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The correspondences proposed by Coleman, Jackiw, and Susskind for the massive Schwinger model are
examined in terms of an underlying field theory formulated in terms of fermion operators and vector
potentials. By considering QED as a limit of a massive vector-meson theory, the stability of the proposed
correspondences for the gauge-invariant quantities against a fermion mass addition is established.

I. INTRODUCTION

Coleman, Jackiw, and Susskind' have shown that
quantum electrodynamics of massive fermions in
two-dimensional space-time (massive Schwinger
model) should have the same observable content
as that of the theory of a scalar field satisfying a
modified sine-Gordon equation.

Although it is clear that the observable content
of QED should be entirely contained in the algebra
of gauge-invariant quantities, it is nevertheless
instructive to take a more traditional approach by
regarding QED as a theory formulated in terms of
fermion fields and electromagnetic potentials.
There exist, in principle, many ways of embed-
ding a gauge-invariant algebra in a field algebra.
We choose a particular way of doing this, by re-
garding the massive Schwinger model as the lim-
iting case of a model of massive fermions inter-
acting with vector mesons (massive Thirring-
Wess model), which provides us with a better in-
sight into the mechanism of fermion confinement®
and makes the parallelism between the massive
and massless Schwinger model® more transparent.
Here the explicit breakdown of gauge invariance of
the second kind allows one to obtain a local solu-
tion for both the fermion and vector-meson fields
in a positive-metric Hilbert space. As long as the
bare mass of the vector meson is different from
zero there is no fermion confinement and the theo-
ry exhibits the usual charge-sector structure.
The gauge-invariant quantities obtained in the QED
limit are found to have the same form as the cor-
responding quantities of the massless Schwinger
model, thus proving the assumed stability of ob-
servables against the addition of a fermion mass.
In the QED limit confinement appears in our ap-
proach as the result of the decoupling of the fer-
mionic degree of freedom responsible for the
charge sectors in the Thirring-Wess model.

The material of this paper is arranged as fol-
lows. In Sec. I we obtain a formal Coulomb-
gauge solution. The nonexistence of a bona fide
Coulomb-gauge fermion field will be related (in

Sec. V) to the nonexistence of charge sectors in
the massive Schwinger model. In Sec. III we in-
vestigate in detail the field equations of the mas-
sive Thirring-Wess model. Section IV will be
devoted to a further discussion of the fermion
equation of motion and to the Lorentz invariance
of the theory. Our concluding section deals with
the recovery of the massive Schwinger model as
the limit of the massive Thirring-Wess model. In
this section the periodic vs nonperiodic nature of
the underlying scalar field equations will play a
fundamental role with regard to the existence or
nonexistence of charge sectors. Our conventions
will be

0_ 1 5 10 — -
y°=0,, y'=io,, y°=—0;, €°7¢,=1.

II. FORMAL CONSIDERATIONS IN THE COULOMB GAUGE

It is well known that the massless Schwinger
model®'* can be entirely described in terms of a
massive pseudoscalar field »(x) satisfying the
equation of motion

(O+e?/mz(x)=0. (2.1
The corresponding electromagnetic current is
given by

1
iH(x)=——=€"" 2.2
M) 7€ 3,z (x) (2.2)

and, in a suitable Lorentz gauge,

201
. 5 5
¢(x)=(u/2ﬂ)1/ze-(m/4)y enﬁ?y E(x)<ei62> ,

(2.3a)
A“(x)=—-g etva, =(x), (2.3b)
E(x)=—%2(x) . (2.3¢)

Here y, A¥, and E denote the “fermion,” vector,
and electric field, respectively, u?=(e2/4m)e?’
with y the Euler constant, and 6,, 9, label different
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vacuums corresponding to the spontaneous .sym-
metry breakdown of both gauge invariance and y°
invariance in the model. In what follows we choose
6, = 6, without an essential loss in generality.

Since the observables of this model are gauge
invariant, they will depend only on the pseudo-
scalar field Z(x). Hence, the Hamiltonian density
of the theory must necessarily be of the form

3¢,(x) =%: I:TI'EZ +(VZ P+ %222} :

J

The states of the physical Hilbert space are ob-
tained by applying gauge-invariant operators to
the vacuum. The algebra of gauge-invariant ob-
servables is generated by the bilocals

T(r )= o) explie [ dz4, @) |o*(3) . (2.4)

where the symbol =~ indicates that the operator
product still needs to be defined. Recalling the
expressions (2.3), a convenient definition of (2.4)
is provided by

y
T(x,y)=N(x-y):eXp{iﬁ[in(x)—f dz“e””a,,E(Z)—yiE(y)}}: , (2.52)
with Equation (2.10) implies the nonconservation of the
_ axial-vector current, j° =(1/Vw)o*z,
20+z0 H -e® -
1 s5p _ —€ _ 5

N(Z)=-2—n ) (2.5b) 0T =TT iMN[yy°y] ,

—M

z2%-2z"

where the singularities have been chosen such as

to ensure that the bilocals transform as the bilin-

ear product of spin-% fields. The current (2.2) as

well as the scalar and pseudoscalar densities are

then simply obtained as the gauge-invariant limits
jMx)== Um{Tr[y°y *T(x+e€, x)]

€—>0

-0|Tr[y°y*T(x+€, 2] |0},

(2.6)
-lim Tr[y° T(x + €, x)] = N[ $(x)p(x)]
€e—>0
=-%:cos[2\/?2(x)]: ,
(2.7)
-lim Tr[y°y® T(x+¢€, x)] = N[ 9(x)y 5p(x)]
€e—>0

= -i?“ ssin[2VT Z(x)]:
(2.8)

Following Colethan, Jackiw, and Susskind! we
describe the massive Schwinger model by the
Hamiltonian density

3¢ (x) =3¢, (x) + MN[ p(x)p(x)] , (2.9)
where the mass term is given by Eq. (2.7). The

Hamiltonian (2.9) leads to the equation of motion

(O+e?/m)z(x)==—= uM:sin[ 2VT = (x)]: .

(2.10)

2
v

where N[§v°y], given by Eq. (2.8), is the usual
y5-invariance breaking term arising from the
fermion mass in the Hamiltonian, and the term
proportional to e?X is the two-dimensional analog
of the axial-vector anomaly.®

Although one expects that the gauge-invariant
quantities such as the current, the electric field,
and the bilocals are still of the form (2.2), (2.3c),
and (2.5), with = now a solution to the equation of
motion (2.10), the correspondences (2.3a) and
(2.3b) for the gauge-dependent fields can no longer
be maintained as we now show.

Starting from Maxwell’s equation in the Lorentz
gauge,

OA,(x) == ejylx) ,

we obtain, using the correspondence (2.2) for the
electromagnetic current,

e
ﬁDE,

which has the solution

Oeva,A4, =

A¥(x) = %e“”auﬂ'lz(x) . (2.11)

Hence, unless X is a free field, A, is a nonlocal
operator in space and time, and the contemplated
correspondence given by Eq. (2.3b) no longer holds.
Since unequal-time dynamics is involved, we can-
not expect to solve the Dirac equation with A* given
by Eq. (2.11) because the correspondence (2.3a) is
evidently also violated.

However, we can use the gauge freedom of the
theory in order to remove the nonlocality in time,
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which will lead us in a natural way to the Coulomb-
gauge formulation of the massive Schwinger mod-
el.® The Coulomb-gauge computations are, how-
ever, of at most a heuristic value, since it is
known that due to the growth of the Coulomb poten-
tial in two dimensions, no bona fide fermion op-
erators can be constructed in this gauge (see Sec.
V for a more detailed discussion). This is, of
course, intimately connected with the confinement
of the underlying fermions in this model.

Nevertheless, we consider the formal gauge
transformation

c__€ V-1 1
Ay, —~Aj -ﬁe“a O E+28,JA.
Demanding that A¢ =0 we find, as a possible

¥° (x)=exp[ —i (n/4)y®]: expi:i Yy ®Z(x) +iw/7f:° ay's(x°, y’)]:

also provides a formal solution of the correspond-
ing Dirac equation. Returning to the formal defini-
tion (2.4) for the bilocals, and recalling that the
line integral vanishes identically in the Coulomb
gauge since A{ =0, we have for equal times and a
straight integration path

T(x, y) o Pe(x°*(y) ,

which is a result consistent with our input, Eq.
(2.5).

III. THE THIRRING-WESS MODEL
WITH MASSIVE FERMIONS

A better insight into the behavior of gauge-de-
pendent operators, which at the same time throws
additional light on the problem of confinement,
can be obtained by regarding quantum electrody-
namics, both massless and massive, as the limit
of a vector-meson theory (Thirring-Wess mod-
el’'*:8), This means that we explicitly break gauge
invariance of the second kind by a bare mass m,
for the vector meson, which in fact allows us to
obtain a well-defined local solution of the coupled
Proca-Dirac equations. We shall then recover
from here the corresponding expression for the
gauge-invariant observables of QED in the limit
my~0. On the other hand, the gauge-dependent
operators will show a pathological behavior which
is entirely due to gauge excitations and hence has
no observable consequences.

From the known results on the massless Thir-
ring-Wess model’** we expect our physical Hilbert
space to contain a bosonic and a fermionic degree
of freedom, = and ¢, of which the fermionic
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choice for A(x),
A(x)=-£2‘fdy1D'li(x° 1)
\[7,‘ o 7y .

Hence, in the Coulomb gauge,

A5 =0,
A”(x)=——ea D—lz__e_fw dylm-lis(xo )
0 ﬁ 1 \/’E 1 ’

-__¢€ ® 0,1
ﬁj;ldyE(x,y).

Using the techniques of the following section one
finds that the ansatz

(2.13)

degree of freedom is expected to decouple from
the gauge-invariant observables in the limit
- 0. Accordingly, we make the following ansatz
for the fermion field®:!°:

Do () =<%)l/2 i n/9) 73 . eXal®), (3.1a)
where u?=(e?/4n)e?’ and
Xele) = 57 5B (0 + 5 v ()
+%rfjdy1¢'>(t,y’) . (3.1b)

Throughout this paper normal ordering will be
understood with respect to the mass parameter p,
the implicit assumption being that the massive
Thirring-Wess model to be discussed here has,
as the short-distance fixed point, the correspond-
ing massless Thirring-Wess model," and in the
terminology of Schroer and Truong,'? there are no
cumulative mass effects in the spinor fields. In
particular this implies that systematic use will be
made in this paper of

[(/7(+)(0,x’), (p(')(o)]
m—-‘%ﬂ{ln[u(—xl—i0)]+1n[p.(—x1+i0)]}, (3.2)

where ¢ stands for = or ¢.

The line integral (with prescribed coefficient) is
required if (x) is to correspond to an anticom-
muting fermion field®:

{l.ba(x),lpg(y)},o=yo=0, x1# 9yt
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In particular, the choice a =0, g =27 yields the
free canonical fermion field.
Now, the Thirring-Wess model with massless
fermions corresponds to the Hamiltonian density
Holx)=3:[m2+7 2+ (VPR + (Vo) +m®2?]:
where
m?=e?/m+my . (3.3)

Following the same reasoning as in Sec. II, the
massive Thirring-Wess model will be described by
M
JC(x)=J(’o(x)—T“:cos(aE +B¢): . (3.4)
From the Hamiltonian (3.4) we obtain the equations
of motion

(O+m?)Z(x)=- a@: sin[ aZ(x)+Bo(x)] : ,
(3.5a)

D¢(x)=—ﬁ—1‘—-:H- :sin[ o= (x) +Bp(x)]: . (3.5b)

Our task will thus consist in obtaining, given the
ansatz (3.1), a solution of the coupled Dirac-
Proca equations

(=iy-0 +M)yp(x) =ey*N[B, (x)p(x)] , (3.6a)

8, F*"+ m?B* =—ej*(x), (3.6b)

F'7=9"B" -8"B"

consistent with the equations (3.5), where the
precise meaning of N[Buzp] in terms of a limiting
procedure will be given later on. The gauge-in-
variant current is given by the limit (2.6), with
the corresponding bilocal now defined to be

Tog(x,y) =Ngglx—p): exp{i [xa(x)+efyd2“3u (2) - xﬂ(y)]}: , 3.7

with N(z) as in Eq. (2.5b). In this model M will be
found to be equal to M; a priori it could, however,
be zero or infinite, depending on the scale dimen-
sion of the mass term (see discussion, Sec. IV).
In order to be able to use the usual differentia-
tion formulas for exponentials of bona fide opera-
tors, we find it convenient to smear the fields in
the exponent with some suitable normalized func-
tion %,(n), whose support about the point x* we

allow to shrink to zero at the end of the calculation:

@n (x°,x‘)=fm dnh,(me(x°,n), fa'nhx(n)=l

e(x)=lim @,(x),
h—s

where /2 - & stands for
supp{n} -0.
x

r

In this notation we may then rewrite our ansatz
(3.1) in the form

lp(x)ot =lim l/)(x; h)a ) (3.83.)
P
where
a3 h)o =2 ;7 2)eXn P (3.8b)

and where Zw‘/ 2(h) plays the role of the wave-func-
tion renormalization constant. Its specific form
will not be needed here.

Proceeding in the spirit of Ref. 9, we consider
the action of the differential operator —iy-8 on
¥(x; k). Using the identity

1
GeA(x):f dx el(1- M Alx) GA(x)eXA(x), (3.9)
]

we obtain

iy-outsi =yt fann [ anettoly Fias, st m o, o m] + 2o, [ ay g,y
o n

xe " MXulF) (s k)

(3.10)

Using the equation of motion (3.5b) and noting that y ¥y ®=—y e¥¥ we may cast Eq. (3.10) into the form

—iy-8y(x; h)=3ey, [Bh (x)p(x; k) + ¢, (o B)BY ()] + M (s R )(xs ) (3.11)

where

Bh(x)=

Q |-

[30€" V8,2, (x)+3B(1 - 41/82)e * Vo, ¢, (x)]

(3.12)
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and
© 1
Muglxsh)==2uMy, fdnh,(n)f dy’f dre?ns: sin[an(x°, y!) +Bp(x°, y)]: e~ Xa(Ps (3.13)
n 0o
Commuting through the left-hand exponential and performing the A integration one obtains

. o o =\ [1cos@B() +B6(:, v ()]
s ey )= =20 My 2 [ i, ) [ ay' SR s S T | oye (3.14)

The equal-time commutator in the denominator is evaluated to be
y
i[x (g, 22 () +BeW, =27 [ dn'h. (") .
Hence, interchanging the order of integrations, one obtains

M 00
Sm(x;h)zp(x;h)=—“—n y°f dy'[: cos(aZ(y)+Be(y):, P(x; h)] yo=yo . (3.15)
The commutator (3.15) is evidently nothing but the contribution of the mass term in the Hamiltonian (3.4)
to the equation of motion for . Hence we expect it to give a contribution of the form My(x) in the limit
h~6, with M some constant which is expected to be infinite, finite, or zero, depending on where the scale
dimension of the mass operator

d=(a?+B2)/4n (3.16)

is greater than, equal to, or less than one, the value d=1 being the canonical dimension. It is simple to
check that the only contribution to the integral in Eq. (3.15) arises from the neighborhood of y'=x"', re-
flecting the locality of the mass operator with respect to the fermion field. Assuming for the moment
d <1, one finds that the limit # - may be taken under the integral sign. Making use of the short-distance
behavior (3.2) we then arrive at the expression

1 uM

1/2 L 3 5
M (g ¥ () =— 3 __ﬂ_(z_lJ;r) ,ygﬂf dy*: 1A E(D)+i8(x) +ix(x) g . p=i(T/4)y g

(1+ay3g) /2 (1+dy3g)/2

[wx? =y =i0)]
1= 5
[u(x—y+i0)]( g /2

[plx=y+i0)]

[u(x=y=-1i0)]

X

—dv5
(1 dyBB)/z

1/2 w©
_M<.li_> Ygﬁf dyt: @=i (D) = iB6()+ix(x)g ; o=in/9)rEs

(1-dyg)/2 (1-ay3g)/2

% ez =y =i0)] ; _ [ulx=-y+i0)] :
[ulr=y+i0)] 7872 [ emy—io) 789

0, (3.17)

where the summation over B is understood and d is given by Eq. (3.16). Before proceeding to evaluate the
integral (3.17), we now turn to the Proca equation (3.6b).
Starting from the definition (2.6) for the current a straightforward calculation yields

740 == o a2, 5(x) +BeH 72, 6()] . (3.18)

Note that the current has already been normalized such as to correspond to the commutation relations

[5°C), )] g == 0(x" = ¥ ply)

This commutation relation, with y a well-defined operator, reflects the fact that, contrary to the case of
the Schwinger model, there exist nontrivial charge sectors, i.e., there is no confinement.
Substitution of (3.12) and (3.18) into the Proca equation (3.6b) leads to

(O +m®)[ zaZ(x)+28(1 - 4n/52)¢(x)]=—§T[az(x)+a¢(x)] .

The only way to make this equation compatible with the equations of motion (3.5) is to have

a?/4=e?/m?, B%/4w=m?/m? . (3.19)
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Note that o and g are completely independent of the fermion mass parameter M. According to Eq. (3.16),
the values (3.19) correspond to a canonical dimension of the mass operator. Hence the mass term, Eq.

(3.17), is readily evaluated to be
M () Y(x) == My (x) .

Collecting all results, we have for the complete solution [ we choose the positive square root in (3.19)]

-i(n 5 . € . m m e . 1/2
W)y = e /"”wreXp{l,—anmE(x)Hﬁyia7n°¢(x)+‘/7fﬁofxl dy1¢(X°sy‘)}<%> ,

B*(x)=- 7—; [e Hvy , o(x) - \/?emo ¥ "8,,¢(x)}
satisfying the equations
("i'}"a +M)¢(x) = %8‘)’ “N[B}[ (x)lp(x)];

=it
8,F"” +m B* = —ej*,

(3.20)

(3.21)

where, in accordance with Eq. (3.11), N[B,y] is to be identified with the limit

N[B,(x)y(x)] = imé [Bh(x)(x; 1) + 4, (x;)BY (x)],

and where

m

jH(x)=- %[%—%e“”ayz(xH(‘J) E“"aufb(x)] )

m m

(3.22)

T and ¢ now satisfying the equations of motion (3.5) with a and 8 given by (3.19).

IV. FURTHER PROPERTIES OF THE FERMION FIELD

a. The mass term. For the particular values
a =0, 3< V87, the ansatz (3.1) provides a solution
of the massive Thirring model.’*'° Since in the
derivation of the equation of motion the values of
the parameters o and 8 were unspecified, we may
directly read off from Eq. (3.11) the corresponding
equation of motion for the Thirring field. It is
interesting to notice that for o =0 and B < V47 the
mass term (3.17) vanishes, since the dimension
d of the mass operator [Eq. (3.16)] is less than
one. Thus we are led to an equation of motion
having the same structure as that of the massless
Thirring model. This of course does not mean
that for g < V4r we are describing massless fermi-
ons. It rather means that in a truly renormalizable
field theory the equations of motion for the fields
do not specify the theory uniquely. In fact, from
semiclassical arguments’® one expects that pre-
cisely for very small values of 3 one obtains very
heavy fermions. On the other hand, for 8> v4r
the mass term (3.17) obviously diverges. Follow-
ing the standard belief'® that the massive Thirring
model can be defined also in the range v4r <g
< V8r, there must be a compensating divergence
in the term (3.22) in Eq. (3.11) with a =0.

b. Lorventz covariance. In this subsection we
shall examine the Lorentz transformation proper-
ties of the fermion field (3.1). Although we expect

the operator (3.1) to transform like a field of
Lorentz spin 3, this transformation property is
not evident from its definition. Indeed, the classi-
cal analog of the field (3.1) would transform in the
massless-fermion case as a scalar, due to the
conservation of the current 8, ¢; and in the mas-
sive case, the line integral over the zero compo-
nent of this current would completely spoil its
covariance properties. On the other hand, a cor-
rect quantum treatment will show that the locality
of the theory will ensure the path independence of
the line integral and that the short-distance be-
havior of the operators is responsible for the spin-
3 character of the field. These points can be
heuristically understood as follows: Consider the
operator

: exp[i %1 f: ay*(x°, yl)]:

=Z’exp[i% J: dyld;(x",yl)J s
(4.1)

where a smearing of the kind (3.8) is understood.
A Lorentz transformation acting on the field (4.1)
at the origin of space-time will simply rotate the
integration path. For an infinitesimal Lorentz
transformation with velocity v, the variation of the
field is given by
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5:exp[i%1j:dz‘4;(0,zl)}:
=_02Mu]:dy1y“£1 dx:sin[ @z (0, y') +8¢(0, y*) +2mA)]: : exp[i—zbz j;mdz‘qS(O,z‘)} s

where we have used the differentiation formula (3.9) and the equation of motion (3.5b). We observe that in
the whole integration range over j', with the possible exception of the end point, the sine will average to
zero. Contrary to what happens in the mass term Eq. (3.13), the appearance of an extra moment in y*
ensures also that no contribution will come from the end point for a dimension of the sine operator less
than two. This means that the field (4.1) transforms like a scalar under Lorentz transformations. Note
that the \ shift is a quantum effect. In the classical analog of (4.1) the absence of a A integration would
completely spoil its covariance properties. The field

cexpliy 5[ 2az(x) +280(x)]} : = 10?70 (4.2)

is obviously also a scalar.
The fermion field (3.1) can be expressed as the limit of a short-distance expansion involving the product
of the fields in (4.1) and (4.2):

tefXal®: = lim fo(€): e aa (3 +O): exp[i %ﬁ fj dy* $(x°, y‘)jl: ,

€ —0
where f(¢) is given by
Sfale) =exp{%y§m In[(e, + Ex)/(eo - €] } .

It is the direction dependence of this factor which is responsible for the spin-1 character of the field. We
now give a more detailed treatment of the above considerations.
To this end we consider the action of a Lorentz transformation on the smeared field y(x; 2) [Eq. (3.8)]:

L [“]ZP(X; h)b ll A]—‘Z 1(h)eixh(x.v)
=z "1 . 21 ) . 1
¥ (h)exp{lfdnk‘(n) Y @(leo,lul)"‘ “"5 f dJY (/‘ - )an (N 0, y ) } , ( ) )

where v is the velocity parametrizing the Lorentz transformation. For an infinitesimal transformation we
have, using (3.9),

1
8h(x; ) =if dx e”"‘h‘”v[*d— Xa (%, v)} e~ XDy (s h)
0 dv v =0

=—iv fdnhx(n)j: d)\e”‘xn(")[(x°v+nao)d>(x°,n)+%ﬁwdy‘[ y’é;(y)+x°v¢'>(y)+v¢(y)] yo=xo]

x @~ iAx, (%) W h) . (4.4)

Using the equation of motion (3.5b) we may rewrite Eq. (4.4), using methods similar to those in Sec. III, as

ézp(x;h)=—%fdnh,(n){(xov +79,)@(x°,1) - % v +x%)®(x°n), ¢(x;h)}

+iv%f dy'y'[: cos(2®(x°, ")), ¥(x; )] . (4.5)
r
It is rewarding that the right-hand side of Eq. (4.5) for the field evaluated at the Lorentz-transformed
is nothing but the commutator —iv[M,,, ¥(x;4)], point, we have
where M,, is the generator of Lorentz boosts, con- UlA  UTAT! = 0(A .
. =u(Ax; k) — ivSyY(x; k) +O(P),

structed in standard fashion from the ¢ and Z (Al BUTA] W )= 1S4(x k) +0 ()
fields. (4.6)

Comparing the result (4.5) with the one obtained where Sy will be responsible for the Lorentz spin
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of the field, and is given by
S¢(x;h)=%fdy‘h,(y‘)(y’—x‘)

X {'y 53,2 (x°, y") —% Vo(x®, v'), ¥lx; h)}

— H;M-Lm ay'(y' - x')
x[: cos(2®(x°, y")):, ¥(x; A)].

In the limit 2 - 6 the last term vanishes for a
scale dimension of the cosine less than two, as a
result of the locality of the theory. The vanishing
of this term is also responsible for the path inde-
pendence discussed previously. The remaining
term involving the anticommutator is evaluated to
be, in the limit z -6,
lim Sy(x; k) =%iy p(x), (4.7)
h—5
where use has been made of

. 1 1
tim i, () f dni, 5= * 500

=-5"(y' = x").

Substitution of (4.7) into Eq. (4.6) immediately
shows that the field y(x) transforms with a Lorentz
spin 3. This proves the Lorentz invariance of both
the massive Thirring and Thirring-Wess models.

V. THE RECOVERY OF THE SCHWINGER MODEL

In this section we want to investigate the limit
of m, going to zero of the Thirring-Wess model.
We expect that in a sense, to be specified below,
we should recover in this limit the Schwinger mod-
el.

From Egs. (3.20) and (3.21) we immediately see
that the limit m, -0 does not exist for the fields ¢
and B* themselves. This is by no means surprising
since if the limit were to exist we would obtain a
local charge-carrying fermion field, which is in-
compatible with Maxwell’s equations being satisfied
as operator equations. Correspondingly, the vec-
tor field exhibits a divergent behavior in the longi-
tudinal part, which is just needed to render the
gauge-invariant bilocals finite in the limit. In fact,
using Eqs. (3.20), (3.21) and the definition (3.7)
for the bilocals we are left in the limit with our
original expression (2.5) in terms of the ¥ field
alone. The same applies to the electric field and
to the current. This means that the ¢ field has
completely decoupled from the observables.

The decoupling of ¢ implies that the charge
sectors of the Thirring-Wess model have disap-

peared in the QED limit. This is nothing but con-
finement. Indeed, the reason for having charged
states in the Thirring-Wess model is the periodic
structure of the equation of motion (3.5b) for the ¢
field, which allows one to construct well-defined
charge-carrying operators in terms of line inte-
grals over ¢> extending to infinity. Because of the
nonperiodic nature of the equation of motion (3.5a)
for the ¥ field, no such charge-raising operators
will exist in the QED limit.

To clarify the above statements consider a dipole
state of the form

ld)=exp[i27;1j:l @z (0,24 |[0) (5.1)

where ¢ is a generic field, and a smearing around
x' and y' is understood in order to have a well-
defined state. The state |d) represents a negative
and positive charge, localized around x' and j',
with respect to the charge-density operator

o) =5-0,00) .

Writing the Hamiltonian as

1 =4 [{56) +[vela)]* +f (0D} s

where f is an arbitrary function, we compute the
expectation value of the Hamiltonian in the dipole
state, with respect to the vacuum, to be

(d|lH|a)y-(0|H|0)

=|x' =y [{O[[: flo-27/a): = f(@):][0O) +-++,
(5.2)

where the neglected contributions refer to the en-
ergy associated with the localization around the
points x! and y'; these are the only contributions
in the case where f is periodic with period 27/a,
so that the energy remains finite when the two
charges become infinitely separated. On the other
hand, if f is not a periodic function the energy of
the dipole state will grow linearly with increasing
charge separation. Hence, in the case of a period-
ic function f, the charged states of the theory are
obtained by removing one of the charges of the
dipole state to infinity. Hence, in the case of the
Thirring-Wess model, the ¢ field can be used to
construct charge sectors. In the QED limit, how-
ever, any gauge-invariant state will involve only
the = field, whose equation of motion (3.5a) does
not satisfy the periodicity condition; hence the
charge sectors will not survive in this limit. What
was called the Coulomb-gauge solution in Sec. II
essentially corresponds to the state (5.1) with
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@(x)=Z(x) in the limit y' -, From (5.2) we im-
mediately realize that this is an infinite energy
state and, hence, it has only a formal character.
The absence of charge sectors in both the mas-
sive and massless Schwinger model is nothing but
confinement.?
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