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Renormalization of a distorted gauge-invariant theory*
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We consider a new type of renormalizable theory involving massive Yang-Mills fields whose mass is generated

by an intrinsic breakdown of the usual local gauge symmetry. However, the Lagrangian has a distorted gauge

symmetry which leads to the Ward-Takahashi (WT) identities. Also, the theory is independent of the gauge

parameter g. We completely carry out an explicit renormalization at the one-loop level by exhibiting

counterterms, defining the physical parameters, and computing all renormalization constants to check the WT
identities. Our results indicate that the physical scalar can be removed from the physical spectrum and that
perhaps the theory could become asymptotically free.

I. INTRODUCTION

In a previous paper' we have discussed a re-
normalizable theory (by power counting) involving
massive Yang-Mills fields in which the vector-
boson masses are generated by an intrinsic break-
down of the usual local gauge symmetry. The vec-
tor-boson mass M cannot be obtained from spon-
taneous symmetry breakdown owing to the absence
of the quartic potential of scalar fields. ' Although
the Lagrangian is no longer invariant under the
usual local gauge transformation, it is still in-
variant under a generalized or "distorted" local
gauge transformation involving M." In the limit
M- 0, the distorted gauge transformation reduces
to the usual one. The unitarity and gauge indepen-
dence of the theory have been verified by calcula-
tions up to and including the two-loop level. Fur-
thermore, based on the distorted gauge symmetry,
one can give a general formal proof of unitarity
and ( independence of the theory. '

In this paper, we derive the Ward-Takahashi
(WT} identities, "which lead to constraints among
tl'. " renormalization constants (2's). The renor-
malization of the theory is carried out in a mani-
fest way to supplement the general formal treat-
ments. ' All Z's are computed to confirm the WT
identities and to ensure the consistency of renor-
malization. We show some of the interesting fea-
tures of those theories with intrinsic symmetry
breakdown that are not revealed in previous formal
treatments and provide a theoretical framework
for discussing the cancellations of divergences.

We choose a linear gauge condition and derive
the fictitious Lagrangian (f Lagrangian} based on
distorted-gauge-symmetry considerations. "We
obtain an f Lagrangian which is apparently different
from that obtained in the Lagrange-multiplier for-
malism. ' Yet, in fact, they are equivalent when
the class of linear gauge condition is chosen; this
question has been discussed before. '" When one
chooses a bilinear gauge condition which is Abelian

gauge invariant, the usual gauge formalism for
non-Abelian theories leads to unnecessary com-
pensating terms for the electromagnetic gauge.
Qn the other hand, the Lagrange-multiplier for-
malism does not have these unnecessary compen-
sating terms. "

The Lagrangian in this theory is renormalizable
to all orders by power counting; it contains mas-
sive charged vector fields and a physical scalar
U(x) with a zero mass in the physical spectrum.
We study this Lagrangian thoroughly because it
offers a possiblity of constructing a new renor-
malizable and asymptotically free theory involving
no residual physical scalar (see Sec. V).

II. DISTORTED GAUGE SYMMETRY

Let us consider the Lagrangian involving massive
Yang-Mills fields f„and scalar fields P and U

L, = --, f f""+-M'f ~ f~+-, 8 UB~U

gt'""0}- gt '(Us"y —ys'U)

+ bg't, ~'(p'+U')+ 2gMK f "U+My s„F', (1)
f „=sf„—8 f„gf xf„. (2)

We emphasize that (1) does not have a quartic po
tential of the scalar fields, an essential for spon-
taneous breaking of gauge symmetry. In this
sense, the mass M of the vector field f in (1) has
little to do with spontaneous symmetry breaking.
It could be regarded as generated by an intrinsic
symmetry breaking because if M = 0 the Lagrangian
L, in (1) will be invariant under the usual SU(2)
local gauge transformation. One can verify that the
Lagrangian L, is invariant under the distorted
SU(2) gauge transformation

flE fib fb gfabc~bfc + S ~Q

,ge'b'&obp'+ ,g—aF(U+2M/g)—, (3)

U- U'= U —2ge'tt)',

where up= &o(x) is an infinitesimal gauge function.
When M = 0, p, and U transform like components
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of a complex isodoublet field.
We choose as the gauge condition

a„fM+Mdt), /(=b, (x), (4)

to within unimportant multiplicative factors. The
amplitude (9) corresponds to starting from the ef-
fective Lagrangian'

g ~abd~ 1 gab

a„f,"=(a„f,")+f,"a, , ]-j -=a„a".
It can be shown that W(b, ) is invariant under an
infinitesimal change of b,(x) for all b,(x) 'Thu. s,
we may write W(b, } in (5) as

(8)

b,) exp -i d'x$b, x 2 d x

d F detQ exp i d'x L, —a$ ~,f"+M/

(9)

where b,(x) is a suitable function independent of the
fields and the gauge function &o,(x}. The vacuum
to-vacuum amplitude of the theory is'

)b(b )=f.d[X] exb((f d'xi).
x detQ II 5(a„f:+M(b, /t —5,), (5)

a

where F denotes the set of fields in L„F
=(f M, T(), Uj. The functional determinant detQ is
defined by

(/de b()=f d[te] lib(e, /'." Mb'. /b —b ). (.b)
a

It follows from (6) that

Qa]) 5a])(Z + M 2/ () gf a[id a f )b

L,~f = L, —D $(aDf" + M//t)' D,'—Q,Qq, (10)

detQ Dc exp[i 5'(0) Tr In[5"+ge'M@, /(2M)

+ 5d~gU/(2M)] j.
In general, the limit $-0 is singular and could
interfere with loop-momentum integrations. "
Therefore, it must be examined carefully in the
framework of renormalization and regularization.

which is renormalizable by power counting. The
Lagrangian (10) completely specifies the theory
involving the physical Yang-Mills fields and scalar
field U, together with the unphysical scalar fields
a"f„', y' and the fictitious scalar-fermion fields
D', and D,.

The complete Feynman rules derived from (10)
are given in a previous paper. ' In the limit $-0,
we have a formally unitary theory, in which the
masses of all unphysical fields (i.e. , a'f „, g, D',
and D} become infinite. For the tree diagrams,
the unitarity of the S matrix in the limit $-0 is
obvious. However, the effects of unphysical sca-
lars remain because the fictitious loops degene-
rate to quartically divergent contact terms when
)=0

III. WT IDENTITIES

Let us define the generating functional W(J) in the gauge specified by (4} as

)X(J)=f [F, D, Dd'] ifedx'b*(L.„J„F"J, b
'~

J„())

We consider the transformation (3) with the gauge function &u,(x) restricted by

(12)

where pb is an arbitrary infinitesimal number independent of fields. After performing the transformation
(3) with &a(x) restricted by (12) on the variables of the path integral (11), one obtains the WT identity"

+ gc ~cbd + gcbew8„. , —., J„- g. 5 8

"
ba

U g

(13)

for W(Z), where

(J'„5/5J'„),= J'„(z)5/5J'„(z),

etc. The identity (13) implies relations between

different renormalization constants. One may,
for example, differentiate (13) with respect to
J„ two and three times, and then let all external
sources vanish to obtain the relations'
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Z,/Z, = Y,/Y, ,

z, =z, /z„
(14) Leff L]+Lf+Lff(D', D ),

L = =t(B„f,"+My, /~)', (15)

where Z, (Y,) is the wave-function renormalization
for f'„(D'), Z, ( Y,) is the vertex renormalization
for f'„f'„f„' (f„'D"D'), and Z, is for f;f'„f;f', . The
WT identities (14} are the sa.me as those occurring
in the massless Yang-Mills theory, ' though the
actual distorted gauge transformations (3) are dif-
ferent from the usual gauge transformations. The
nontrivial identities (14) will be checked in Sec.
IV because the scalar particles, which have dif-
ferent interactions from those in previous theo-
ries, ' contribute to Z's.

IV. RENORMALIZATION

The effective bare Lagrangian of the theory is
given by (10), i.e. ,

fa z &lafa @a z &la4, a

U- ZU' 'U, g-gz, /(Zb)' ',
M'-Z M'/Z .

(18)

This gives an invariant renormalized Lagrangian,
denoted by L,»,

L~~ B„D——,'B"D, —(M'/$)D, 'D,

-g~"'D'B (f'D )

,'(Mg/—])(~ab'D.'yg, + D,'D, U),

where L, is given by (1). The renormalization
program is formulated on the basis of L, . We
rescale fields and parameters in L, according to

,'Z, (B,f—„s,f;)'+ ,'Z M'f; f-; Z,ge"'(, f'„)f',f'„,(g'Z, '/Z, -)~.„~„,f'„f'„f;f,"

+ 2ZUB UB U+ azasap, B pa+a(gz, za/Z, )@abc(B Qa)fag'
—.'[gz, (z,z,)"'/z, ]f;(UB'y, 4,B'U)+(z z, )"'M@,B"f;
,'(g Z, '/Z, —')(fa)'(Zapbgb+ Z~U')+ ,'gZ, (Z Z~z, ')'—'MUf;f,". (17)

The gauge-fixing term L, in (15) is chosen for
simple f'„and P' propagators and gives no f'„-p'
transition propagator in the bare theory. But
there will be an f'„-g' transition propagator of
order L-g'/(4 —n) i„~ and complicated f'„and g'
propagators in the renormalized theory. In order
to have a convenient gauge for the renormalized
theory, we choose

[see Eq. (32) below]. We note that the renormalized
Lagrangian (17) is invariant under (19), which is
different from (3), and Ln, in (18) is expressed in
terms of renormalized quantities. Thus, we must
now derive the renormalized f Lagrangian on the
basis of (19) and (18). In analogy with the deriva
tion of Q'b in (8) and (10), we obtain the following
renormalized f Lagrangian:

L,"= -$(B„f; + MP, /t')'/2 (18)

to quantize the theory. We note that, in (17) and

(18), g and M are now renormalized para. meters
and the fields are renormalized.

The renormalized L,,„ in (17) is now invariant
under the following renormalized transformation:

(19)

f' =f „g(Z,Z /Z )a'b'(ubf'+ Z-„B„(a)'„,

g(Z /Z )~abc~b4 cZ

+ag(z, /Z, )z„(u'„[ZU' 'Ulz ' '

+ z.'i' z,2M/(gz, z,'i')],
U'= U -'g[Z Z Z «a/(Z Z i~a}]~cpa

where we have rescaled ~' according to cu'

-Z &o'„/Z, 'i' for convenience, i.e. , Z„will be
related to the wave-function renormalization con-
stant Y, of the fictitious field D, in a simple way

+g(Z, Z„/Z, )D,'B,( f;Db}e"4

+ a (gM/$ }(Z,z„/Z, )e'baD,'pQ
—ai(gM/$)(Z, Z„ZU'i'/Z, za'i')D,'UD, . (20)

We shall now consider one-loop corrections to
the theory in the Feynman gauge, $ = 1 in (18). We
employ dimensional regularization, '~ which pre-
serves distorted gauge symmetry, to define the
divergent quantities. The divergences due to one-
loop corrections have the form of simple poles at
n = 4. Renormalization amounts to subtraction of
the poles with their appropriate residues to render
the theory finite. In general, in higher-order cor-
rections, there are divergent quantities which must
be canceled by counterterms. A theory which is
renormalizable by power counting can be made fi-
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nite by the addition of a finite number of counter-
terms. " The forms of some counterterms, e.g.
the tadpole and the U-mass counterterms, do not

appear in the ba, re Lagrangian (15}and must be
included in the renormalized Lagrangian in order
to renormalize the theory. The distorted gauge
symmetry of the theory severely restricts the
forms of these 'hew" counterterms. The situation
is similar to the well-known y, meson-nucleon
interaction theory, where one must add a "new"
counterterm of quartic meson coupling for renor-
malization.

The effective renormalized Lagrangian is

L„,=I „,+ G(U, Q,)+I d" +I ~~

G( U, P,}= 5((U+ 2M/g}'+ Q,'}'

+ (5' —165)UM a/g, (22)

which is suggested by calculations. The param-
eters & and 6' are to be determined later. The
counterterm Lagrangian L„ is

L„—JZ's- 1) + L", + I de(Z's - 1}+L„, (21)

where Z's-1 denotes that all Z's are set equal to
unity and the "new" counterterm G(U, p, ) takes the
form

L„=-a(Z, —1)(B f„'—B„f')'+2(Z —1)M'f'„fa

-g(Z, —1)d.'ac(B f'„)f„f'„—ag'(Z, '/Z, —1)d,a,d.,d,f~ f'„fdf,"

+a(Zn —1)B„UB"U+ a(Za —1) B(f), Bg'+ ga(Z, Z /aZ, —1)e,~(Bay,)fa (P

—ag[Z, (ZUZa)"'/Z, —1]f'„(UBay, —y.B'U) —ag'(Z, Z, '/Z, ' —1)y.y. —ag'(ZUZ, '/Z, ' 1)U'

+ [(Z Za)'~' —1]Mgasaf'„+ pg[Z, (Z ZUZ, ')'~' —1]MUf'„f a

+G(U, P,)+(Z„—1)B„D',B"D,—(Z„Z '~'Za '~' —1)M2DQ,/(

+(Z,Z„Z, ' —1)ge 'dD,'B„(faD )+(Z,Z„Z ' —1)(gM/2$)d'"'DQ p,
(gM/2$)(Z, Z„Z~'~'Z, 'Za '~' —1)DQ,U . (23}

We shall ignore the tadpole contributions for the moment. Let us consider first the one-particle-irredu-
cible diagrams for the vector-boson self-energy and the relevant counterterm, which are given in Fig. 1.
The finite parts will be neglected in our discussions. The sum of contributions due to Fig. 1 is

v'„(P) =iM'Lg„„5,a+i "L(g„„P'—p p„)—,a+i(Z —1)M'g„„5,a —i(Z, —1)( g„„P' pp„)5,a-

= v,(t ')g,.5.g+ &,(I')I P.B.g,

L=-( g/4w)'( 2-n /2) '.
(24)

We perform conventional renormalizations of mass
and wave function so that Z and Z, eliminate the
divergent quantities in the expansion of v, (P') about
pMpb)psMWeobtain

three-point function (Fig. 2) is

f „'„[ 7L/6+(Z, —1-)],

where

(26)

Z, =1+19L/6, Z =1 L. -
The one-loop correction to the Yang-Mills

(25) f:i= g&.a,[g..(P dI)-.-+ g',~(e —&).+—gi, (& —P).]

The constant Z, is determined by requiring the
only contribution to the physical f '„faf '„coupling
constant to be the tree diagram:

.n
2 p

I+
2

0
. ~ & .

~ (~ ~ ~
'

0

Z, = 1+7L/6. (27)

The one-loop correction to the Yang-Mills four-
point function (Fig. 3) is

I+—
2

I+
2

f
+

P

I ~ + f '„'„'„',[(L/6} + (2L/3) + (Z, '/Z, —1)],
where

factin g [ fad fcd(guA g'vo googol)

(28}

FIG. 1. The one-loop self-energy off„'. We use a
solid line for f, a wavy line for U, a dashed line for p,
and a dotted line for D.

+ ~fac fda(guogvX gav&o)

+ efad~jbc(gvv gad gaXgvo)l ' (29)
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11

+
D

+ ~ ~ ~ ~ ~" ~ + ~ ~ ~ "X"

q, a, b k, X,c

+ I crossing
FIG. 4. The self-energy of D, .

counterterm:

+—I

2
+ 2 crossings + + 2 crossings

rrab(Ps) i(5L/4) 6ab iL(Ps Ms) 6ab

i(Y,Z '»/Z '" 1)M'6" ~i(Y, —1)P'

(33)

/ + 2 crossings + The constant F3 is determined by

FIG. 2. Corrections to the Yang-Mills three-point
function. l.e.

y

ab 2

p2=M2
(34)

With the help of (25) a.nd (27) we see that (26) does
vanish as required. This implies that

F3= 1+L.
Note that vDb(Ms) vanishes automatically,

(35)

z, = z, '/z, , (30) wnb(M'} = 0, $ = 1 (36)

ZU= Z = 1+ 3L/2,

6= —9Lg /64. (31)

In the f Lagrangian (20}, we may regard the
scalar-fermion D, and the f„D'D coupling constant
as being rescaled according to

Da y 1/2Da y =Z3 3 i'

g-g Y,/( Y,Z, 'i'), (32)

together with (16). From the diagrams in Fig. 4,
we obtain the sum of the D, self-energy and the

+ 2 crossings + + 5 crossings

x.'. ./
+ + 2 crossings —,: + 5 crossingsj" X

I+
2

V
+ 2 crossings + 5 crossings

where Z4 is the renormalization constant for
f;f„f;f, and, therefore, the second identity in

(14) is confirmed. From the self-energy diagrams
for ft) and U, we get

as required for consistency. Also note that the
D, mass counterterm in (33) contains no new Z
constants.

The corrections to the f'„D'D' three-point func-
tion and the relevant counterterm in Fig. 5 give

g&„,k„[L+(y,Z, /Z, 1)], (37)

which vanishes as can be seen with the help of
(25), (27), and (35). From the bare f Lagrang'ian

Lzz in (15), the scalings (32) and (16), and the re-
sult (37}, we get

Yi = YsZs/Zs (38)

which confirms the first identity in (14). This and

(30) ensure that g has been renormalized consis-
tently. Other one-loop vertex corrections are
given in the Appendix.

Let us now consider the tadpole diagrams. The
contribution of tadpoles is divergent and must be
canceled by a counterterm. The tadpole counter-
term in (22) is not gauge invariant. This does not
matter because the counterterms may not be gauge
invariant in general and tadpoles are to be omitted
in calculating with the renormalized Lagrangian. "
The tadpole diagrams and the related counterterm
in Fig. 6 give

+ I

2 + 2 crossings +

+ 5 crossings +

+ 5 crossings

+ 5 crossings

/

i[+ 9LM'/(2g )+ O'Ms/g'],

which must vanish, and so we obtain

6' = —9L/2. (40)

J'
+ 2 crossings

/

FIG. 3. Corrections to the Yang-Mills four-point func-
tion.

+ „. - + —---' + .~. +
p f
'D

FIG. 5. Corrections to the f„'DbDa vertex.
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I

2
vo

FIG. 6. Tadpole and its counterterm.

V. DISCUSSIONS AND CONCLUSION

The motivation and goal of this investigation have
been to construct a renormalizable and asymptot-
ically free theory without involving a physical sca-
lar field eventually. For the purpose at hand we
must study the renormalization thoroughly at the
one-loop level and the Ward-Takahashi identities.
The presence of the physical scalar field U(x) pre-
vents the theory from being asymptotically free
because of the U-U scattering in higher orders.
Thus, the whole crux of the matter is to properly
remove the scalar U from the physical spectrum.
This can be accomplished by adding a mass term

IU'/2 to the Lagrangian (1) and taking the limit
m-~ eventually. " Of course, this limit must be
examined very carefully because it may interfere
with loop-momentum integrations. These will be dis-
cussed in a separate paper. We do not want to take
things for granted because such a limiting procedure
in the Lagrangian (1) is mathematically different from
Lee and Yang's f-limiting procedure" and has not
been explored before. The calculations in this
paper are carried out to make sure that everything
is all right and that they can be used for further
study. Furthermore, our result here substanti-
ates the formal proof of renormalizability and WT
identities of distorted gauge-invariant theories. '"'"

What we have done is to carry out an explicit and

complete renormalization of a theory in which the
vector-boson mass is generated by an intrinsic
breakdown of the usual gauge symmetry. Yet the
Lagrangian is nevertheless invariant under a dis-

torted gauge transformation. This is the essential
feature for the theory to be renormalizable. In
spontaneously broken gauge theories, the La-
grangians are also strictly invariant under a dis-
torted gauge transformation. "' Conceptually, the
distorted gauge transformation is a generalization
of the usual gauge transformation, as one can see
from (3). The distorted gauge symmetry is a gen-
eral concept in the sense that it includes different
symmetries as special cases, e.g. spontaneously
broken gauge symmetry, intrinsically broken
gauge symmetry, and the usual local gauge sym-
metry.
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APPENDIX

The renormalization constants in Sec. IV are
summarized as follows:

Z, =1+19L/6, Z =1 —L,
Z, =1+7L/6, Z~= Z~ = 1+3L/2,

Y3=1+I = Z„, Y, =1 —L, (A1)

6 = —9Lg '/64, 6' = —9L/2,

L =(g/4n)'(2 —n/2) '

for )=1. Because of the distorted gauge symme-
try, the renormalizations of various couplings in

(21) are related. There are also many types of
"new" counterterms. The renormalized Lagran-
gian is

L„~= —4(1+ 19L/6)(s f'„—s„f')'+ 2(1+L)M' f' f~

(1+7L/6)g e'"(6,f'„)f;f," —,'(1 5L/6) ~"~'"f', f'„f; f",+ ,'(1+ 3L/2)(s, Us-'U+ s„y,s"y,)

(27L/8)M'U' —(9L/8)M'p, '+ 2(1 —L/2)g e,~(s p, )f~
p'

—,'(1 L/2) gf;(Us" @' y'6'U)+ (1 5L/2)( g'/8) f'„f."(P,P, + U')

y (1 7L/4) gMf
' f,"U+ (1+L/4)MQ'8" f' (9L/8)MgU(g, '+ U ') —(9L/2)M'U/g

—(9L/64)(U'+ y, ')' (s„f. + M@,)'/2+ (1+L)6"D,'s,D. (1 L/4)M'Dg.

+ (1 —L) [ge' 'D', s"(f'D ) +gM&'~'D', D~Q, /2 gMD', D,U/2] . — (A2)
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I

2 + 2 crossings + I i + 5 crossings
I

III

+ I I crossings

II
g

+ + 5 crossings

I

/ I
Ii I I We have checked each term of (A2) to make sure

that the theory is renormalized consistently in ac-
cordance with the distorted gauge symmetry. The
coefficient of the new counterterm (P, P,)', for
example, is obtained by calculating the diagrams
in Fig. 7.

I

+ 5 crossings +
/

I
+ 5 crossings

FIG. 7. Diagram for the new counterterm (g p, ) ~
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