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We develop a functional-integral bridge that explicitly exhibits the string content of certain two-dimensional

gauge theories.

INTRODUCTION

In recent years, the thrust of particle theory has
turned increasingly toward the problem of extract-
ing hadrons from local quantum field theory. A

simple chain of reasoning based on (1) renormali-
zability, (2) nonrelativistic-quark-model success,
(3) scaling, (4) the rate for x'-2y, and (5) the
experimental absence of quarks, has led us in-
exorably to a single candidate: that theory of
quarks and non-Abelian gluons ennobled in the
epithet "quantum chromodynamics. "

The hope is that the fields carrying color will
agglutinate (only) into the color-singlet particles
known as hadrons, and there is reason to believe
that, in the equivalent hadron language, the theory
will closely resemble present dual-string models.
Indeed, in two-dimensional models of confine-
ment, representative matrix elements of a gauge
theory' have been shown' to coincide with those of
a string theory. '

Motivated by this success, we were led to ask if
there exists a direci bridge (at least in such
models) from the field language [P(xt), g(xt),
A (xt), etc. ] to the particle (string) language
[e.g. , x'(r) for end points, x"(r, a) for string].
At first sight, the two types of degrees of freedom
seem worlds apart, accurately reflecting one of
the conceptual dilemmas surrounding confinement.

But in 1950, Feynman' provided the beginnings
of such a bridge, when he noticed that, at least for
scalar fields, the Green's functions of the field
theory can be reexpressed as path integrals over
classical trajectories x'(r) (and the gauge field).
In this neglected language, creation and annihila-
tion are properly described in terms of trajector-
ies moving forward and backward in r (proper
time).

Of course, x'(r} is just the coordinate of an
end point of a string. It is perhaps not surprising
then that (after a final approximate functional in-
tegration) the gauge field becomes the string it-
self. Thus we arrive directly and explicitly at the
Bardeen-Bars-Hanson-Peccei' (BBHP) string.

In actual fact, the explicit development of the
bridge is not trivial for a number of technical and

conceptual reasons. In the first place, Feynman
gave his representation only for Abelian scalar
electrodynamics, and we would like to extend the
result to fermions and non-Abelian gluons. We
have ideas of how to do this, which involve anti-
commuting c-number "classical" trajectories, but
in this paper, in two dimensions, we will settle on
a more modest goal: (Abelian) scalar electrody-
namics and the massive Schwinger model. Abelian
fermions are so simple in two dimensions that we
can work without anticommuting c-numbers. Be-
yond finding the bridge itself, results are already
interesting; although the (light-cone) Schwinger
model leads to the BBHP string, (light-cone)
scalar electrodynamics involves deviations.
(Classically, however, they both are the BBHP
string. )

The conceptual diffi. culties lie primarily in
identifying, in the functional language, a gauge-
invariant approximation scheme which will reex-
press the theory in terms of strings and string
interactions. Since we are working with Abelian
gauge theories, we do not have the 1V

' expansion
as a guide; a set of graphs planar in one gauge will
not generally be so in another. It turns out that the
string corresponds to a gauge-inz~axiant restriction
that one quark moves always forward in 7', while
the other moves always backward (antiquark), and
there are no internal quark loops [Fig. 1(a)]. For
example, inserting the gauge-invariant require-
ment that x &„(r)&0, x t»(r) & 0 (light-cone times)
yields the set of graphs which, in the light-cone
gaage, is planar [Fig. 1(b}]. In this paper, we
concentrate mainly on the light-cone gauge (and
the restrictions on x'). This leads precisely to
the BBHP string (at least for fermions).

For string interactions we go to the 6-point
function with quark trajectories moving in time
as shown in Fig. 2. Here we make the gauge-in-
variant restriction that one quark turns around
in time just once (at vo), and we integrate over 7'o.

The detailed treatment of the 3-string vertex as
well as N-point functions (Fig. 3) will be given
elsewhere, though a brief sketch is offered near
the end of the paper. The picture that emerges is
very much like Mandelstam's' string formalism
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FIG. 3. N-point functions.

(b)

(2)

is obtained explicitly. Section VII is for remarks,
including a brief sketch of the 3-string vertex.
There is another appendix, Appendix A, in which
we offer a toy classical field theory which is the
BBHP string in an arbitrary gauge.

II. SCALAR ELECTRODYNAMICS AND REPRESENTATION
IN TERMS OF CLASSICAL GREEN'S FUNCTIONAL

FIG. 1. (a) Quark-antiquark graph: x~'f)(T) &0, &(~)(T) &0.
(b) Remnant in light-cone gauge: A'=0.

We begin with the generating functional for
scalar electrodynamics'

zz(»» ) —Jzd zd BA, d(x(A)) d(A)

in 26 dimensions, with factorization properties of
functional integrals being intimately related to
hadronic factorization of the S matrix.

We begin with scalar particles, because Feynman
did. Sections II and III are brief reviews of re-
writing scalar electrodynamics in terms of classi-
cal Green's functions and Feynman's relativistic
sum-over- classical- traj ectories representation.
We believe the quantum ordering relevant for this
topic has not received such careful treatment else-
where. In Sec. IV, we discuss our gauge-invariant
"choppingxx procedure (that is, planar in, say, the
light-cone gauge). It turns out that light-cone
scalar electrodynamics makes deviations from the
light-cone BBHP string, due to quantum-ordering
effects. The solution of this model is completed
in Appendix B. In Sec. V, we make the transition
to fermions (massive Schwinger model), and bring
their parallel development up to the level of Sec.
IV for bosons. In Sec. VI, the BBHP Hamiltonian

xexp s d gN~ (2 1)

where

C~ = ——,F,„F""+(S" —ieA') &f&*(S„+ieA, }P
y~2Q+P + (f)+J+ J)fly (2.2)

»(»»') = f &A. d(x(A)) d(A}ddt(G(, x;A)]

Here g(A) is the gauge condition and Z(A) the cor-
responding Faddeev-Popov determinant, P = (I/
W2)(gt+ i/, ), and 0I is chosen so that Z[0, 0] =1.
We will have no need for gluon sources. We have
also made the simplifying assumption that there
is no scalar potential. In two dimensions this is
our option, for corrections to the assumption are
calculable.

Integrating out the charged field, we express Z
in terms of the classical Green's functional
G(x, y; A),

x exp —— d'x F„„F""

x exp j d2g d2y J+ g

x G(x, y;A)J(y) (2.3)

I

I

I

I

Tp

FIG. 2. Three- string vertex.

—[(8'+ ieA")(8„+ieA„™]G(x,y; A) = 5")(x—y) .
(2.4)

Time-ordered boundary conditions are implied for



FUNCTIONAI. BRIDGE BETWEEN GAUGE THEORY AND. . .

G(x, y;A). As we shall detail in Sec. III, Feynman
has shown us how to express G(x, y;A) as a path
integral over classical trajectories, and hence Z
itself.

To calculate Green's functions, one takes ap-
propriate functional derivatives with respect to
J,J*. In particular, me mill have need for the
four-point function shown in Fig. 4,

&oiT&y*(z,)y(z, )y(z, )y*(z,))io& =G(z„z„z„z,)

' nA, e[x(A)]s(A)es([n(, y;A)]exp —— f e'ep, „p"")

x [G(z„z,;A)G(z„z,;~)+G{z„z,;A)G(z„z„.A)]. (2.6)

III. FEYNM AN'S SUM-OVER-CLASSICAL-TRAJECTORIES
REPRESENTATION

Our task is to invert Eq. (2.4}. This is best
done in an operator notation. We introduce the
operator 6 and a set of states such that

(x~G~y&=G(x, y;A), &x~y&=5'(x —y).

We also introduce the operators x„I'„,with

[x,P„]=ig,„, so that

& ~P, ~y»=- 's,'"6"'( —y).

(3.1}

(3.2)

Here, of course, the first pair of G's contains the
direct graphs, the second pair the annihilation

graphs, and the determinant contains internal
charged loops.

The inversion is nom accomplished via

00

0=-— e sxp —{[p"+ ex'(*)][A„+eA„( )]- '))

(3.4}

oo

dr &x
~

e '"'
~

y&
0

H= —,' {[P'+eA"—(x)][P,+ eA„(x)] —m']. .

(3 6)

and the choice of time-ordered boundary condition
is nom explicit. In the e,oordinate representation,
me need express as a functional integral the quan-
tity

G (x, y; At) = &x
i
G

i y&

In this notation, Eq. (2.4) reads

{[P"+&'( )][P.+ ~.( )l- (3.3)

The functional-integral form for the integrand
is mell known in quantum mechanics, and me ob-
tain formally

OO T

n(e, p;» =- — «n*"n)'" exp «'{p'*'e-', [(p+ eA)' ]]12 Q x&~)=x Q

x&Q)=y

(3 6)

where xn =(d/dT)x (T), and A4 I}„—:e4 '11. Feynman's result can be obtam

G(x, y;A) = —— dr
2

Q x&T)=x
Sx exp i dr'(- —'x ~ x ex'A4 ——m )

wQ

(3.7)

Thus the classical Green's functional is in terms of the dynamics of a, point particle. The forms (3 6) and

(3. I) are, however, quite formal. Because A is a function of x, quantum-ordering problems are serious,
and of considerable interest in our approach. It will pay, therefore, to look closely at the lattice structure
of the functional integrals.

We take our lattice as shown in Fig. 5. In the phase-space approach, one suspects that

At(x) P+P.A(x) -A(x)) P, + P, A(x, ,)

is the correct lattice ordering near each P. This can easily be verified in detail. Thus, the precise form
of the functional integral in (3.6) is

f n*"np"exp ' ee'{p ee [[(p+ A)* — *1])
x{v)=x 0

~
~

~

P) P{ d2P- N Id'x„jg,' exp —g {[P,+eA4(x, )] [P,+ed(x, ,)] —m'] exp i P, '(x, —x, ,), (3.9}
r 7T L=l
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where e is the lattice spacing (qN =7}and x, =y, x„=x.
Similarly, integration of I', in (3.9) gives the precise form of the functional integral in (3.7),

r
T

nx 'exp i dr'(- —,
' x ' —ex A ——,

' m')
x(v }=x I o
x(0)=y

In what follows, we will generally work with the
phase- space form.

IV. GAUGE-INVARIANT "CHOPPING" PROCEDURE AND

"TOPOLOGICAL" EXPANSION

Consider the set of Green's functions defined by
Z[Z, Z*] as in Eq. (2.3) [or, in particular, as in

Eq. (2.5)]. Replace each G(x, y;A) by the form
(3.6). The 2X-point Green's function involves
functional integration over SA Sx(,

&

- ~ Sx &'„&.

In this form, it is not possible to perform the A
integration explicitly. It is our task to find a
gauge- invariant approximation procedure that will
show a string and string interactions. Our scheme
is as follows.

Consider all the Green's functions, ' and in par-
ticular the four-point function Eq. (2.5), Fig. 4, in
the gauge-invariant approximation that det G is
dropped (no closed charge-loops}. (The A inte-
gration is now possible, but will not yield a BBHP-
type string. ) Consider the further approximation
(as mentioned in the Introduction}, that we keep
only the first pair of G's (also gauge invariant),
and that we consider only that region of Sx'„)Sx~(»

for which (say) x&»(7')& 0, x&»(r) &0. We will show

presently that such a "chopping" is gauge invar-
iant, but this is to be expected in any case; we are
only stating that the particles move uniformly in

(proper} time: You cannot change a quark to an
antiquark by a gauge transformation. The fact
that, in this chopping, they never turn around is
depicted in Fig. 1. As we shall see, this struc-
ture will be the BBHP-string propagator itself.

The next "chopping" is in the six-point function,
where we require, as in Fig. 2, that one charged
particle turns around exactly once in time [for
that particle, sign(x'(r)}= &(T v,}]. This will be
the three-string vertex. In this way„we proceed
to define the 2N-point functions in the "tree" ap-
proximation, as in Fig. 3. This defines our "first"
approximation. Factorization properties of the
functional integrals will be useful in showing the
hadronic factorization of these trees. "Sewing"
trees back together again, in the manner common

to dual models, will recapture all the original
Feynman diagrams omitted in the first approxi-
mation.

Before mentioning other choppings (than x'), we

offer a few qualitative details about the corre-
spondence between the x' chopping and Feynman
diagrams. In a general gauge, this chopping (and

no internal fermion loops), integrated over A„
contains crossed gluon diagrams [Fig. 1(a}], self-
energies, and vertex corrections. If we go to the
light-cone gauge, th combination gf the monotoni-

city of each charged line and the instantaneous
gluons suppresses the crossed gluon graphs. The
presence or absence of self-energy graphs and

vertex corrections depends, in the light-cone
gauge, on whether or not we allow x'=0 on a given
trajectory (see Fig. 6). To avoid such singulari-
ties (in the light-cone gauge), we will specify that
x' is strictly greater than or less than zero. This
refinement is also a completely gauge-invariant
notion, and will suppress self-energies and vertex
corrections (only) in the light cone gauge. "

Thus, (only) in the light cone gauge, our chopp-
ing becomes the usual planar Feynman diagrams.
Moreover, in the light-cone gauge, the general
expansion discussed above becomes the familiar

Zp Zf

Zy Z2

N

x

P2

x

P)

FIG. 4. Full four-point function. FIG. 5. Phase- space lattice.
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FIG. 6. Vertex and self-energy corrections. Be-
cause gluons are instantaneous, certain charged par-
ticles have x' =0.

"topological" expansion. " It is the organization
that would be picked out by an N ' expansion (later
taken at N = 1). Indeed, the light-cone gauge is a
great simplification for the x' chopping, and most

of the paper will be written with that chopping-
gauge combination.

There are in principle other possible gauge-
invariant choppings, e.g. , x'„)&0, x(, ) &0 (for
the four-point function). It is not obvious that this
is equivalent to the x' chopping. This gives a set
of graphs which is apparently planar only in the
axial gauge, and may give a string Hamiltonian like
the BBHP Hamiltonian in their timelike gauge. We
have not carried out this last step, and further in-
vestigation of this topic will be informative.

It remains to demonstrate our contention that the
chopping procedure is gauge-invariant. Consider

Gz(x, y; A+ eA) = —.
)

dr-1 r
E g0

ee«eep s[ ]exp(' ae'()' *' ~ -', [(pe eA+ ex)*,*]]),
0

(4 I)

= —ie[A(x(7)) A(x(0))]

= —ie [A(x) —A(y)], (4.2)

which completes the demonstration. The chopping
is gauge invariant for arbitrary S, including 8(x ),
8(x'); "strictly greater or less than" can be as
easily employed [8(0)=0].

We have studied our chopping by expanding (4.1)
with S = 8(x'} in perturbation theory. In the light-
cone gauge it corresponds to using the usual ver-
tices and "chopped" propagators

8(P') 2p.p
(4.3)

where S[x] may be any function of x'(&). For the
full Qreen's functional, S= 1; for the light-cone
chopping, S= P &.. .8(+x'}, etc. If

G~(x, y; A+ 8A) = exp[-ieA(x)+ feA(y)]G~(x, y; A),
the chopping is gauge-invariant. To see that this
is true for arbitrary S(x), simply shift P+ eeA= P'. —

The resulting form is just the exponential at A = 0
plus a term

i 't dv'(- eeA x), , = —ie
' eA(x(7')}

Thus, it may be no surprise that our gauge-in-
variant approximation (plans. r in the light-cone
gauge) to the massive Schwinger model (later) will
yield the N = 1 't Hooft spectrum; essentially the
same graphs are being summed. (The only dif-
ference is that we are summing "chopped" propa-
gators, but 't Hooft'sj j integral equation "chops"
itself in the process of solution. )

In other gauges, the x' chopping is vastly more
complicated: Factorized "vertices" are elusive
because the natural vertices obtained from the
functional integral pick up terms proportional to
5(x ') times derivatives of propagators (and worse
and worse in higher orders}.

Thus, it is difficult to verify gauge invariance
in perturbation theory. Indeed, in a technical
sense, our previous demonstration of gauge in-
variance is only semiclassical, for one needs be
careful to use a grid structure that maintains
gauge invariance. We believe such (a rigorous
gauge-covariant extension of the light-cone gauge)
is not difficult to construct, but we will not pursue
the subject further. Hereafter, we will use the
x' chopping and (then) the light-cone gauge.

We have brought our discussion of the four-point
function to the form

G (Z Z,Z,Z, ) = -, J eeA'eeA e(A') exp (- —J[ e xPP'', „

x d&j dT, ZDX ] ZDX jZDPj ADP jzDX 2 ZDX jeDP2 ADP2
0 0 xj(fI) -Z3$ x2(T2) =22

xl (0)=ZI, x2(0) =Z~

d ' d ' T f'

e +,' II e „', II p d, (P,. ',. +-. f[P;+ A(;)]' — 'j),
0(fj Tj j 0&f2&f2 2 i=l, 2 0

(4 4)
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where the notation G~ denotes "chopped. " The
range of the 8 functions refers to the grid, where,
because gx, = x, —x, „we must not require the g

function at &=0.
The last step, or steps, involves integration

over A'. Because of the quantum-ordering effects
in the functional integral [see Eq. (3.9)], this is not
as easy as it looks, and the result is not quite the
light-cone BBHP string (except as R-O). The cal-
culation is completed in Appendix B, where it is
compared with the integral equation approach to
the Feynman graph summation. The two calcula-
tions agree.

Although scalar electrodynamics deviates (for
Rw 0) from the BBHP string (and hence from the 't
Hooft spectrum), we have learned enough now from
the scalars to approach fermions. Indeed, in the
massive Schwinger model, our approach will yield
exactly the BBHP light-cone string.

is a constraint. We shall be interested here only
in the R, subspace, and thus we consider the gen-
erating functional

z2[(, (~] = JDA'DA (6())D(),B( D((),) D(g )

e[fa2xz )

where

(5.8)

and (65) is an arbitrary gauge fixing term.
Integrating over ]t), (g )t, and rescaling g„(P,)'

by 2 ', we obtain

x z[(, (t] = J nA'DA (65)n(. G(()~e'( "*,
(5.9)

V. FERMIONS AND THE MASSIVE SCHKINGER MODEL

In two dimensions, fermions are extremely sim-
ple and, by working in a certain subspace, we shall
be able to take over our scalar results almost in
toto.

The Lagrangian density for the massive Schwin-
ger model is

From the equal-x commutation relations im-
plied in a lightlike quantization of (5.9), together
with the constraint equation (5.6), it is not hard to
show that

m j. ~ y'
[0(x)l e')]+/+» +

2
.9 e/+ +

4 ( 9 eg+)»

2 =7](iS —eg- m)g- ,' E„„F"". — (5.1)
(5.10a)

Following Kogut and Soper, "we introduce light-
cone variables

(5.10b)

and projectors

R = —'y'y, R, +R =1, R, R =O

and define

In these variables, the Lagrangian becomes

2 =v2 (g )'(is —eA')]t) +&2 (q,)'(is. —eA )[[,

(5.2)

(5.3)

(5.4)

(5.5)

Equation (5.10a) is the equal-x' anticommutator
for the original g, and on its right-hand side
(S ')„,=-,' (.'(x —y ). Equations (5.10b), following
from the first, is the x'-ordered Green's function
for P; on its right-hand side (8 ')„,= —', e(x —y )
6(x' —y'). Thus, time-ordered Green's functions
do not agree with x'-ordered Green's functions. "
We are interested here, however, only in calcu-
lating the R, subspace. It is not hard to show that
&.{0~~.(e 4) ~0&&, =&,{0~&(4 @~0&&, (the»t«»s
ordinary x' ordered, x' quantized) to all orders.
The same is true for tt, g~ Green's functions. We
may proceed with confidence then to use x'-or-
dered Green's functions.

In order to do the remaining fermonic integration
in (5.9), we require the Green's functional for g, :

where F, = 8,A' —8 A . The equation of motion for
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5fZ(~, (')=, ~A'gA (a5)det(G~ ') exp i d'x(-,'E, '- $'Gr))
I

(5.12)

The four-point function of Fig. 4 is now

(0~ r(s.(Z.)(C.)'(Z, )C,(Z.)(q,)'(Z.)&l»=G(Z. Z. Z. Z &

= J(z&x's&A-(s(ot(st(G, -'(cry(i d'x
2 )

x [G~(Z„Z4;A)Gr(Z3, Z„'A) —Gr(Z„Z4;A)G~(Z2, Z, ;A)j. (5.13)

G~ =—2(i 8 —eA')G,

The defining equation for G is then

(5.14)

[-2(8,+ieA )(8 +ieA') —m']6=5"'R, . (5.15)

As for the scalar particles, we would like to ex-
press G~ as a functional integral over classical
trajectories. Although such can be handled di-
rectly by the methods of the previous sections, it
is more instructive to make close contact with our
bosonic formula by defining yet another Green's
functional G:

This is extremely close, but not identical, to Eq.
(2.4). The difference is a matter of (luantum or-
dering, for in (2.4),

—(8„+ieA„)(8"+ ieA") = —(8,+ ieA )(8 + ieA')

—(8 +ieA')(8, +ieA ).
(5.16)

An analysis parallel to that of the boson case
then yields the desired functional-integral repre-
sentation

OO

G(&, y;A)=- —R, d7 SP'S)P ux'g)x exp i
J

dr' P'i +P ~'+(P +eA )(P'+eA') —
2

. (51'f}
2 0 r(v)=x 0

x(0)=y

Again, we have paid careful attention to ordering
on the grid with the result

dr'(P + eA )(P + eA') -=~ (P„P'„+P,A',
0 r=

+ eP'„A„+ e2A'„A„) . (5.18)

%e have brought the fermion discussion up to the
level of Sec. HI for the bosons. The discussion of
Sec. IV is totally analogous. The chopping 8(~')
(etc.) is gauge invariant. Then, it is convenient to
choose the light-cone gauge. In perturbation the-
ory, our chopping turns out to be (for the light-
cone gauge) the "usual" vertices and the chopped

fermion propagator

8(~') y"
2 . + ~ q'm

2
=8(q.)~

m' 1 - 1
2g 2g g —P8 —m

(5.19)

The last equality is true for the 8, subspace in
the light-cone gauge. (Again, other gauges are
vicious. ) As mentioned above, then, the graphs
we are summing (in the light-cone gauge) are (pre-
chopped) planar ladders.

Putting together all of our previous discussion,
and noting that 2i8 brings down —2P' for each G„,
we arrive at the "chopped" four-point function,

(:;(z„z„z„z)= ((((&,&(R(t„' nA'nw-(((x') exp (- ~ J d *xz,„("")

d7'~ d7'2 Sx,53x~SP ~QP, 5)x2+x25)P2 X)P 2
0 G

0&V~1 ~el
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x, (0) = Z„x,(0)= Z„x(7,) = Z„x,(7,) = x,

and the proviso, Eq. (5.16). This is to be compared with Eq. (4.3). As promised, we have brought the
fermions up to the level of the bosonic discussion in Sec. IV. %e are now ready to find the string. In what
follows, we suppress the simple factors (R,)(}},(It,)(».

VI. BRINGING OUT THE STRING

We can do the functional integration over the gauge field in Eq. (5.19), and, in this sense, our dynamics
will be entirely in terms of the geometrical variables x, (7') . Ho.wever, the most efficient way to see the
BBHP string is somewhat intricate.

We start with one of the two Green's functionals in (5.19):

dx
G (z„s,.x)=' dr u*"up" 11 9, } (r}exy

'
dr (}' }el'[(p+eA}'- *])).

0 x(T)=Z3 0&'y &T 0
x(o) =ZI

Because we are in the gauge A'=0, we can perform the I' integration. The result is

~

~ ~
N N

} ' exp i },};+' (*;—*;,)p, =11(}(g}';yg', ', ,)=g(g, ( pi '}) }
=1 E=l

%e have written q, , = & in preparation for a change of variable to a nonuniform lattice. Thus

(6 &)

CO 'T 2

gc(Z Z ~ g) —' (f7' exp
' —dT ux X)x 'XlP'8(- P')5(e;(x '+ P'))P'(7)

0 () 2 x(T ) Z3
X(O)=81

xexp }'.
)

(P'x +eP'A )d7'
Jo

(6.3)

There are two related problems with this form.
First, the d7' integration prevents us from putting
the path integral in any standard form; second, the
5(x'+ P') is in a mixed form, neither phase space
nor action formalism. Both of these may be solved
by the following change of variable on the lattice.

%e define new variables of integration A, X' by

uniform, q„', depends on the location in the lattice.
The second step involves just the statement x '(7')
= x '(X'). Thus

5(e,,(x'+P'))=]$ 5(x; —x', , —~,', )

dX '" PX

P '(X~ ., P'(Xj
(6.4) (6.6)

Here, we have defined P'(r')=P'(X'), and we will
take x'(1') =x'(A'). Formally, then, our "con-
straint" d.-. '+P'd7'=0 becomes just dx'=dA', i.e. ,
x'—= A.'. The constraint is a gauge choice for the
string. Note also that this transformation is Only
well defined because of 8(-P'). In particular, it
is only well defined for P+WO. The assumption
that P'(0, equivalent to defining 8(0) = 0, is where
we drop self-energy and vertex corrections.

I.et us examine this in greater detail. For each
function in our 5 functional

X
g

X ) I ~ g g

In the last step, we have reorganized the N 5 func-
tions, remembering that x,'=x,'=x'(0)=z„x'„
=x)((=x (T) = Z 3, and QI }e1.= Z }+X ~ TlleI'e al'e
N- 1 5 functions in the last product. This is just
the right number to do the integrations over A. and
x'. The result is

G,'(z„z,;A.) = —f8(z,' —z;)

x SP'Sx 8(-P')e's,
x- (Z+- ZI )=Z33

X-(0)=Z1

l / 1 (6.5)

S g]
—eQ (X'+ Z, x (}Y))+P x ~2I"

In the first step we have used dX' = —P'(7')dr'
[e'„.= —P;&,,], and we have noted that, since q„ is A final simple change of variable

(6.V)
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X'+Z;=X„P'(X')=-P;(X,), x-(~') =x-,(X,)

(6.8)

brings us to the useful form

G,'(Z„Z„A) =-i8(Z;-Z', )

moving in a field A with HamiltonianH, =(m'/2P", )
+eA ~

Similarly, for the other Green's functional
[chopped with 8(-x')], we find

G,'(Z„Z„A) =f8(Z', -Z', )

x &PxSxi8 +P+~ e'
XJ(Z3)=Z3

~ (z+) z
(6.9)

Z3 m2

z+ 11

This is the simplest representation for the Green's
functional. It clearly displays a single particle

Sx, L)P'28 +P', e' 2,
x2(z+4)=z4

+,(z, )=z,
(6.10)4, m

Sz= d'z —Pzxz —2, +eA (X»xz(gz))

We insert these back into the four-point function

G'(z„z„z„z,) JDA'nA=5(A')exp(-5 5'*p, p' )G', (z„„z"„A)G',(z„z,;A). (6.11)

Because the interaction is instantaneous, the
quarks fail to interact when one pulls ahead of
the other (in proper time), therefore we will lose
no dynamics by assuming Z+, =Z;, Z;=Z",. (This
is not necessary, merely convenient. ) In this
form the final functional integration over A is
particularly simple:

J
z+

SA exp i d'x —,
' 8 A '+ JA

ZJ

Jx g- J (6.12)

Further" (8 )„'=-,'~x -y
~
6(x'-y+), and here

Z=e[6(x -x, ) —6(x-x, )]. Our final result is

+ +
ZJ —Z2 2 3 4'

G'(z. , z„z„z,)
(+)=

&x, SP'Sx SP'8(+P+) 8(+P+) e",
xq(z+q) =zj,

x2(zj) z

(6.13)
z m' m' 2

d'( plxz P2x, -~)5 H=2++2++ ~x, -x, ~.

Thus we have shown that the chopped equal- time four-
point Green's function of the massive Schwinger
model is the transition amplitude for the (no-fold)
BBHP string.

Confidentially, we worried for some time wheth-
er we had made a sign error: our result says
(for free particles)

2

»H=- m2
P'&0, (x,P')=i

The reader is invited to check for himself that
this is precisely correct for L =-m(x')' ' in the
X'=T gauge.

For those readers interested in studying the
string model from the point of view of a general
constrained Hamiltonian path integral, we remark
that our result can also be put in the form

l
2 2

DP"nP", DA", DA", DP",(rr, r')D*(rr, )5(-P,)5( P)5(P' —
5

5"G-'), 5P+
5

I*' I)

x~ 2P+2P'~ 6(Pz2-m ) 6(p, '-m') 6( rx) 6(x+, —T) 6(z+ —~) 6(e -&(~) -&(~)~)

xexp i pj xgdT exp i p, x dT exp i P a T 'z 0' T do'dT
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with the understanding that lim. ..,I,Iz"(o, 7 )
= x", ,(~), ands'= dz/do, etc. This can also be derived
fairly directly from the string action itself. We
have tried Faddeev-Popov tricks to change to
timelike gauge. Formally, itwoxks; the Faddeev-
Popov method is, however, sensitive only to the
low order in A.

We remind the reader that it is no surprise to
find the massive Schwinger model in our gauge-
invariant approximation (which is planar in the
light-cone gauge) yielding the N = 1 't Hooft spec-
trum. We have simply found the functional form
of the same graphs. Qf course, in the absence of
damping factors from g ', we might expect in-
gqq~ygpy. The approximation is presumably ac-
curate for high-lying states (because these cor-
respond to g-0). The approximation is, however,
grossly inaccurate for the low-lying states: The
full massive-Schwinger model is well known not
to have a Goldstone boson for small mass, yet the
't Hooft spectrum (and our approximation) does. M

Another point worth making is cleax' from our
work. At least in this approximation, the BBHP
string apparently does not know whether it came
from Abelian or non-Abelian dynamics. (The only

difference is n' =e'-e'N ).
VII. REMARKS

We have also used our methods to construct the
three-string vertex. The method, which strongly
resembles Mandelstam's' methods in dual string
models, yields the known answer of Callan, Coote,
and Gross' and Bars.~ The details will be reported
elsewhere. Here we confine ourselves to a brief
sketch.

Figure 7 is a factorized form of Fig. 2. Re-
ferring now to Fig. 7, the external regions are
calculated in a relatively simple manner, as they
correspond just to 3 free-strong propagators, as
analyzed in the text. (For example, one of the two

chopping factors of the ZS, Z~ string is 8(-Z'),
while for the Z„Z, string it is 8(Z '). The three
strings are joined functionaQy at the infinitesimal
vertex about 7' [and integrated (1/e) J d7+]. The
' Jollllllg" condltlon ls 'tlla't Z (x ) =Z (x ) (111 'tile

infinitesimal region). Thus, at 7, one large
string splits into two. )

Similar calculations can presumably be made
for N-point functions, and basic vertices (3-point,
4-point?) isolated by factorization. The program,
reminiscent of dual functional constructions,
doubtless also has a Kaku-Kikkawa" formulation.

As mentioned in the Introduction, extensions of
these ideas to non-Abelian gluons in four dimen-
sions can be studied. We have little doubt, e.g. ,
that, following our ideas, a geometrical picture

I
I

Z4

I
I

I

I

I I

I

I

I

I

I

I

I I

I I

I
I I

„+~„,~

F'fo. 7. Factorized form of three-string vertex.
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APPENDIX A: TOY CLASSICAL FIELD THEORY WHICH IS
THE STRING IN AN ARBITRARY GAUGE

In the text, we analyzed the string content of
scalar electrodynamics and the massive Schwinger
model in the light-cone gauge. Although they dif-
fer to higher oxder in@, classically they are both
the BBHP string. In this appendix we want to
present a simple field theory which, at least clas-
sically, is the BBHP string in enevy gauge. The
result is exact.

The action for the model is

(particle variables rather than field variables)
can be constructed for the planar diagrams in the
& ' expansion. In four dimensions, however,
dynamics must have more to do with renormali-
zation, and it will be interesting to see if our
stringlike language will shed any light on con-
finement.

A final remark on our gauge-covariant "chop-
ping" procedure. We recall that the "other"
gauges (besides the light-cone gauge) are ex-
tremely complicated. In a practical sense then,
the gauge-covariant form of the chopping may be
considered to be primarily a gauge-covariant
continuation of the light-cone gauge result. The
covariant form does, however, appear to evade
here the nonperturbative phenomena of Befs. 12
and 13. The ideas presented here (that each
"gauge" defines by choice of variables" "a the-
ory, whose Green's functions can be covariantly
extended to all gauges, and/or possible equiva-
lence of gauges if done uniformly in light-cone
quantization) may be of interest in the non-Abelian
context.
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S=-m dT X''"+ X''" string variables into the model by Dirac's trick"

where

d'x' -~F„""-AJv ~ (A1) d "(x)=x f dxf
*

a~ C&)

(A3)
d(r(z 'z'" —z "z ")5"'(x z(—(v, v)).

5("(x-x,(.))d.
dT

+ e '5"'(x -x,(v))d-.
dT

(A2)

Here, 2 =Bz/Br, z' =Bz/B(v, and z "((v, v) is theworld
sheet defined by the world lines of the two parti-
cles,

z "(g,(v},v) = x,'(v)z, '(o, (v), v) = x,'(v)

Physically, we are discussing two oppositely-
charged particles interacting with the electromag-
netic field. We choose to introduce (spurious)

Using the action with J"= 8„G"",we extract equa-
tions of motion by subjecting S to an infinitesimal
variation with respect to all variables

2 2
0

c'2 {T)
x x dxd ( )xf dx f dx(-x;I!'*'(x *(x, ))x '" "]

- f11(&)

+ d XE„„e dT
e2C~)

5(2)(x —z (a, v))do[(B,Bz")z'" —(B.Bz")z'].

The gluon equations are immediate,

to which the most general solution is

F'"(x)= 6"'(x)+az'".

(A5)

(A7)

In this form, it is easy to do the d'x integration
to obtain a form proportional to

~'"( ((v, v) - ((v', v'))= ' ' ', (A8)v'-g

where K-g = ~Rg', -k,z'
~

=[(zz')'-Pza]'~', it is
easy to see that on the world sheet

F„„(z((v,v'))= " " ~ +a&„„,
e(z „z'„-zp', )

Z O, T g

where C = 1 in the world sheet, and I = 2 at its
boundary. (This is the relation between electro-
magnetic and string variables. ) Using (A9), an-
other useful identity is immediate,

(z)F "(z)
)

=
g2(

(A10)

Consider next the third term in the variation
E(l. (A5). We shall show that its contribution to
the equations of motion vanishes. We manipulate
the integrand of that term by the identity

Here E is the antisymmetric symbol, E =+1,
and a is an arbitrary constant. " Using the identity

dTF„„z oT 5z~z o T
ff=o'o C&)

dv F,„(z(o,v))5z'z'"
I e"-fy& C&)

e
dT do'5z —F„g'"

c C&) gT
1

do' —5z" F„„z",

dx,'(v) d
dt dT

=—z~((v (v'), r)

(A12)

The z equations of motion then can be obtained
from the last term of Eq. (A5). We integrate by
parts in 0, T, using the identities

c2(&)
0= dT— do F„„zO, T )5z "z'"

cr (&)

—B„'5'"(x—z ((v, v)) = Z(a, v)dvd dv'
Bz' v(, v =z~+z "(v,(v) i, , (,). (Alsb)

x 5(2)(x z(o, v}) (-A11). The term in question takes the final form
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5z" —[z'F„„(z)]——[z' F„„(z)]dodr

dr 5x",F,„(x,(r })x",(r)

+ e dr 5x,"F,„(x,(r))x,"(r) .(A14)

Thus, taken together with Eq. (A9), our equations
of motion are

Xexm, . ', , —ex „E" z 0 7, 7 =0,
d7 txz )

m
d ~,'„, +ex»F""(z(o,(r), r))=0, (A15)

The reader may verify for himself that the same
equations follow from the effective action

terms during integration by parts, we believe the
plug-in works for all a.

We should finally make the point that we have

only proven the equivalence of this classical model
with the no-fold string. It is doubtful that an ana-
log of (A3) is valid for a string with folds.

APPENDIX B: STRING HAMILTONIAN FOR SCALAR

ELECTRODYNAMICS

In the text, we broke off the development for
charged scalars after Sec. IV. In this section, we

will finish the calculation. In fact, we shall offer
only a sketch here —taking for granted that the
reader has understood our subsequent discussion
for fermions.

The two cases differ essentially only in quantum-
ordering effects [compare Eqs. (3.9) and (5.1S)].
For the bosons, the crucial terms are, on the
lattice,

+ —QP;[A (x,)+A (x, ,)]

s= —o'E dy x 2 1/2+ x 2 1/2 =+ ee g & (P;+P'„,)A (x,), (Bl)

e (&)
dos'-g

&2(&)
+ &ea d7 do E""z„z„' -z'„z„. A16

a (&)

At a=0, this is precisely the BBHP action. With
aw 0 this is a generalization (reparametrization
invariance is still guaranteed for transformations
in which the Jacobian does not change sign in the
range). In the light-cone gauge, the potential is
modified to

where we have dropped certain boundary terms
for simplicity. On the transformed lattice

E)= -PgE

these terms become

P'
——E(, ( ~ '." A (x,}) (B3}

and similarly for the oppositely-charged boson.
The integration over the gluon field may now be
done, yielding the effective interaction

2—x, 7 -x, T —eax, T -x, T (A17)
e'1

so the generalization is interesting as long as
&e'& ea .

It is always amusing to see what one gets by
plugging equations of motion back into the action
directly:

(B4)

It is not hard to convince oneself that this interac-
tion becomes, in operator notation,

OP 3 4 I 1 2 I

+P' lx1 -x.
I P.&11

d'x( ,'F „F""+.'F'"G„-„)—- +P'(2}(x;-x-,
)

d2x 46 „G""—4a'&„„&"", A18

where we have used Eq. (A7). It is another line or
so of algebra, including an application of Eq. (AS)
to verify that the "plug-in" works easily for a= 0,
and not for a40. With more care for surface

It requires straightforward but somewhat more
involved effort to show that the spectrum of this
Hamiltonian is described by the integral equation
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l (y+&)I.2- (y+~)l
y(i -y)

and p,
' is the invariant mass squared of the sys-

tem. The integral equation differs from

't Hooft's' equation by the factor in curly brackets.
Because that factor goes to 1 as x-y, the high-

lying spectrum (h small) is the same as that of
BBHP and 't Heoft, in agreement with our previ-
ous remarks. The kernel can easily be symme-
trized, and an Hermitian inner product estab-
lished. The spectrum is discrete and real. The
same equation was found by Bardeen and Pear-
son" in a different context.

Not surprisingly, this is also the integral equa-
tion one gets in summing light-cone planar dia-
grams" in the large-N limit of non-Abelian scalar
electrodynamics (with g' -g'N).
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