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Equivalence of the sine-Gordon and Thirring models
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%'e investigate the equivalence of the sine-Gordon and Thirring models on the basis of the short-distance

behavior in the massive Thirring model. Vfe find that for dim/it( p 1 there is a new additive renormalization

effect originating from the occurrence of nonleading mass singularities in the spinor vacuum expectation
values. In the sine-Gordon language this efFect makes its appearance as a "cumulative" mass efFect. It leads to
a breakdown of the naive variational method.

I. INTRODUCTION

Quasiclassicai approximations suggest that cer-
tain quantum-field theories lead to new particle
states which, relative to the quasilocal algebra of
fields, ' cannot be interpreted as conventional
bound states. Thexe is no element in the field
algebra of such models which connects the vacuum
to the new states. Rather, the new states lie in
another superselection sector of the local alge-
bra. 2's

Present experience shows that a sufficient con-
dition for such a situation to arise in the occur-
rence of topological stability of classical solutions
called "kink" solutions. 4 Classical nonlinear field
theories leading to such behavior are known in
two and four dimensions. The present quantum
treatment of these models" appears somewhat
ugiy (to the eyes of a local quantum-fieM theorist)
because it lacks formal covarianee and locality
between different sectors. Technically speaking,
these methods do not produce a "grand Hamil-
tonian" which works for all sectors, but rather
they eolleet the total Hamiltonian as a direct sum
over sector Hamiltonians for a given number of
kink states.

The crucial question is whether this quasiclss-
sical appearance is an intrinsic feature of the
model. In this ease one might talk about a quan-
turn-field theory of "extended objects" as being a
distinctive different class from conventional local
quantum-field theories. A second possibility is
that there exists a local shift operator' linking the
different superseleeting sectors which serves at
the same time as an interpolating field for the new
states.

Arguments in favor of the latter possibility have
been given for the sine-Gordon equation. which,
under the introduction of local charge-carrying
fields, turns into the massive Thirring model. ' 9

These considerations are somewhat formal since
they discuss the equivalence problem in the spirit

of singular mass perturbation.
In the massive Thirring model one could perhaps

try to solve the equivalence problem by studying
the infrared problem of the mass in the spirit of a
thermodynamic limit 0 and showing that the limit-
ing composites of the axial-vector current poten-
tial have the desired properties. Since this model
appears to be a good candidate for the first expli-
citly soluble nontrivial quantum-field theory, "
this may even be a feasible program. However,
we feel that in view of the general nature of the
problem at hand, it is desirable to dissociate the
equivalence discussion from the more detailed con-
structive approach. In the following we will pre-
sent an approach which is based on short-distance
properties.

In Sec. II we review briefly the formalism of the
boson representation of two-dimensional massless
fermions. ' In this context we emphasize the role
of cluster properties.

Section III contains a discussion of the axial-
vector current potential Q and its exponential
functions in the massive Thirring model. A gen-
eralization of Schur's lemma for local noncanoni-
cal fields will lead us to the validity of the sine-
Gordon equation for Q for the case dim/, g, & 1.
The ease dimg~i$, ~1 leads to the appearance of
nonleading singularities in the Thirring model re-
quiring an additive renormalization of the com-
posite field g, P, . %e show that this effect has re-
percussions in the sine-Gordon equation. The
composite field corresponding to the classical
exponential functions (and also the sine function)
exhibits a cumulative mass effect for dim//-1,
which renders the multiplicative renormalization
of Coleman insufficient. For the free massive
Dirac fieM the correct expression precisely agrees
with that obtained recently by Lehmann and Stehr"
from an explicit computation. The regime dimgtIIi

-1 is noncanonical for the sine-Gordon fields and
hence the conventional renormalization picture
breaks down. " This opens the interesting possi-
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bility that the new "phase" dim(I)g& 2, which leads
to a crossing of the previously nonleading terms
with the leading terms, defines an interesting
model for a nonrenormalizable theory. "

II. BOSON REPRESENTATION OF THE ZERO-MASS LIMIT

In order to study the short-distance properties in
the massive Thirring model, we consider first its
zero-mass limit. The details of this discussion
have been carried out by Klaiber" and may be
summarized by the following formula for the two-
component Fermi field.

g;(&) =e x';"'&
&p („) ex'& ', 1 2 (2 1

j (v)=2(j, - j,)= ~ s.j,(v). (2.5b)

g, =C,j,(u}+C,j,(v},

y, =C,j,(u)+C, j„(v),

(2.6a)

(2.6b)

where the C's are real parameters. Intro-
ducing a y, = (', ~, ) matrix, this can also be written
as

The potentials ) are not uniquely determined by
the current. By interpreting the integrals for
small momenta in a suitable distribution-theoreti-
cal way, we have chosen one particular definition
of the potentials.

The X, are given by

Here g, (x) is the free zero-mass Dirac field and

lt(x) is an operator expressed in the "potentials"
(1 =left, y =right)

X = »(&) —Py, &(x), (2.7)

j,(u) =
2

e '"C, (p)—+H.c. , (2.2a)

j„(v)=
2

e ""C„(p)—+H.c. ,
+0

(2.2b)

(j„(v)j„(v'))= — lnm(v —v' —ie)+, (2.3b)
1

(j,(u)j„(v)) =0,

~ [&]"(u), 4., ( )u]

(2.3c)

lnm(u —u' s ie) w —g„(u'), (2.4a)
1

~ [P,"(v), 0 (v')1

1 lV
lnm(v -v'+ ie) + —P»(v'), (2.4b)

with u =1+x, v =t-x. The C's, which obey Bose
commutation relations, can be written as bilinear
expressions in the fermion creation and annihila-
tion operators of g,. The (regularized) two-point
functions of the free fields j and their commutation
relations with g, are

1
(jg(u)j, (u'}}=- lnm(u —u' —ie)+, (2.3a)

in terms of new real parameters o. and P.
The result of the ordinary Wick contraction

[commuting g'" through the spinors by using (2.3)
and (2.4)] gives precisely Klaiber's formula" for
the Wightman functions. The negative-metric
aspect of the regularized potential Q introduced by
infrared regularization drops out on the level of
the exponential functions. The structure of the
free $0-expectation value, which requires the
same numb&:r of g, and (I)&~ in each index, ensures
that the exponential part of the Wightman function
is itself positive-definite. Klaiber proved this"
by working with infrared-cutoff operators in a
Fock space, and he compensates the resulting
violation of Lorentz invariance by adding multiplies
of the charge operator with suitably chosen func-
tions. In addition to spinors, currents and finite
line integrals over currents are also operators
which exist in ordinary Fock space.

Boson representation' now means that the $0 field
itself may be written in terms of )'s, so that we
obtain all together

m ~
g, (u, v) =:exp [i[y, j(u)+y, j„(v)]]:,

(2.8a)

(2.4c)[j (u), 4..(v)1 =o =[&,(v), 4,.(u)1,

and corresponding relations with P .
The connection of the potentials with the zero-

mass currents (whose boson representation does
not require infrared regularization and therefore
does not show any dependence on the regulariza-
tion parameter m) is

(2.8b)

exp -d& ln[-(u —ie)(v —ie)m ]
27r

The double dots mean boson Wick ordering.
By considering the two-point function

(g, (u, v)P, (u', v'))

(2.5a)
Q- 46—s& ln V-$6 (2.8)
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with

(o —S)'
+sf 4

(2.10a)

zz& —s& —— ' --1+ — (u+P), (2.10b)
(~+A"

4m 4n

we obtain the positive dimension d& and the arbi-
trary continuous spin s& as a function of our pa-
rameters. In order to obtain an "intrinsic" pa-
rametrization we may (by choosing a suitable sign
convention) express y, and y, in terms of zf z, and

s&. The conventionally discussed case is s& =&.
The dimension d~ may also be related to the cou-
pling constant g appearing in the Thirring equation
of motion; however, this relation depends on what
definition one uses for the interacting currents
J„as a space-time limit in the spinor fields"
(i.e., whether one uses the definitions of Johnson,
Sommerfield, Klaiber, or anyone else). Note that

g, has the same dimension, but the opposite spin.
Only the sign of the coupling constant in the Thir-
ring field equation, i.e., the distinction between
attraction and repulsion, is intrinsic and does not
depend on the renormalization and short-distance
limiting procedures, respectively. It is convenient
to adopt the following normalization for the inter-
acting current:

& (x) =multiple of j„with [&0, g] =-&(x —y)g;

J„,=e„„&"and 4„,=(1/vzz)S„P,

where the pseudo-current potential Q is only can-
onically normalized for g = go.

Formula (2.8) still needs an explanatory remark.
The fields ), „are fields which exist in an indefi-
nite-metric space, whereas the application of
their exponential function to the vacuum must gen-
erate a positive-definite Hilbert space. This is so
because exponentials of free zero-mass scalar
fields have a built-in charge superselection struc-
ture. " This charge structure may be understood
in several equivalent ways. One way is to work
with massive free Bose fields and define the zero-
mass expectation value by an m -0 limit, allowing
for a multip1. icative m-dependent renormalization
of the exponential field. ' Another way is to say
that there should be a usque vacuum from which
the exponentials generate a positive Hilbert
space." In such a situation the linked cluster de-
composition property holds for vacuum expecta-

tion values. This property requires the vanishing
of all correlation functions in which the number of
g; is not the same as that of P, . Actually, formula
(2.8) is even implicitly contained in Klaiber's
paper" if one uses his d

&
= 0 = s ~ field a; and elimi-

nates the free field g„. in (2.1) in favor of o;:

gf =[right-hand side of (2.8)J&&o, . (2.11)

with

0 =&r+~r ~

y(x')dx':
2

(2.12)

The boundary term at ~ from the potentials is just
the charge term needed for implementing the Klein
transformation.

The computation of the axial charge by a point-
separation limiting procedure gives

(2.18)

For Sec. III we need tc know that the dimension
of gttj,

~ ~ (2.14a)

is given by the Schwinger term in the axial-vector
current:

[~.,(x),~„(&)]z =z = &,z~{x' -&')

{2.14b)

The computation of composite fields in the boson
formalism parallels that of the fermion formal-
ism, for example (u =u, —u„v =v, —v„s =0),

The a; are "spurions" and do not do anything since
the selection rules they carry are already true
properties of (2.8)."

Note that g, and |Jt), have relative commutation
instead of anticommutation properties. The change
via a Klein transformation yields anticommuting

g, and P, . A compact way of writing the resulting
formula is a generalization of Mandelstam's' ex-
pression to arbitrary l,orentz spin s &.

&, +&,:exp -z ' ' y'y

2zz -(u —ie)(v —ie)
V —lE :exp[iy(j, (u, ) —j,(u, ))+iy(j„(v,)-j,(v ))J:

m I'll V —SE [1+iy (u, —u )9 j, +iy, (v —v, )s„j + ~ ~ ~
J (2.18)
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m m 2

0, ( )0,( )—

i.e., the leading nontrivial term contains the current operator. Another interesting case is
y /off

(:exp[i(r, —r, )i &(n, )+i(r, r,—)f,(~,)]:+0(n,—n„&, —&,)k.

{2.16)

di mg, g, =2dg +(4dg' —1)+. (2.19)

Here the plus sign holds for the attxactive case.
The boson representation of the Thirring model has
the advantage that the range of the dimension of.
composite fields 6 of the theory becomes evident:

(dime) = (ny, +my, )'+f
4m

(2.19)

8 m=+1 +2 -.
1=0,1,2, . . . .

The l refers to derivatives of the exponential
fields and factors B„J„D„J,.

Fog s& =& we have

y, = (4w +y,')+ ,

ly. l =~4(d, -l)'.
(2.20)

(2.21)

Clearly the lowest-dimensional fields are P, g, in
the attractive region and $,$2 for the repulsion.
The boxderline case between the two regions is the
free P field d& =&.

As will become clearer in the next section, the
zero-mass limit correctly describes only the
leading short-distance singularities of the actual
massive model. Therefore arguments based on
the structure of the massless model (as, for ex-
ample, Coleman's perturbation argument') are
expected to break down as soon as the considered
quantities develop nonleading singularities. This

The dimension of the higher terms always increas-
es by one unit. Note that in this case the original
operatox as well as the leading short-distance
term (and the singular function in front) are scalars
which ale independent of the spin 8y.

For the conventional case s ~
=—', it is easy to

see that the roots of (2.10) for y; lead to

dim/, g, =dimwit/,

=dim [leading operator ln (2.16)]

(r, r, )'-
4n

(2.17}

where the minus sign holds for the attractive sign
of the quadrilinear coupling constant in the Thir-
ring field equation. " The only remaining bilinear
operator is tlI), g„which is also scalar and has the
dimension

dime~"& =4~dimyy. (2.22)

These operators, which appear in the boson rep-
resentation (2.19) for m =-n, i =0, are constructed
in the spinor formalism as the lowest-dimensional
tex ms in the short-distance expansion of powers
Of &i&2:

&[4,(~,)4,'(~,)]" &[4,(~.)4.'(~.)l
;f(x, ~ . x,)6'"'(x)+ . (2.22)

In tex ms of the potential Q of the axial-vectox" cur-
rent, these operators have the form

' e&aH~n4.
0

i.e., in the language of boson representation of
the basic field they represent higher harmonics
corresponding to polynomials in

is the basic reason why the particulax' fox m of the
operator products in Coleman's equivalence of the
IDRssive Thlrring IDodel vAth the sine-Gox'don IDod-
el holds in the regime dim//&1 (better than
superrenormalizable}, but breaks down for
dimgf~l (superrenormalimable). For that case
one has to use new normal products with an addi-
tive renormalization. For the case of a free field
we mill explicitly identify these operators as being
identical to those constructed by Lehmann" and
Stehr in terms of conventional (but intrinsically
not so appropriate) tripie-ordered normal prod
ucts.

The changes in aine-Gordon language for dimtI)$
~1 are not purely academic; they are related to
the breakdown of Coleman's canonical formalism
and undermine the basis for vax'iational computa-
tions based on coherent states. " Contrary to the
11IDitatlon' dim//&2 obtRined on the bRsls of such
estimates for lower bounds of the energy, we be-
lieve that the dimensional crossing of nonleading
singularities with the leading ones just indicates
the onset of a "nonrenormalizable" phase of the
model where zero-mass and short-distance be-
haviox' become even further separated than in the
region 1 ~ dim// & 2.

Before we go over to the detailed discussion of
the massive model we make an amusing observa-
tion" on the massless boson representation. Fox'

sufficiently strong attractive coupling constant
(i.e., dim// sufficiently small), one finds in addi-
tion to PP many other composite fields 6'"' with
small dimension.
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m '+
2m

(2.24)

Added to the Thirring Lagrangian

=2~++ m„8(")(x) +H.c., (2.25)

they lead to superrenormalizable interactions
which generalize the mass perturbation m, =m.
Considered as perturbations on the free Dirac
field, they are nonrenormalizable.

III. SINE-GORDON EQUATION FROM SHORT-DISTANCE

PROPERTIES IN THE CASE dim p, tttt ~2 & 1

Consider the quantum version of the classical
pseudopotential Q of a zero-curl two-dimensional
axial-vector current:

s"J„=s"e„„Z,"(x)=0, 4„,= 8„(t).
1

(3.1)

As in Sec. II, the normalization of the axial-vector
current, and therefore of P, is such that

Q= J x dx= J, , dx (3.2)

is the charge operator with integer eigenvalues,
As in the classical theory, there exists a Lorentz
pseudoscalar potential Q with the following proper-
ties":

(a) It is a local field.
(b) It is a, nonlocal relative to the charged fields:

p(s') =(s')' 'c for s-~,

The asymptotic form of p is a straightforward
consequence of the definition of Q, which on the
vacuum takes the simple form

('(&)ID& = f ~(& —"')&'&„.(*')&'*'Io&

=2im D x -x' N Py, Q
x' d2x' 0

or alternatively is directly obtainable from

ylO& =2imX[Vr, tl IO&.

(3.5)

: (t)'(x): =lim [(t&(x)P(y) —((t&(x)(t&(y)&],

Here we use the "normal-product" notation for
the composite field gy, g.

Up to a constant in front, the Q behaves precise-
ly as a canonical zero-mass scalar field for short
distances as long as

dj.mg, )2 =dimgy5$ & 2 .
Only in this region does the zero-mass Thirring
model give the correct picture of the current: The
short-distance behavior of the current is (up to
normalizations) that of a derivative of a free scalar
field. Hence the two-point function subtraction,
i.e. , the ordinary (double dot) Wick-ordering of (t),

is sufficient to define local polynomials: Q":, i.e.,

for (x —y)'&0.

(3.3) :e'(x): = »m ~( )xe(x.)V(x.)~(x,) (3.3)

The field (t) is unique; formally, it is (t)(x)
=Ww f"„J„,ds"

Up to now we used only the conservation of the
vector current. In order to obtain some more
detailed properties of Q we have to use specific
properties of the massive Thirring model. From
the study of the Callan-Symanzik equation of this
model, it is known that its zero-mass limit (sui-
tably parametrized, depending on the renormal-
ization procedure for the massive model) is the
massless Thirring model. " In addition, the lead-
ing short-distance singularities of the (composite)
fields in the massive model are determined (up
to unknown numerical factors) by the massless
limit. The two-point function has the form

(((~1((v)& = J P( *) &'"(()& ',

ia",)($) = —H', (ms(-P+ieF„)~'),

p(s') - (s')'p(s') = (s')' 'c s'- ~,
and therefore~2

(3.9)

&1)t [ 4r, 41 (x)&[Sr,41(y)& -($') 'c,

+(Pf)' 'c, (m') 'ln (Pm')

The appearance of mass "daughter dimensions"
can of course also be seen from the Callan-Syman-
zik equations. For dim/(t&&1 (attractive coupling

Even in this restricted region of coupling the
short-distance behavior of 4-composite shows non-
leading singular mass terms. For example,
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(3.11}

and this main statement.
A note of caution The existence of the exponen-

tial expression as a bona fide operator is not an
entirely trivial matter. Ho@&ever, since we pro-
mised in the Introduction not to eoneern ourselves
with methods of constructive quantum field theory,
we mill be content simply with the remark that for
dim// & 1 exponentials can be handled by construc-
tive field theorists. "

For the proof of the main statement ere note that
the commutation relation (3.3) of Q with g leads to

(xv xX«x) .y(y)

=exp[2/w ice(x'-y')J(((y) e "~ '""' (3 12)

where x' and p' are spatial components of x and p.
For ~ =1 this equation says that the Wick-ordered
exponential is local relative to the g. This local
exponential field has the same short-distance di-
mension as $g. This follows from the fact that

(:e "~«"' e" '«"' }=Cexp[-ain(-m'( ')],
a= p8 d8

=Schwinger term in [&~(x),J', (y)].
The Schvringer term is independent of the mass,
and according to the zero-mass formula it is re-
lated to the dimension of gy, g:

a =dim/, g, . (3.14)

The eoIlstRDt C eon8ists of Rn expoDentlal of R

sum over higher-point truncated functions,

(y"( )xy-( )y)„n+ m&2 (3.15)

which for p -x have the same singular behavior
as the corresponding zero-mass potentials, i.e.,
they remain finite, but do not vanish as for zero
mass.

If we now define a local field (relatively local
with respect to g) by

8(x) =X[ytq, ] (x)

C(g)m(. e-x(Hx e(x& . 1) (3.16)

regime), there are no such persistent mass effects
in the two-point function of the bilinear spinor
expressions. In this regime we have:

Main statement. For dimgy&1 (g&0, i.e., at-
tractive Thirring coupling) there exists a g-depen-
dent (or what is the same thing, d(, -dependent)
constant C(g) such that

+[pter, ] (x) =C(g)m(: e-'~('«" &:-1). (3.10}

Clearly the sine-Gordon equation is a consequence
of

then we may easily choose the C(g) in such a way
that the short-distance singularities of the two-
point function (8(x)8(y)} cancel. Consider the
following lemma. '4

I,emma: A local field 8(x), whose two-point
function does not have a short-distance singularity,
is a multiple of the identity.

With this lemma are have established the main
statement (the multiple of the identity is zero:
(8}=0). This lemma can be thought of as a gen-
eralization of Schur's lemma of canonical quantum-
field theory to local noncanonical quantum-field
tlleory.

The picture of purely multiplieative renormaliza-
tion of composite fields vrith small dimension, for
example,

x[y', y, ] =Itmlxl"-'yt(x)y, (0), (3.11)
+0

dim(I), a =d

breaks down owing to the onset of nonleading mass
singularities for a -1, and ere obtain

X[ytq, ] =Iimlxl" '[yt(x)(1, (0) —( }], (3.13)

i,e., there are nonvanishing ehiral-symmetry-
breaking expectation values to be subtracted. For
example, in the canonical free-field case (g=0)
the multiplieative factor is unity and we have

N[P, (I', ] =lim [&,(x)g, (x) —(g", (x)g, (0))], (3.19)

@&here the last term is the logarithmic divergent
part of t e free massive propagato~. Equation
(3.18) breaks down only if the mass insertion term
of the Callan-Symanzik equation cannot be ne-
glected, i.e., for a~2. What is the repercussion
of this change on the sine-Gordon level'P From
(3.4}we can say that even though the canonical
character of (t) is maintained, the canonical con-
jugate n has a short-distance expansion with a di-
vergent term:

(Ã(x 0)w(y, 0)) =divergent v =(fQ/df .
This divergence indicates potential short-distance
trouble, although the proper canonical formalism
breaks down only for a~-,'. There is an interesting
manifestation of 'the QODleRdiDg singularities in the
form of cumulative mass effects in the exponential
functions of (t) for a~1 They will be the main
topic of the next section.

IV. NONLEADING SINGULARITIES AND CUMULATIVE

MASS EFFECTS IN EXPONENTIAL FUNCTIONS

%'e Dove come to the central part of our dis-
cussion, namely the consequences of the Donlead-
ing short-distance singularities in the definition
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:e-2iP& 4. P(I &&)I (4.1)

of (3.18) for the exponentials of the axial-vector
currents. %e expect, by analogy to the spinors,
that the %ick-ordered exponential for g-1 blows
up as a c number:

arith

Z(1-x) „-
Let us reinforce this picture with an explicit

computation for the "free" axial potential (i.e. ,
belonging to the free massive Dirac equation):

+ (ea(P+a)x +'t ht +e-i(i&+a&x o h )cosh[-,'(8 —8,)]

For this model it is standard practice" to introduce in addition to the Nick ordering as, for example,
used and explained by Coleman, ' the "triple ordering:"

(4.2)

'&j&" (x)'= lim i&j&(x,) ~ ~ ~ &j&(x„):,
I ~ ~ ~ f Xft (4.3a)

: i»x,&
"i (*.&

= C&x,&
" i (x„&

- Q Q & i (x,. & " i Cx,. »:.qi&x, &
" i (x,.

where 5~~ is the summation over all partitions of 1, . . . , n into disjoint subsets with

g~( $2+ e e o g g,
~ g~g j2+ o e o(g

(4.3b)

The simplicity obtained from the introduction of triple-dot ordering appears in computing truncated func-
tions. Consider for example the correlation function

& y(x): y"(o):.&. (4.4)

On the one hand, we may use the fact that triple ordering implies partial ordering of the fermion oper-
ators. In (4.4) we therefore pick only the term in: 4&": proportional to a f& Astraig. htforward combina-
torial consideration yields an expression in terms of a generating function:

&ol h:~ (o):.Io&= (- 2iVn )" ex" '2&i cosh —,'(8» —8,),~, '

or 26

4

( (x)
'. 8-2iWwx4(0):& 2i p p n(i &( )dp

Jo cosh (4.5b)

& y( ):y"(o):& =
& y(x)y"(o)), .

Therefore the short-distance limit leads to

(4.6)

n= j.
& y( )y" (o)&. . .

C„, n& ~

where me have used"

r cosh2Xp, „,I'(&i +y) I'(x -X)
(coshp)'" I'(2&i)

and the constants C„can be easily read off by

(4.7)

with p. =2mcoshP. On the other hand, the formula
(4.3) together with the recursive definition of
truncated functions immediately yields

differentiating with respect to ii (thus generating
a In coshP) and then setting &i equal to unity. We
find that our general picture folio@ring from asymp-
'to'tlc scale lllvarlance for dim 7»&I&& 2 is confirmed:
The truncated n-point functions for n& 2 approach
finite limits. These limits are universal numbers
which for the general massive Thixring model
vrould only depend on the dimensionless coupling
g. Tllese nunlbers contain information outside
the scale-invariant theory, and @re doubt that they
can be derived on the basis of the explicit know-
ledge of the scale-invariant theory alone (including
the knowledge of all composite fields). They con-
stitute important information in the understanding
of "cumulative mass effects. " Consider the %'ick
product and its connection with Ule triple product



EQUIVAI. ENCE OF THE SINE-GORDON AND THIRRING. . .

slightly below the value X =1, which formally cor-
responds to the expression N[)!tel(!),]:

C p. dp, , (4.10)

with

isi-n)(p, d 2„,1'(&+p,)I'((- p, )
vm dt' 1.(2t)

The integrand clearly has a divergence at p, =O

a dwe obtaj

(4.11)

oo fl
n

-n=4 nf I

(4.9)

The fastest way to see what happens for 1-X-0
is to realize that the series (up to a finite additive
constant) can be gotten by

about the q-number divergence of the A.-l limit
is completely consistent with explicit computa-
tions. A first trial in such a situation would be
to define a new finite normal product by

i)([ e 2id-r 4] —llm (
. -2i&x14 . {. e-xi' 14.}1)

1

, (X —1)

(4.14)

Such a definition would be in agreement with keep-
ing the correct dimension, but is in disagreement
with the locality relation to the spinor fields. The
way to complete (4.14) to a local operator becomes
obvious if we study the differentiated commutation
relation (3.12) with triple-dot ordering at )). =1:

2i H~:—y(0) "~"":y(x)+2i Wvy(x): ye-"~'(":
=tj)(x) ' e '~+ ' (4 15)

By subtracting the differentiated commutation
relation for X =0

[
'
y (0) (e

-2)x i i( 0) 1): q (1.)]
—

Q

(4.12)
Clearly the locality of the difference, i.e., of

' i!i(0)(e ' "~ —1) ' (4.16)
i.e., the convergence of the series breaks down,

Looking back now at (4.5b) we see that

(4.13)

at least inside a two-point function. So our picture

is necessary and sufficient for the triviality (4.13)
of the exponential.

The causal completion of (4.14}, i.e. , that op-
erator which takes over the role of the exponential,
can be written as

i)t[ e 2iltw 0] —llm . -2i&w( 1-x ) 4I . . 2llxi(1-x ) g, , -2iSVx @, : i 2&x@ 1);1

,„, 2i&we (4.1'l)

This idea of constructing a local operator by a
X-limiting procedure which replaces the formal
Nick-ordered expressions which ceases to make
sense can be formulated for all A. =1,2, . . . . This
is of relevance to the solution of the Federbush
model, 2 and we will return to this in another
publication. For the sine-Gordon model such an
extension is not relevant since the leading singu-
larities are overtaken by the nonleading ones
already for dim )!Jtl)r, =2. The discussion leading
to the normal product is from a physical point
of view still somewhat unsatisfactory because we
are approaching a local situation (x = 1) as a limit
of nonlocal fields. In the spinor formulation

(3.18) defines a local limiting procedure for the
exponential of p. A natural bosonic candidate
ls the bllocal product (subtractlllg the vaclluln
expectation value)

&(x 0) —.&-lixed(x) . .e (&~AD(o) . ( ~-. .}1

(4.1V')

Clearly each factor is free of the cumulative ef-
fect, and according to (3.3) anticommutes with
the p's and g~'s for spacelike distances. So the
whole bilocal aggregate commutes if the p co-
ordinate is spacelike relative to x and zero. %e
obtain

fl(x Q) =C 8( /e)x( x ' exp ~ (( y(~) + y(0))n} (:e-i&&( 4(x )+ 4(0)): 1 )n! T (4.12)

The first factor is the factor one naively expects from the analogy to the zero-mass version; the second
factor is very difficult to compute [ we think it is 0(1},but this is irrelevant to the following considera-
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tions]. The most interesting object is the triple-ordered bilocal which we can obtain from the II by suit-
able division. The operator has remarkable properties. Let us write this operator as

:e-H~(e(x)-4 (o) +24( o)): 1 & ~&.g, (x) y (0)}e-mi~~ 4(0):+ ( s ™):(y(x) y(0))2e 25~~4(o):+. . .

(4.19)

appears to be "natural. " The relation (4.21) and
the corresponding higher relations can be directly
checked in the needed form

:(y(x)- y(0))" e "~"":.= 0 for s&1.
(4.22)

If one is satisfied with just seeing consistency
in special configurations one can generalize and
adapt (4.5b) to the problem at hand. The general
operator proof again has to be based on the fer-
m ion-ordering algor ithm. '2

However, the generalization of this reordering
formalism to bilocals is very involved and will
be discussed in detail in a future publication. An
alternative method to obtain the exponential by a
space-time limiting procedure has been given
by Swieca. '9 It consists in

~[e-i'd(o) ] Itm .e-2k~&4 (1) .
y~$

(0i . -I &4(f) .
[ 0) (4.23)

From (4.5b) and its first derivative at & =1 the
following operator relation is suggested:

:(0(x)-4(0))e " '"":=@(x)-:0(0)e "":.
(4.20a.)

Like (4.13), this relation follows rigorously from
the fermion-ordering algorithm of Lehmann and
Stehr. " It looks somewhat strange since it lacks
manifestperiodicity, but this is just because triple
orderings for exponentials are not intrinsic natural
normal products. It is better to call the limit
x-0 of this operator following (4.11)

A[e "~~ "]=2~ &v:. $(0)(e "~~-1)i.
(4.20b}

%'ith this notation the vanishing of the higher terms
is plausible since the rule

iim N [( $(x) —j)(0))e 2' "~ i o~ ]-0 (4.21)

for a suitable local &-function sequence. The
cumulative mass effects will depend in this form-
ulation is a very complicated nonlinear way on

f and we have not been able to demonstrate that
this limit exists and converges to our N. The
derivation of the sine-Gordon equation using the
N ordering for the free Dirac equation follows
now by explicit computation. From (4.20) and
(4.5b) we obtain (p, =2m coshP)

2m'«I y(x)&[»n2vv 4] (0)l 0&

=2 'i 2 J[ n. '„'( )dp

=v7( g(x) Ci p(0)),

(4.24)

i.e., the sine-Gordon equation in a special con-
figuration. The validity for all configurations,
i.e., as an operator relation, is a result of the
formalism of Lehmann and Stehr. " In the general
case dim gg&2, one again argues along the lines
of the properties" of 8(x) (3.16). However, now

only the leading singularities cancel. The opera-
tor 8 is hence a local operator in the massive
Thirring model with a possible nonleading short-
distance singularity (containing explicitly the
mass). In the local algebra generated by even
functions of g and g such an operator does not
exist. Hence 6 can only be a multiple of the iden-
tity and because of its normalization properties
it should vanish. However, this argument is not
rigorous since the local completeness of poly-
nomials of a basic field (whose asymptotic dimen-
sion does not vanish) has not been established in
"axiomatic field theory. "
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