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From the viewpoint of a global formulation of Yang-Mills fields, a Lagrangian theory of non-Abelian classical

Dirac monopoles is proposed. Dirac strings are used instead of coordinate patches; they are defined as purely

geometric constructs. The formalism is free from pathologies such as "Dirac's veto. " While the analysis

focuses on the gauge group SU(N)/Z„allowing for only N —1 nontrivial and topologically distinct types of
monopoles, it applies in general to any compact Lie group.

I. INTRODUCTION

Aside from their intrinsic interest, Dirac mono-

poles in non-Abelian gauge theories, ' ' may be of
relevance to the issue of quark confinement and

provide a possible field-theoretic foundation for
dual-string models. ""' In this context Mandel-
stam' pointed out that, at most, N —1 topologically
distinct types of Dirac monopoles exist in a local
SU(N) gauge theory. These monopoles are in a
one-to-one correspondence with the N —1 non-
trivial elements of the center Z„of SU(N)
Later, Wu and Yang emphasized the importance
of the distinction between the local and global sym-
metry groups, taking the example of SU(2) and

O(2) = SU(2)/Z, . While locally isomorphic, they
differ in their global structures, one is simply
connected, and the other is two-fold connected.
Accordingly, there are no monopole solutions for
SU(2), but there is one for SU(2)/Z, . In general,
we can introduce only n —1 varieties of Dirac
monopoles into a gauge theory if its global group
is n-fold connected. ' In this paper, we present
a Lagrangian theory of Dirac monopoles with a
non-Abelian gauge symmetry. The gauge-theory
group is taken to be SU(N)/Z„, but the generaliza-
tion to any other compact groups is straightfor-
ward once its Lie algebra is known.

A Lagrangian formalism was once attempted'
following the work of Mandelstam. ' However, the
scheme is imperfect on two counts: (i) An unnec-
essary concept, the measuring operator, plays
an essential role, and (ii) the problems inherent
to Dirac strings, such as "Dirac's veto, "' come
about. The measuring operator was introduced to
construct a gauge-invariant magnetic charge. In
the present paper, the path-dependent formula-
tion' is used for this purpose. The problems as-
sociated with the Dirac strings are solved in the
light of the global formulation of gauge theories. '

Our paper is organized as follows.
In Sec. II we formulate a theory of Abelian Dirac

monopoles with strings in the framework of the
global formulation of gauge theories. The differ-
ence with the theory of Wu and Yang' is as follows.
In their theory of Dirac monopoles without strings,
two potentials A„and A'„are taken on two over-
lapping domains V(A) and V(A') about a monopole.
The definition of these domains is quite flexible.
We can immediately see that, without violating the
global analysis, the domain V(A) is extensible to
the (2+ I)-dimensional space-time minus a certain
world sheet. ' Such a maximum domain is used for
a coordinate patch in the present formalism. The
Dirac string is defined as the boundary of the co-
ordinate patch at each time. It is purely a global
geometrical concept. The potential A „(x) and the
charged field P(x) are not defined along Dirac
strings. As the electromagnetic field F„„(x)is
the gauge-invariant representative A, (x), the
path-dependent field P(x, P) is the gauge-invariant
counterpart of P(x). Only F,„(x) and P(x, P) are
defined all over space-time. It is pointed out that
the present theory can be elegantly formulated in
the theory of fiber bundles. "

In Sec. III, starting from elementary concepts
in fiber bundles, we formulate a Lagrangian theory
of Dirac monopoles with a non-Abelian compact
gauge symmetry.

II. ABELIAiV MONOPOLES

We first formulate a Lagrangian theory of Abe-
lian monopoles. It will be seen to share a11 the
essential features of the non-Abelian theory. Mag-
netic monopoles are assumed to be classical point
particles tracing out world lines z„"'.' The elec-
tromagnetic field F „(x) is in interaction with the
electrically charged field p(x) and the monopoles.
The Maxwell equations are
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(2.1)

&„F*„„(x)=j,(x), (2.2)

where the ma. gnetic current j„(x)must have sup-
port only along the world lines z„"'.

" dz'"
(x) ~+&() ~ u 6 (x &(())d&

The magnetic charge g"' satisfies the Dirac
quantization condition

g") =2vn")/e n(" =integer,

(2.3)

(2.4)

as we shall later show.
We define a manifold M to be the (3+1)-dimen-

sional space-time R' minus these world lines z„"'.
Because S„F*,„(x)=0 for x EM, there must exist
a gauge potential A (x):

= U(l), where the covering of M is provided by a
set of coordinate patches V(A,.). For the unini-
tiated, a fiber-bundle dictionary is provided in
Ref. 4 and the connection with gauge fields is amply
discussed in Ref. 12. Here we shall assume fa-
miliarity with at least the basic concepts of fiber
bundles.

Electrodynamics without monopoles are de-
scribed by the principal fiber bundle P(R', G), G
= U(1), where a single coordinate patch covers B'
The essence of the present theory is the singular
behavior of A (x) at the boundary of V(A), which
prevents the extension of the covering V(A) over
R . We shall now analyze this behavior.

We take a loop C around a Dirac string L(A) at
fixed time. We choose another coordinate patch
V(A') which covers the loop C as well as the string
I-(A). These two potentials are related by (2.6) or

F„„(x)=S„A„(x)—S„A„(x). (2.6)
A „(x)=A'„(x) + s,A(x) . (2 7)

As originally discussed by Dirac, ~ at each time t,
the potential A„(x) becomes singular along so-
called Dirac strings l. (A) each terminating at one
monopole. The positions of strings can be changed
arbitrarily, I., (A, ) -L,(A, ), by a gauge trans-
formation

A, „(x)=A, „(x)+—S,S„(x)S„(x)',
(2.6)

with S„(x)= exp[ —ieA„(x)].
Recently Wu and Yang made a simple but im-

portant observation. According to them, the above
encounter with singularities merely indicates that
we cannot use a single potential A„(x) all over
space-time. Obviously the domain on which A„(x)
is defined as a differentiable function is the mani-
fold M minus the world sheets swept by Dirac
strings. We denote this domain by V(A). Simi-
larly the field Q(x) is defined as a differentiable
function on the same open set V(A).

We eall an open set V(A) a coordinate patch by
regarding V(A, ) 0 V(A, ), provided that A, (x)
NA, (x) even if V(A, ) and V(A2) are the same as
subsets of M. A coordinate patch V(A,.} fixes
uniquely a potential A,.(x), an electric field (f),(x),
and Dirac strings L(A, ). The quantities on dif-
ferent coordinate patches are related by the gauge
transformation (2.6). The electromagnetic field
F„„(x)is gauge invariant, so it does not depend on
the choice of coordinate patches to calculate it.
F„„(x)is differentiable on M. In the terminology
of fiber bundles u the gauge potential A and the
field P are, respectively, a connection and a cross
section on the principal fiber bundle P(M, G), G

We integrate (2.7) along the loop C from a point x,
to xo:

dy„A„= dy„A'„+A x —A x . 2.8

The term

(2.11)

A (x,) —A (*,) fdy B„A=„
does not vanish because A(x) is in general multi-
valued. However, S(x) =exp[ieA(x)] must be single
valued for the gauge transformation (2.6) to be de-
finable. We obtain

~ dy„A„= dy„A'„+2mn e, n = integer. 2.9

Equation (2.9) is the essence of the Abelian-mono-
pole theory.

Now let us continuously shrink the loop C to the
string position L(a) in (2.10). SinceA„ is finite
along 1.(A), gdy, A'„-0, hence

~ )d$ ~ A ~
= 27ttg /8, (2.10)

with the integration being performed along an in-
finitesimal loop C around L(A). This condition
characterizes the singular behavior of A„(x) along
the Dirac string L(A). Equations (2.9) and (2.10)
are equivalent to one another. They define unique-
ly the fiber bundle P(M, G) with the connection A„.

The Maxwell equation (2.3) with (2.4) is also
equivalent to (2.9). At each fixed time we take a
closed surface 8=~V enclosing a single monopole
with the loop C around it. We obtain

J(da„„)"„„jdy„(A„-A'„)=2m=
by use of (2.9). F (x) is a differentiable function
and S„F~„(x)= 0 holds for x in the volume V except
for a point where the monopole exists. We define
the distribution F„„(x)for x(=B~, such that
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and

F„„(x)=F„„(x),xcm (2.i2) (2.10) while (2.15) and (2.10) follow from (2.14).
Now we introduce another distribution

G „(x,L(A)):

F,„(x,L(A)) = S „A„(X)—() „A„(x), (2.14)

with the global condition (2.10), is a, distribution
on R4 such that

F „(x,L(A)) =F„„(x), x c V(A) (2.16)

lim ' do„„F „(x,L(A))=2xn/e,
S 0

(2.i6)

J d V„B„J'*„„=2m'. (2.13)
V

Equations (2.12) and (2.13) uniquely define S„F„*„
in the form (2.3) with (2.4). Thus the Maxwell
equation (2.3) is purely a kinematical equation.

Our goal is to give the action principle for the
Abelian-monopole system. Dirac used a single
coordinate patch for this purpose. This method as
such results in some serious problems associated
with the Dirac strings. The main difficulty is
known as Dirac's veto. ' In order to derive the
field equations and the proper Lorentz equations
for both types of charges from his action principle,
Dirac had to impose the extra condition that his
strings must never cross an electrically charged
particle. This veto is not derivable from his
action principle. " From our global outlook of
this problem, the source of this difficulty is ap-
parent. The electrically charged field Q is being
used in a region of space-time where it is not de-
fined. This observation then implies the need to
work with gauge-invariant quantities in construct-
ing a workable action principle. To write down
F„„(x), Wu and Yang»' use two potentials with a
subsidiary condition (2.9). While this method
solves the problem caused by the Dirac strings,
the actual formalism seems rather tedious es-
pecially when we generalize their scheme to non-
Abelian monopoles. We choose to express F„„(x)
in terms of a single potential and Dirac strings,
as in Dirac's original paper, ' but with a subsidiary
condition (2.10). For the electrically charged field
P(X), we shall use a path-dependent formulation to
construct its gauge-invariant representative. Our
essential observation is that the potential A „(x) is
defined almost everywhere in R and that condi-
tions (2.9) and (2.10) are equivalent. In fact, the
measure of the domain R' —V(A) is zero. First
we notice that

G..(*,) (&))=I »"' J« 'R-)"")
sb(() y(())

s(o, 7')
(2.18)

The y,"'(o, ) ) labels the position of the points on
the world sheet swept out by the Dirac strings
L,.(A)' s. It is trivial to see that

G,„(x,L(A)) =0, xc V(A) (2.19)

and

do„„G»„(x,L(A)) =2xn/e,
S

(2.20)

dV, S„G'„„(x,L(A)) =2wn/e . (2.2i)

Combining (2.14) and (2.18), we deduce that

F„„(x)=F „(x,L(A)) —G„*„(x,L(A)) (2.22)

with (2.10) is a distribution defined on R' such
that (2.12) and (2.13) a,re satisfied. By a, direct
calculation, ' (2.22) yields

y~ (i)
F» ( ) ~ +(i) u, 6»(x &(i))

V GS
(2.23)

This is nothing but (2.17) and (2.21).
The distribution F„„(x)depends only ona potential

A „and the monopole position z(". The string L(A)
is not a dynamical variable because of the topo-
logical constraint (2.10). Our formalism differs
from Dirac's at this point. In fact, when we do
a variation in L(A), the potential A„changes to
guarantee (2.10) in addition to G„„(x,L(A)). Then
the net effect on F„„(x)in (2.22) is zero.

The electromagnetic field F „(x) is expressible
by a single potential, as we have shown, because
the difference between two potentials A, (x) and
A', (x) is a pure gauge term. We cannot use a
single field (()(x) all over space-time. We intro-
duce the gauge-invariant field by the path-depen-
dent formalism.

Following Mandelstam, ' we associate a path P
to each space-time point x. P is a semi-infinite
path leading from infinity to x. If the path P exists
in a single coordinate patch, we define

and @(x,P) exp ie dy, A p(x), (2.24)

(2.17)

In (2.16), S is an infinitesimal area crossed by the
string L(A). Equation (2.16) is a consequence of

where the integration is along the path P. For the
path P to be covered by two coordinate patches
V(A, ) and V(A, ), we take a point xDE V(A, ) A V(A, )
to define
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XQ

P(«, P)=exp{'e d«„A, „)P„(«,)

xexP ie dy„A, „(jI)x,
XQ

(2.25)

where S»{x}is the gauge transformation (2.6).
Equation (2.25) does not depend on the choice of

xQ. When we use more than two coordinate patches
to cover the path P, we define (t) (x, P) by an obvi-
ous generalization of (2.25). $(x,P) is gauge in-
variant, or it does not depend on the choice of
coordinate patches to define it.

Clearly the path P does not correspond to any
new dynamical variable. It is not difficult to prove
that the path dependence is given by

p(*, p )=exp ''e d, Fjp(«, P„,)„,
S

(2.26)

where S is a surface bounded by P and P'. The
consistency of the path-dependent formalism is
assured by (2.9). Instead of using P(X}'s on each
coordinate patch we can use a single g(x, P), sub-
ject to the kinematical constraint (2.26).

Having thus made all the above technical prepa-
rations, we can give the action as

e= des ~ -» dS&'&, 22V

where the Lagrangian is taken, for instance, to be

Z(x) = .'F„„(x)F-„„-(x}+~S„y{x,P)~'

+c, [@(x,P)[' c, (y{x,P))'-, (2.28)

8 „'(x,P ) = —2c (j) (x, P ) + 4c
~

(j) (x, P )
~

'y (x,P ) .

(2.29)

with (2.22), (2.10), and (2.26). The dynamical
variables are A„(x), p{X,P), and the monopole po-
sition z'„". The variation Oft) is taken independently
to give

made up of a massless electrically charged field
(j) (x, P), a massless gauge field F„„(x), and the
classical monopoles with mass m. When we take
c2 & 0 and c4& 0 in (2.28), the system would undergo
spontaneous symmetry breakdown. This could
give rise to Nielsen-Olesen vortices'4 bridging
monopoles, the vortices exemplifying possible co-
herent vacuum excitations. "

III. NON-ABELIAN MONOPOLES

We proceed to a theory with non-Abelian gauge
symmetry. To emphasize the topological aspects
of monopoles, we make use of the compact termi-
nology of fiber bundles. "' However, as the
formalism is completely analogous to the Abelian
case, readers will follow our arguments without
much knowledge of the theory of fiber bundles.

We consider a principal fiber bundle P(M, G*)
and a connection A„on it, Since it is simplest
and physically most interesting, the structure
group G* is taken to be the matrix Lie group
SU(N). The base space M is defined by subtracting
a certain number of world lines from the (3+1)-di-
mensional space-time R~. We call these world
lines the trajectories of classical Dirac monopoles.
At each time t we attach a string L to a monopole.
The position of the string is arbitrary. These
strings trace out world sheets in M whose bound-
aries are the trajectories of monopoles. By sub-
tracting these world sheets from M, we get an
open set V, . All possible such open sets fVP make
up a system of coordinate patches that covers M.
For historical reasons' we call the string L the
Dirac string.

A connection A„on P(M, G~) is the assignment of
a differentiable function A, „(x) for each coordinate
patch V, . The function A„(x) takes value in the
Lie algebra of G*. It obeys the relation

The variation 6A„must be supplemented by &f,
owing to the kinematical constraint

A, (x) =S„(x)A,~S„(x) ' -—8„S„(x)S„{x)'

(3.1)

5y{x,P) = fey(x, P)-
We obtain

dy„6A„. for xF V, R V, p(0 with S„(x)EG.
We define the curvature matrix

S„F„„(X)=ie f(x,(P))8 /{X,P) .

The variation 6z„"' yields

(2.30) F„„(x)= B„A„(x)—B„A„(x)-ie[A „(x),A„(x)]

on each coordinate patch. The relation

(3.2)

dz ' " dz~'m, =g"'F*,„(z) (2.31) F,„„(x)=S„(x)F„„(x)S„(x)' (3 3)

with g")=27(n")/e. The global condition (2.10)
with (2.22) is replaceable by (2.23). The equations
of motions are (2.29), (2.30), (2.31), (2.23}, and
(2.26). Naturally they are gauge invariant.

When we take c, =c,= 0 in (2.28), the system is v„F*„„(x)=0 (3.5)

follows. The covariant derivative is defined as

V„F„„(x)= S„F„„(x)+ie(A„(X),F„„(x)). (3.4)

And the Bianchi identity
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Z„=(e, u&e, uPe, . . . , ur" 'e), (s.8)

where e is the unit matrix.
For physicists, A„and F„„areknown as the

gauge potentials and the gauge field, respectively.
Equations (3.1) and (3.3) are the gauge transforma-
tions. Only the difference from the usual gauge
theories is that a single coordinate patch cannot
cover the manifold M. Indeed the existence of
monopoles is correlated to the global structure of
the gauge group.

Let us denote by V(A, ) a coordinate patch to
which a gauge potential A, „has been assigned.
The coordinate patch V(A, ) uniquely defines a Dirac
string L(A, ) at each fixed time. It is essential that
A, „(x) is singular as x-L(A, ). Otherwise, the
coordinate patch V(A, ) would be extendable to
cover M. This would result in a trivial topology
of the field manifold and there will be no mono-
poles. In what follows we analyze mainly this
singular behavior of A, ,(x) as x-L(A, ).

We first define the parallel transport U(x, x,;P)
which maps a path P in the base space M to a path
P* in the group space G* as x moves from x, along
the path P. In the case when P is covered by a
single coordinate patch V(A,.), we define

(x, *,;UP)= eep(ieTf de„A„),
Xp

(3.7)

where T indicates the ordering of A, „along P.
Taking three points x, x„andx, onP, we find

U, (x, xo;P) =U, (x, x, ;P)U, (x„xo;P) . (3.8)

If two coordinate patches V(A, ) and V(A, ) cover P
separately, the relation

is the integrability condition for the existence of

A„(x) on each coordinate patch.
It is important to remember that the group G*

=SU(N) acts on the connection" A„ through the
adjoint representation. The matrix S»(x) satisfy-
ing (3.1) is not unique; there are N such matrices,

S„(x), where &@=exp(2ai/N) and m =0, 1, 2, . . . , N
—1. In other words our structure group is actually
G =SU(N)/Z„, where Z„ is the center of SU(N).
The discrete Abelian subgroup Z~ has the form

The definition (3.10) does not depend on x, nor
on V(A,.) except for x, x„V(A,), and V(A„). The
proof is easy with the aid of (3.8) and (3.9).

We take a loop C around the Dirac string L(A, )
at fixed time. We choose another coordinate patch
V(A, ) which covers the loop C a.s well as the string
L(A, ). A, „and A, are related by (3.1), or

U, (x, xo; C) =S(x)U2(x, xo; C)s(xo) '. (3.11)

When x makes a complete turn along the loop G,
we obtain

U, (xo, xo; C) =S(xo)U, (xo, xo; C)s(xo) '. (3.12)

U, (xo, xo; C —0) = (o (s.14)

This result can be used to fix the singularity of

A, (x) as x-L(A). Equation (3.14) reads

T exp ie dy„A„ (3.15)

where the integration is along an infinitesimal
circle around L(A) at fixed time. This relation is
satisfied if and only if'

dy„A„= X(x), n=m+Nl, l =integer,2' n

(s.18)

where X(x) =S(x)XS(x) ', with S(x) an arbitrary ele-
ment of SU(N) and X the last generator of the Lie
algebra, viz. ,

X = —diag(1, 1, . . . , 1 —N) .1. (3.1'l)

eee

Here, we have distinguished S(x,) from S(x,) be-
cause S(x) is not single valued in general. This is
so since S(x) is an element of G*=SU(N) but our
structure group is G = SU(N)/Z„. S(x) and S(x)
can be different by an element belonging to the
center Z„:

S( )=~ S(x),

with&@ = exp(2ni/N). In our fiber bundle, S(x) and

S(x) cannot be distinguished. Later, we shall give
an example in which these two are distinguishable.

Let us continuously shrink the loop C to the
string position L(A, ) in (3.12). Because A, is
finite along L(A, ), U, (x„x,; C) —1, hence

U2(x, xo; P) =S2~(x)U, (x, xo; P)s»(xo) ' (3.9)

is proved. In general, when P is covered byn co-
ordinate patches V(A, ), i =1, 2, . . . , n, with x
~V(A, ) and x, eV(A„), define

U (x, x;P)=U, (x, x„'P)S (x )U,(x„x;P)
XS„(x,) "S„,„(x„,)U„(x„„x„P)

(3.10)

by choosing x,KP arbitrarily from . V(A,.) fl V(A, +1).

Thus there is a gauge transformation which set
the singularity in the last component of A „(x):

dy„A„= 0, i &N —1
(s.18)

First it appears that there exists an infinite variety
of string singularities, corresponding to all inte-
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gers n as in the Abelian theory. This turns out to
be a gauge illusion. ' For completeness we prove
this fact.

We consider

gauge potential

F„„(x,P) = S „A„(x,P) —S„A„(x,P)

such that

(3.25)

U(, ,; c)=T exp['e f pp„A ),
0

(3.18) [s., s,]A.(x,P) =O.

A, (x, P) is written in terms of A„(x):

(3.25')

where C is an infinitesimal loop around the Dirac
string L(A). There is a one-to-one correspondence
between A„(x}and U(x, x,; C):

A„(x,P) = U(x, P) 'A„(x)U(x, P)+ I'„(x,P),
(3.26)

feA„(x) =S,V(x, x,;C)V(x, x,;C)-'. (3.20) r„(x,P) = —' dy„(s. V-'s„V s„V-'6.V).
28 p

F „(x,P') =W(P, P')F„„(x,P)W(P, P'),
W(P, P')=V(x, P) 'V(x, P'). - (3.22)

When P' differs from P by an infinitesimal area
o ~ at the pointy, (3.22) reads

6,F„„(x,P)=ie[F„„(x,P), F ))(x, P)](r~)). (3.23)

The path P is the portion of P leading to y. In the
gauge-invariant formulation the path dependence is
determined by the kinematical equation (3.23); it
has nothing to do with .the action principle.

The Bianchi identity (2.5) is rewritten as

9„F*„„(x,P ) = 0 . (3.24)

This implies the existence of a path-dependent

U(x, xo; C) maps the loop C to a curve C(A)* in

SU(N), whose end points a,re the unit element e
and ~, an element of Z„. Suppose there are two
potentials A„(x) and A'„(x), yielding (3.16) with m and

n, n =m+IN (I eo), respectively. The correspond-
ing curves C(A}~ and C(A')* have the joint end

points e and ~ . Because SU(N) is a simply con-
nected space, these curves are homotopic to one
another. This implies the existence of a continuous
gauge transformation which connects A„and A'„.
Therefore, the two string singularities are not dis-
tinguishable. In all there are only N —1 varieties
of topologically distinct string singularities. '

Having completed the analysis of the singular
behavior of A„(x), we proceed to formulate a
Lagrangian theory of classical monopoles.

We take a semifinite path P leading from infinity
to a point x. Two arbitrary points on P are space-
like separated. Following Mandelstam" and
Biafynicki-Birula" we define

F„„(x,P ) = U(x, P ) 'F „„(x)U(x, P), (3 .21)

where U(x, P) =U(x, xo-~;P) with (3.10). It is
proved that F„„(x,P) is gauge invariant, or that it
does not depend on the choice of coordinate patches
to define it.

The path P does not correspond to a new dynami-
cal variable. For another path P' leading to x, we
find

A, „(x,P) =A, „(x,P)+s„J) (x, P)

such that

[s„,s„)a(x,P}=0.

(3.2'I )

(3.27')

Thus all the equations are linearized in the path-
dependent formalism once the path P is fixed.

As A (x) becomes singular along the Dirac string
L(A), so does A„(x,P). The singularity is calcu-
lated from (3.26) and (3.16). We calculate it in a
special gauge for A„(x), i.e. , (3.18). It is not
difficult to derive

dy„A„(y, P) = X, 0 —n~N~—1,
L (A)

(3.28)

where the integration is along an infinitesimal loop
around the Dirac string L(A) at each fixed time.

The principal fiber bundle P(M, G) with (3.16) is
equivalent to the path-dependent system with (3.28).
We have derived the latter uniquely from the
former. Conversely, we can reconstruct the
former from the latter. Noticing the Abelian
character, we first make P(M, U(1)). Using the
open covering fV,] of this P(M, U(1}), we construct
uniquely P (M, G). As in the Abelian case, we can
define the distributions

F„„(x,P;L(A})=S„A„(x,P) S„A„(x,P) (3.29)

and

F „(x,P) =F„„(x,P, L(A)}—XG*„„(x,L(A)) (3.30)

for xER4, where G*„„(x,L) is given by (2.18), with

F „(x,P; L ()4)) =F„„(X,P}

for xEV(A} and

F„„(x,P ) =F „(x,P )

(s.sl)

(3.32)

forx~M. Here again the Dirac string L(A} is not

(s.26')

The coordinate patch to which A, (x, P} is assigned
is the same as V(A). The gauge transformation is
Abelian:
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a dynamical variable, owing to the global con-
straint (3.28). Equation (3.30) gives

d&(s)Ps ( P) yg gn) g 54( )dS

(3.33)

which is a kinematical equation resulting from the
topology of P(M, G).

Having set the stage we now give the action for
the non-Abelian-monopole system:

8= d'x -rn dS),

1{x)= ,'Tr[-P-„„(x,P)P"„„(,P)], (3.35)

with (3.23), (3.28), and (3.30). The dynamical
variables are A„(x,P) and the monopole positions
z„"). The variations &A„and ~z'„" yield

s„F„„(x,P)=0, (3.36)

(3.37)

with g'*' =2vn"'/e. Equations (3.33) and (3.38)
correspond to the Maxwell equations in the Abelian
theory.

Dirac monopoles are possible in pure gauge
theories because the gauge field itself is charged.
We can introduce Higgs fields into the scheme.
They provide an expedient means of implementing
spontaneous symmetry breakdown, and would give
rise to non-Abelian vortices bridging the mono-
poles. ' "'

We consider a fiber bundle B(M, Y, G} in addition
to P(M, G*); 1' is the fiber space on which the
structure group C acts effectively. We give two
typical examples. When G = SU(N), 1' is taken to
be a vector space made up of N-component vectors.
When G =SU(N)/Z„, 1' is taken to be a vector
space made up of N XN matrices.

A cross section of B(M, Y, G) is a collection of
differentiable mappings P;(x) from each coordinate
patch V,. into Y. They obey the relation

P, (x) = S„(x)y,(x) (3.38)

for N-component vectors, i.e., G =SU(N), and

y, (x) =S„(x)y,(x)S„(x) ' (3.38)

for N XN matrices, i.e., G=SU(N}/Z„Here we.
hasten to add that Dirac monopoles are incompati-
ble with G =SU(N). This is so because S(x) should
be single valued. Only the case m =0 is realizable
in (3.13) or (3.28), as results in the trivial topolo-

So we choose g(x) to be a,n N &&N matrix. P(x)
corresponds to the familiar Higgs field of unified
gauge theories. The covariant derivative is defined

y (x, P) = U(x, P) 'y (x)U(x, P) . (3A1)

P(x, P) is gauge invariant. Its path dependence is
a kinematical equation;

5,y(x, P) = fe[y(x, P),P.,(x, J')]o., (3.42)

as (3.23) for F,„(x,P).
The action is given by (3.34); the Lagrangian is

taken, for instance, to be

Z(x) =- ,'Tr[P„„-(X,P)E„„(x,P)]
+ —,

' Tr[S „y(x, P)S „y(X,P)]

+ 2c, Tr[g (x, P)'] —2 c4 Tr[g (x, P )']

(3.43)

The dynamical variables are A„(x,P), e„"', and
one set of Higgs fields P(x, P). The variations
6A„, 6P, and 6z„"' give

S„r„„(x,P) =fe[y(x, P), S „y(x,P}],
S „'y (X, P}= —2c,y (x, P) + 4c,y (X,P)', (3.45)

and (3.37). Our system is composed of dynamical
equations (3.44), (3.45), (3.37) and kinematical
equations (3.33), (3.23), (3.42). The introduction
into the Lagrangian (3.43) of several Higgs fields
P,(Px) necessary to have well-defined vortices is
straightforward but is not relevant to the main
theme of this work.

IV. CONCLUDING REMARKS

By way of elementary concepts in the topology of
fiber bundles, we have formulated a Lagrangian
theory of classical non-Abelian Dirac monopoles.
As a modification of Dirac's original approach, '
our string formulation is in harmony with the
Wu-Yang global approach to gauge theories. In
the work of Wu and Yang, ' Dirac strings have been
discarded as being pathological means to describe
Dirac monopoles. By properly defining the Dirac
strings as global-geometrical objects, we have
thus restored their status as very useful nonpath-
ological devices to accommodate monopoles.

In the foregoing analysis, we have introduced
path-dependent fields in order to write the action
in a compact form. However, to solve the equa-.
tions of motion, we have to go back to the path-in-
dependent fields, for instance,

V„p =s„p+fe[A„,Q]

on each coordinate patch. All the analysis con-
cerning the singularities of the gauge potential
follows without any modif ication.

The path-dependent field is defined similarly to
(3.21):
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(4.1)
S„F*,„(x)=i~T(x, P)y, )I)(x, P), (4.4)

as defined by (2.24) in the Abelian case. The func-
tion P(x) is not defined along the Dirac string L(A).
We must work in each coordinate patch V(A). Once
a set of solutions A, (x} and P(x) is obtained for a
coordinate patch V(A), it is in principle easy to
construct sets of solutions for any other coordinate
patches. All these sets of solutions with coordi-
nate patches make up the principal fiber bundle

P(M, G} with connection A„.
In the present formalism the monopoles are point

particles with definite world lines. Their replace-
ment by a magnetically charged field g(x) is yet
to be done. This step is necessary if one wishes
to construct a second quantized monopole theory.
This program was once attempted by Cabibbo and
Ferrari for the Abelian theory. ' They define the
field g(x) via its path-dependent form

(4.2)

After some arguments they postulate a set of
equations

(*),P')=exp )g Jda F™„.'t )(r, P1)
S

Following Cabibbo and Ferrari, we postulate

gg(x, P) = m((x, P)

and

B„F~„(x,P) =igxg(x, P)y, g(x, P)

(4 6)

(4.6)

(4.7)

to replace (3.37) and (3.33), respectively. How-

ever, the self-consistency of (4.6), (4.7), and the
other equations is an open question. This is so
because the Cabibbo-Ferrari scheme lacks an
action principle in the presence of both the elec-
trically and the magnetically charged fields. Our
efforts in this direction are continuing.
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