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Conformal properties of pseudoparticle configurations*
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The known Euclidean Yang-Mills pseudoparticle solutions with Pontryagin index n are parametrized by 5n
constants describing the size and location of each pseudoparticle. By insisting on conformal covariance of the
solutions, we show that more general solutions exist—they are parametrized by 5 n + 4 constants. We further
demonstrate that the additional degrees of freedom are not gauge artifacts and correspond to a new

degeneracy of pseudoparticle configurations.

I. INTRODUCTION

Recently Belavin, Polyakov, Schwartz, and Ty-
upkin' have shown that in the Euclidean domain the
action functional of non-Abelian gauge theories
possesses local minima different from the trivial
absolute minimum corresponding to vanishing field
strength F„„. The implications of their discovery
for the structure of the quantum theory are pro-
found. '

The minima of the action are characterized by
an integer n, the Pontryagin index, which labels
topologically inequivalent classes of field config-
urations. Within each class, the action is bounded
below by a constant multiple of ~n

~

and the bound is
saturated by values of the potentials for which F'„„
= + *F'„„,where the dual of F'„„is *F;„=-,'e, „,+'".

A self-dual field configuration with unit Pontrya-
gin index was exhibited in Ref. 1. This solution to
the field equations is often called a pseudoparticle
and depends on five parameters: the four coordi-
nates of the pseudoparticle's position and a
dimensional scale which measures the pseudo-
particle's "size." The question of whether the
bound on the action can be saturated also for values
of the Pontryagin index different from unity was
very recently answered in the affirmative by Wit-
ten, ' who discovered a set of self-dual field con-
figurations where arbitrary numbers of pseudo-
particles appear aligned on a definite axis with ar-
bitrary separations and sizes. Soon after, 't Hooft4
was able to enlarge again the class of known
exact solutions of the field equations by exhibit-
ing self-dual field configurations with arbitrary n,
described by 5n parameters, which may be inter-
preted as positions and sizes of the n pseudopar-
ticles. 't Hooft's solution makes use of a pre-
viously proposed ansatz which reduces the condi-
tion of self-duality to the Laplace equation for a
scalar "superpotential, "which can be singular. '
The positions and residues of the singularities are
the parameters that specify the solutions.

II. SOLUTION OF SELF-DUALITY EQUATION

We begin by summarizing the construction of
't Hooft's solution. It is convenient to represent the
potentials and field strengths as matrices in the
space of infinitesimal generators of the internal-
symmetry group. We consider an SU(2) gauge
group and set

ao
A „=A'„—.,

Z
(2.1a)

F,„=F;„=,= & A„—sg, + [A,A„],
4Z

(2.1b)

where 0' are Pauli matrices. The action density
S and the Pontryagin density *S are

S= -2 TrF F""
ff V t (2.2)

The Pontryagin index is given by

1
q =, ff'x *S.

8m' (2.3)

It is useful to define a set of antisymmetric ma-
trices c„„(Ref.6)

i,j = 1, 2, 3. (2.4)

These matrices are anti-self-dual 0„„=-*cr„„,and
the ansatz for the gauge field is

In this note we wish to investigate the behavior
under conformal transformations of the class of
solutions discovered by 't Hooft. Our main result
is that, in order to satisfy conformal covariance,
the general n-pseudoparticle solution must depend
on 5n+ 4 parameters, rather than the 5n param-
eters one might expect. We show that the depen-
dence on the additional four parameters does not
generally correspond to a gauge freedom; con-
sequently they must be interpreted as having physi-
cal significance.
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f„„=s„a„-s„a„=—'f„„,
& a~+a a"=0.

(2.6a)

(2.6b)

Equation (2.6a) may be satisfied if a, is derived
from a scalar superpotential p;

g = 9„lnp.

Then Eq. (2.6b) becomes

(2.7)

(2.8)

and the action density, which now is equal to the
Pontryagin density, may be expressed in terms of
p (see also Ref. 7):

S= *S=-2 QUlnp. (2 8)

In order that S be integrable, p must never vanish,
but singularities of the form p(x) =X'l(x —y)' are
acceptable because S remains regular at x= y.'
't Hooft takes for the solution of (2.8)

2

p(x): 1++
( )2

~

i =1

It is clear that a more general solution, which as
we show below is conformally covariant [ a prop-
erty not shared by (2.10)], can also be given by

X,.2
p( Q ( )2

(2.10)

(2.11)

and (2.10) may be regained for the case y„-~,
X» ~~ with X» jy» = 1 and n = N —1.

It is important to evaluate the Pontryagin index.
From (2.3) and (2.9) it follows that

q=- — —,
~

d gGEllnp.16m' „ (2.12)

ln (2.8 ) and (2.12)p may be multiplied by a constant
factor or by (x- y)' without changing *Sor q. ' Hence
when p is of the form (2.11), a manifestly nonsingu-
lar expression may be given for *S:

*S=-2 ClCl lnp2g 2. (2.13)

Here I'» 2 is polynomial in x of degree 2A —2:

(2.14)

(2 5)

where a„ is a vector fieM that will be further spec-
ified below. %e see that the three potentials A'„
are expressed in terms of the single potential

The self-duality condition I'„„=*E„„reduces to
equations for a„:

"R'dQ
lim ~ R O'Clln(A'» '+ ~ ~ ~ )16m'

(2. 15}

The use of Gauss's theorem in the evaluation of
(2.15) is justified, since the integrand is non-
singular. Thus we see that although the su-
perpotential p depends on N position parameters
y', , the field configuration has a Pontryagin index
appropriate to N —1 pseudoparticles. If the action
density displays X —1 maxima at all, there is no
obvious simple relation between their positions and
the parameters y",-, even in the limit of small &,.'s.

A more direct relation between the y",- 's and the
positions of the pseudopa. rticles can be obtained
when p is of the form (2.10). lt is easy to show that
for (2.10) the Pontryagin index is n, and the y",. 's
and A. , 's can be interpreted as positions and sizes
of the pseudoparticles, in the sense that for small
X,"'s the maxima of the actiondensity are centered
about the y",. 's. The more general expression, Eq.
(2.11), contains precisely four more relevant param-
eters (a common rescaling of the X,.'s does not affect
the expression of2„)than the 5(iV —1}coordinates and
sizes of the pseudoparticles. Qne may ask, then,
whether the additional four parameters are physi-
cal, specifying a further degeneracy of the solu-
tion when two or more pseudoparticles are put to-
gether, or whether the more restrictive form
(2.10) completely exha, usts the multipseudoparticle
solutions. In what follows we shall answer the
question; we find that our additional four param-
eters are truly present —they are neither gauge
phantoms nor can they be incorporated in repa-
rametrizing Eq. (2.10).

III. EFFECTS OF CONFORMAL TRANSFORMATIONS

Let us first consider the behavior of the poten-
tials A, under the infinitesimal special conformal
transformation

x x =x +26'xx —6 x. (3.1)

A field y with scale dimension d transforms covari-
antly-if-

&,y=(2e xx —e "x')s q+2& x~(g ~d-5 8)q,

(3 2)

where Z~ is the spjn matrix of the fjeld. It is
apparent from Eq. (2.5) that an infinitesimal con-
formal transformation of A„will not correspond
to any simple transformation of a„(indeed, in gen-
eral it will not be compatible with the ansatz), be-

From Eqs. (2.12), (2.13), and (2.14) we easily find
the Pontryagin index of the solution (2.11):

Q' = —
2 d X Cl H 1HLP2g

1
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cause the spin matrix Z ~ in Eq. (3.2) operates on
the free index p, of o„„and not on the index which
is contracted with a„. However, if together with
the conformal transformation we perform a gauge
transf ormation'

5A =a„g —[y,A ],
with

X=2i& x,o ',

(3.3)

(3.4)

~ca (3.6)

where the second term on the right-hand side
comes from the gradient part of the gauge trans-
formation. But this is precisely the variation of
a, that follows from Eq. (2.7) if p transforms as
a scalar density of scale dimension d=1, since

then, because o„„and Z„„have identical commuta-
tion relations, the net effect of the spin matrix in

Eq. (3.2} and the commutator of the gauge trans-
formation in Eq. (3.3}will be to transfer the ac-
tion of the spin matrix from the free index to the
second index of o„„:
2e xz(Z~B),„ i&r""a„+2e xz[io, io»]a"

= -2e x~(Z'~)„„io„"a"
= io„"2e,x~(Z ~)„„a". (3.5}

Thus the variation of A„generated by a special
conformal transformation followed by the gauge re-
adjustment of Eqs. (3.3), (3.4} is identical to the
variation induced by

where

X.
1+2a y. +a2y.» (3.12a)

IV. RESIDUAL GAUGE FREEDOM

The results obtained in Sec. III still leave open
the possibility that some variations of the param-
eters in Eq. (2.11) correspond to a, pure gauge
transformation of the fields, so that not all of the
A, 's and y",. 's would be physical parameters. We
investigate in this section when such gauge trans-
formations exist.

Under an infinitesimal gauge transformation, the
gauge field transforms as

5A. = a.X —[X ~A. ]~ (4 1)

where y is an anti-Hermitian matrix-valued field.
We set

X=ia ~& ~, (4.2)

"+a~y, +a y,. (3.12b)1+2a y. + a'y, ' '

It is trivial to verify that Poincare transforma-
tions and dilatations also leave invariant the form
of Eq. (2.11). Thus, as anticipated, the class of
solutions corresponding to Eqs. (2.5), (2.7), (2.8),
and (2.11) is closed under the action of the full con-
formal group. Qn the other hand, conformal trans-
formations take the solution (2.10) into the solu-
tion (2.11}.

5p=(2z xx E x')a p —2e xp

implies

(3.7)
with ~ ~ antisymmetric and anti-self-dual, and
look for nontrivial solutions of the equation

5A„=io P, (u" + [o „o,„](u 'a"

5a„=58„ lnp = io„„6a", (4 3)

= a„(2e xx —e x')a, lnp —2e,
= 5,a„—2q„. (3.8)

Summarizing, a conformal transformation of p as
a scalar density of dimension 1 followed by a suit-
able gauge readjustment induces the correct con-
formal transformation of A„.

In a finite special conformal transformation

where 5a"= 5(a"p/p) is the variation of a" induced
by an infinitesimal change of the parameters in
Eq. (2.11).

Equation (4.3) implies

cr ~(a &o~~ —&„w +4g „(u "a„+g~„aa ) =0, (4.4)

where we have used the fact that both cr ~ and (d ~

are anti-self-dual to express
x" —a"x'x" -x"=

1 —2a'x+a x

a scalar density of dimension 1 transforms as

(3.9)

It is convenient to define

(4.5)

(4.6a)

p(x) - p(x) =1 2, , p(x).
1

(3.10)

N

p(x)=Q( '
), , (3.11)

With a little algebra one finds that (2.11) trans-
forms as

and

4' „a"+&a = pb .
Then Eq. (4.4) becomes

o,(a„~ 8+@„a ) =0

(4.6b)

(4.7)

Multiplying with o, z, and taking the trace we find



CON FORMA I. PROPERTIES OF PS EUDOPARTIC I, E. . .

(4.8)

This last equation poses formidable constraints
on the possible forms of (d ~ and b . In particular,
by using the symmetry properties of the various
terms under permutations of the indices, one ean
show that co ~ must obey an equation where b does
not appear:

(4.9)

(Notice the similarity to the equation satisfied by
a Killing vector. } Once Eq. (4.9) is satisfied, Eq.

(4.8) reduces to the condition

(4.10}

From the integrability conditions which follow
from Eq. (4.9}, after nontrivial algebra, one proves
that the most general solution to Eq. (4.9) is

(~,~(x) =2«+~~" —2«P „«"+ x'A
~

(4.11)

with constant A z, B, and C ~. Furthermore
A ~ (C 8) must be anti-symmetric and self-dual
(anti-self-dual).

Equations (4.11) and (4.6) now give

(4.13)

4(2«+~" —2«g, ~"+x'A, ~+8 x~-Biix —e ~,8"x'+C ~)e~p(x)+ 6a (x) —4p(x){2A ~«8 —8 ) =0. {4.12)

The left-hand side of this equation develops singula, rities when x" approaches any of the y~ Requiring
thai the residues vanish, we find the conditions

icA&yi — yiiiA&zy~i+ yi AarB+Bayiii —88gia Eaay58"yi+ Ca8= 0& i = 1& ~ ~ ~ i 1Vi

y; =KB, j=», . . . yX (4.16)

and we see that the images y",. of the points y",.
lie on a straight line through the origin. %'e

conclude that a nontrivial gauge transformation
preserving the ansatz of Eq. (2.5) may exist

5y,. +X,.'(4A „y",. —28 )=0, i=i, . . . ,N. (4.14)

Equations (4.13) represent a constraint on the
positions of the singularities in p for the existence
of a nontrivial gauge transformation preserving
the ansatz of Eq. (2.5). For a general configura-
tion of singularities the set of Eqs. (4.13) (3iV ho-
mogeneous linear equations for the ten independent
components of A, ~, B„C,~) will admit no nonzero
solutions and the ansatz completely fixes the gauge.
If Eqs. (4.13) are compatible, then Eq. (4.14) spec-
ifies the changes of the position parameters that
can be achieved with a gauge transformation.

A simple way to understand the geometrical
meaning of conditions (4.13) and (4.14) is to ob-
serve that both equations are invariant under
the fifteen-parameter group of general con-
formal transformations, %'ith a rather straight-
forward computation one verifies that the conform-
ally transformed variables y,"- and 6y",. satisfy equa-
tions analogous to (4.13) and (4.14}, where A 8,8, and C ~ are replaced by new tensors A ~, B,
and C 8. If Eqs. (4.13) admit a. nontrivial solution,
then by a suitable conformal transformation we can
make A ~

= 0 ~
= 0, a,nd the equations reduce to

8 y@ 88y, —e ~„Q"y', =-0, i=1, . . . , ¹ (4.15)

This implies

only if the singularities in Eq. (2.11) lie on a circle
(or on a straight line, as a circle through the point
at infinity}. If Eq. (4.16} is satisfied, the condition

(4.17)

further specifies that the effect of the gauge trans-
formation may only be to move the images y",. on
the same straight line, and therefore the points
y", on the circle they determine, in a one-param-
eter group of transformations. If the points are on
a straight line it is easy to prove that the gauge
transformation actually exists, and by eonformal
covariance this extends also to the case where the
points lie on a circle.

Summarizing, if the IV points y,. in Eq. (2.11) do
not lie on a circle, the ansatz of Eqs. (2.5) and (2.7)
completely fixes the gauge, and all the 5n+ 4 param-
eters that specify a field configuration with Pon-
tryagin index n = ~V —1 are relevant. For Ã= 3
(three points always lie on a, circle) the two pseu-
doparticle field configuration is characterized by
thirteen physical parameters, since one of the
fourteen parameters corresponds to a gauge trans-
formation which moves the pseudoparticle around
the circle. If 8= 2 there is a threefold variety of
circles passing through y,

" and y,", so that only five
of the nine parameters in Eq. (2.11) are physical;
thus a single pseudoparticle is characterized by
position and size only.

It is intriguing that when two or more pseudopar-
ticles are put together more parameters are nec-
essary to specify the field configuration than the
positions and sizes of the pseudoparticles. The re-
sults we have obtained call for a physical explana-
tion of this additionaj. degeneracy; one wonders
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whether there exist still further solutions to the
self-duality equations beyond those discussed here.
These problems are currently under investigation.

Note added zn proof. Recently it has been pos-
sible to show that for an SU(2) gauge theory the

general n-pseudoparticle solution is specified by
at least Bn —3 parameters. ' The interpretation of
the additional 3n —3 parameters is that they de-
scribe the relative orientations of the pseudopar-
ticles in group space.
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