shell region, Q is approx-
imately determined by the one-space-dimensional
solution:

P =sy or -3
One of these independent solutions, P=-3, is al-
ways singular at the origin. Thus, in general, p
cannot be regular at both limits: r =0 and ~; con-
se1Iuently, in (1.11) the eigenvalue e, 11 0.

For the moment, we shall assume Q(r) to be
given, and proceed to examine the solution for the
ferrnion field P:

[-in ~ 0+ PM(r}]g =eP . (Be)

For the 8, /2 state, we define
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io'x F

where r = r/r, and s denotes the eigenstate of v, ;
~e~y

0s=
0

or

tude. ]
In the inside region, x~ —,'R, the amplitudes of

F and G are exponentially small. In the approxi-
mation that (VI is a, constant (M = m —2gL &0), the
x dependence of F and 6 is given by

F = (-Xcosh&r+r 'sinh&r)
c+M

In the representation n =p, (T and j3=p„the radial
functions F(r) and G(r) satisfy

(
1——— G=-(e+M)F .

d'v

For definiteness, we first consider the region
r& ,R -(He. re, the factor —,

' is arbitrary; it can be
any constant &1.) According to (83) and (84),
M(r) varies from a negative value, near m —2gL
at x= &B, to a positive value n~ at x=~. It is con-
venient to introduce A(r) and B(r), defined by

F = C,ee(1+A),

G = Coca(1+B),

E =I(I/R+ 38va'I L R

Thus, the mimimum E occurs at R = 2[3I(I/
(2(Ta'~'L')]'I', and its value is

E =N"'(13va""L2)'I3

(813)

which reduces to (2.11), because L =(3a/c)'I'.
Next, we consider the case that the minimum of

U(P) remains degenerate at (t(=0 and 2I, , but-,

unlike (83), at one of the minima Q = 2L, -

G =Bsinh~x,

whe~e D is a constant, X =(M' —e')'I', and e = R '
as before.

Neglecting higher-order terms in O(R '), we
obtain the energy of the quasiclassical solution

where Co is a constant, and

M(r')dr' .

Because of (88), A(r) and B(r) satisfy

(810)
whereas at the other minimum Q = 0, M = m & 0 as
before. In this case, an upper bound of E can be
obtained by assuming a trial function in which,
as in (84),

d 1——+2M (A-B)= —-e (2+A+B),
dg y'

(t(=Ltanh[ —,'a'I'(r-R)] —I, +O(R '), (815)

——(A+(() = —+a)(A-(() .d
d'Y

By comparing (89) with the corresponding one
space-dimensional solution, one sees that for x
large ~ 0 (R), A and B are both small, O(R ').
Therefore, gtpg=O(R '), and (B4) satisfies (85).

Because of (84), M(r) changes rapidly only with-
in thetransitionregionr=R+O(a 'I'). Forr=0(R),
but outside the transition region, by using the up-
per equation of (811) and regarding d/dr as O{R '),
we obtain

A -B=(rM) '(1 —er)+O(R ') .
For R» a '~~, we may interpolate this solution
across the transition region, thus, 1 —&x =0 when

M(r) =0, and consequently,

e =R '[1+O(a "'R ')]
The above argument is essentially the same as
that given in Ref. 8 for the SLAG bag model.
[Note, however, here the values of M(r) at the
two minima of U((f() need not be of equal magni-

((2vR) 'I'(u/r) sincr for r~R
1 0 for r~0,

as in (2.5). This leads to

E~ vI(I/R+-', Boa'I'L'R'+O(Ra) .

(816)

APPENDIX C: SOLUTIONS IN ONE SPACE DIMENSION

In this appendix, we discuss the quasiclassical
soliton solutions in one space dimension. As in

Appendix B, we shall omit the subscript c, and

simply denote P = P, and P = p, .

The minimum of this upper bound now occurs at
R = ~[3I(I/(2a'"L }]'2I'. We find then, instead of
(814),

E~ vA '"(lac'I2L2}'"

Lastly, we consider the case that the minimum
of U(Q) remains degenerate at (t(=0 and 2L, but-
M is &0 at both minima. In this case, by following
the argument given in Sec. II A, one sees that
(2.1) remains valid.
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1. Basic equations

In one space dimension, (1.20}becomes

-Z+ 0+~'(4)=-gNP'v. 4

where

V =-,'e'&'- U(p) ——,'(m+g 4)'y' .
Since (t) =y =0 at x = +~, (C9} leads to

1 dP 1 dy

(C10)

(C11)

(
d-iT —+T M~ dx (C1)

where, as before, Tg T2 and T3 are the three
(2 x 2) anticommuting Pauli matrices,

If one wishes, one may eliminate y instead of g.
This would lead to a discussion completely equi-
valent to the one above, since (C1) is symmetric
under the usual parity operation: x --x, Q -P,
and p -T,g; therefore, y -q and q -y.

&)0 and M=m+gQ .

E =Na+ +Up dx .

In accordance with (2.14),

dE/dN=e .

The energy of the system is

(c2)

(c3)

(G4)

2. Mechanical analog

There is a simple mechanical analog for
this problem. We may consider the planar
motion of a point particle of unit mass, at
"time" x and "position" r= (Q, y, 0), moving in
a static "potential" V and a "magnetic field" H
=(0, 0, y); its equation of motion is

T~u~ = +u~ q

with the normalization

(cs)

It is convenient to introduce two c-number func-
tions y(x} and g(x), defined by

1/2
(yu. +)()u ) . (Cs)

Thus, y and g satisfy

—+M y=ag

and (c7)

—-M q=-&y .

We may eliminate )); (Cl) can then be written as

d2
a dM, +M'- y=~'y .dx2 dx

By using (C2) and (Cs), we find

(cs)

(C9)

As we shall see, (Cl) possesses a simple integra-
tion constant; by using this integration constant,
one can reduce the above set of coupled equations
to a single second-order differential equation,
which is given by (C14) below.

Let u, and u be the two eigenvectors of T,:

~0

r=-0V+gr xH, (c12)

where g is the "charge", 0 is the gradient opera-
tor with respect to r, and the overdot denotes the
"time derivative" d/dx. In this mechanical analog,
the "energy-conservation" law is (C9). Because
of (Cll), the "trajectory" that we are interested
in has a zero total "energy"; i.e.,

~r +V=0 . (c13}

Furthermore, at both "time limits" x =+ ~ and -~,
the trajectory approaches r =0.

By using (C13), one may eliminate the "time
variable" x; the trajectory (j) = (j)(y) is then deter-
mined by a single second-order differential equa-
tion:

-2VQ =(1+(j)' )(-V~+ V„P'

3. Solution when e ~~—

When q approaches m-, it is convenient to in-
troduce several dimensionless variables, $, T, X,

+gy[-2V(1+ (t)' ]' ), (C14)

where (t)'=d(t)/dy, (j) =d (t)/dy2, Vo=SV/8$, V„
= SV/Sy, and the + sign is equal to the sign of
(fy/Cx.

[It is of interest to note that in the case of the
scalar-field soliton problem discussed in Ref. 2,
in one space dimension, there exists an identical
mechanical analog, in which the point particle
moves in the same "potential" V, but without the
"magnetic field" H. Instead of (C12), the equation
of motion is simply r =-~V, and therefore, the
same energy-conservation law (C13) holds. ]



R. FRIKDBERG AND T. D. LEE

and y, similar to (2.21):

t=(m'-e')'"/m, y=--.'Pxm/g,

7 = $mx, and y=(-,'a/g')'~'gy .
(C15)

By substituting (C15) into (C14), we may deter-
mine the dependence of I on y. In powers of $,
X(y) is given by

X =y' a $y'(1 ——,'y')' '+ O($'), (C16)

where the + sign is for dy/dv) 0, and the —sign
for dy/dr & 0. By using (C8) and neglecting O($),
we find

d'y/dr' —y+y' =0 .
The solution that satisfies y =0 at v'=+~ is

y=~2sechv .

(ClV)

Both (C16) and (C18) are valid for an arbitrary
U(P), provided a&0.

Because oi (C6) and J P~Pdx =1, we have

N = ,'e (y'-+ q')dx.

As $-0, q-y, and consequently

N-2(a)/g') y'dv .

By using (C18), we derive

N -2a)/g' -0 as e -m (C18)

According to (C4), the derivative of the soliton
energy E with respect to N is &, which is &m;
therefore,

(e —m)dN &0 .

We find then, in the quasiclassical approximation,

for arbitrary N and U(P), the lowest one-space-
dimensional soliton energy E(N) is always less
than that of the plane-wave solutions.

From (C16) and (C18), one sees that for arbi-
trary U(P), when e -m , -the soliton solution cor-
responds to one in which the fermion density p
=-NP~g is maximum at the center of the soliton,
say x =0. By following an argument similar to the
one given in Sec. IIA for the proof of theorem j.,
one expects as e -0 (i.e. , N- ~) that the soliton
energy E ~ 2[v U( m/g-) j'~'N'~', provided that the
absolute minimum of U(P) is not degenerate; the
maximum of the fermion density p in such a solu-
tion is also at the center of the soliton. A sche-
matic drawing of E(N) is given in Fig. 1(b).

On the other hand, in one space dimension, if

U(4) =(4') 'c4'(0+21.)',
where

I.= (3a/c)' ~' = m/g

so that the condition of the SLAC bag models applies, it
can be shown that for N sufficiently large, the
lowest-energy soliton solution is of the form of a
kink-antikink bound state, "whose energy E is
&-', a'~'L', independent of ¹ Thus, one expects
that, in this case, there is a "cusp, " say at N =N„
on the curve of the lowest nontopological soliton
energy E vs ¹ for %&X, , the solution corres-
ponds to one in which the maximum of the fermion
density p is at the center of the soliton, while for
N &No, the maximum of p appears at the two ends
of the soliton, similar to the SLAC bag model.
This particular "cusp" is purely a one-space-di-
mensional phenomenon, since it depends on the
existence of topological solitons and the corres-
ponding soliton- antisoliton bound states.
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