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The canonical equation of motion is revvritten in an alternative form, and. a divergence identity is derived. It is

sho~n that the generalized Ward identity is a special case of the general divergence identity. The use of the

divergence identity together with the Haag-Nishijima-Zimmermann construction theorem is illustrated w'th

the Nambu-Jona-Lasinio model. It is proved without any approximation, within the framework of the

conventional field theory, that the Goldstone boson carries the chiral gauge transformation.

I. INTRODUCTION terminology, this means that the symmetry is
dynan~i cally rearranged. 6

P number of identities holding between various
propagators have widely been utilized to obtain
kinematical relations among different physical
processes. In particular, the power of such
identities is demonstrated in connection with the
spontaneous breakdown of symmetries in gauge
theories.

In order to derive the identities in a general. way,
the path-integral formalism has been employed. "
However, such a formalism is not yet very famil-
iar to many quantum physicists. The purpose of
this paper is to show that the general identity can
be derived in conventional field theory, and to
demonstrate that it is an alternative form of the
fundamental canonical equation.

In Sec. II, we consider a transformation and
calculate the variation of the action integral due
to the transformation, which is a familiar identity
in Lagrangian field theory [Eq. (2.2)].' The canoni-
cal equation of motion (2.6) is then rewritten in
terms of the chronological product of the field
quantity and the generating current. It will be
shown that the so-called generalized Nard iden-
tity' can be derived from this form of the canonical
equation of motion. Section III is devoted to some
remarks on the identity when the symmetry is
spontaneously broken; i.e., there exists a Gold-
stone boson. "

%hen the Goldstone boson exists, it is conven-
ient to rewrite the identity in terms of the inter-
polating fiel.d of the Goldstone boson by using the
Haag -Nishijima-Zimmermann construction. This
form is particularly useful to investigate the re-
lation between the transformation properties of
the Heisenberg fields and the asymptotic fields.
In Sec. IV, we take the Nambu-Jona-I. asinio mod-
el and prove, without adopting any approximation,
that the Goldstone field carries the original chiral
gauge transformation: In terms of Umezawa's

II. THE DIVERGENCE IDENTITY

I.et us consider the transformation

(2.1)

The change of the action integral due to the trans-
formation (2.1) is given by the Noether identity'

6f = 6 'd'xZ(x)

"d~~a„q„(&)=G[o,] G[o,], (2.2)

GI (*)I=Id~. (*)&.(*)

and satisfies the canonical equation

-f6'y(x) = [y(x), G[c(x)]],

where

&'0(~) 0'(~) 4-=(~) = 6—A(~) —6x„s„y(x) .

(2.6)

(2.6)

(2.7)

%e can derive a certain identity as a consequence
of the fundamental relations (2.6) and (2.2). Let
us rewrite (2.6) as

(2.8)

where

Bg
Z„(x)-=—„6y(x)+H.c.+ 7 „„(x)6x„, (2.8)

I
X

T„„(~)= e„y(x)+H.c.—6„P(x). (2.4)
Bg

((P as

The generator of the transformation (2.1) is
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d'x'~'„T P x J„x' (2.9)

where T stands for the chronological-ordering
operation.

Since the Lie derivative (2.7) does not upset
the chronological ordering, ' we can generalize
(2.9) and obtain a general divergence identity

Upon using the Noether identity (2.2}, we obtain

i6'y(x) = fd'x'T(y(x)s'„Z„(x'))

-is„y(x) = 'x'S„'T{&(x)T„„(x'}).

Examples

(a) The space tim-e translation.

5x„=&„,

6'y(x) = —e„s„y(x),

J„(x}= T„„(x)e„.
Hence,

(2.14)

(2.15)

- t6'T(y(x, ) "~ }

ig T(y(x, ) ~ ~ ~ 6'y(x,.) ~ ~ ~ )

4x'T{g (x, ) ~ 6„'Z„(x'))

d'x'S„'T(P(x, ) J„(x'}). (2.10)~ ~

This is obviously an alternative form of the canoni-
cal equation (2.6). Note that the region of the in-
tegration in (2.10) does not have to be extended
over the entire space: As long as all the points
x„.. . are contained, we may take a 4-dimen-
sional finite volume. To see this and the fact that
(2.9) is the generalized Ward relation, ' let us cal
culate

s„r(4 (x)Z. (x')) = i6(x, — 'x)[y( )x, Z, (x'}]

This is an alternative form of the Heisenberg
equation of motion.

(5) Chiral gauge transformation. Take

2 (x) = —g(x)(y 6+ M)g(x) (2.16)

and consider the transformation

5x„=0,
6 g(x}=icly,g(x),

6'y(x) = in'(x)y„

(2.17)

J„(x)= in'(x)y„y, p(x) -=aj„,(x),

(x) = 2iMq(Ã)y, q(x) —= 2Mp, (x) .
We thus obtain from (2.9)

y, g(x)=2M Jd x'T(g(r)p (x'))

(2.16)

(2.19)

with the infinitesimal parameter z. Then, we
have

+ T(y(x)S'„Z, (x')), (2.11)
'x'6'„T(g(x)j»(x')), (2.20)

which is the generalized Ward relation. The first
term on the right-hand side of (2.11) contains the
6 function 6(x-x ) and its derivatives in the local
field theory. Now, on integrating (2.11) over a
volume V, including the point x, and on using the
relation (2.6), we arrive at

and from (2.10)

(T4y( )Tx(Xt))+ T(4(x)4(V)y, )

= 2M d'x'T{g(x}g(y)p, (x'})

i6'y(x} = d'x'T(y(x)S„'Z„(x')} d x'O' T(f(x)t/J(y)j „5(x')). (2.21)

d'x'6'„T(P(x)Z„(x')) . (2.12)
III. REMARKS ON SPONTANEOUS BREAKDOWN

OF SYMMETRY

However, to derive the identity in differential
form, the transformation on the constraint vari-
ables is required.

It goes without saying that if the transformation
(2.1) leaves the action integral invariant, we have

For an invariant transformation, we have

t6'y(x) = d'x'S„'T{y(x)Z„(x')). (3.1)

(3.2)

Let us suppose that the vacuum expectation value
of 6~$(x) is nonzero, i.e.,

(O~6'y(x)~0)= a~O, -
s„J„(x)= 0; (2.13) then

therefore the first term in the right-hand side of
(2.9) and (2.10) vanishes.

g= -j d~x'~'„0 T {t}x J„x' ) 0 (3.3)
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To evaluate the right-hand side, we recall the
spectral rep resentation

&0le( &d. ( '}Io&

= -i dx'pz(x')s„r "(x-x', x'}, (3.4)

which gives the current-conservation condition

rc p'~(~ )'=0.

On the other hand,

s', (0
l
T(y(x) d„(x'))

l
0&

(3.5}

=g dKPg K

0

dx p~(x )x A (x —x
&

x )

+ i dx'pz(x')5"'(x-x'). (3.6)
0

Substituting (3.6) into (3.3), we have

a= dK'Pz K' 4 0
0

(3.7)

x s„&ol ~ ~ lo& (3.8)

singles out the massless boson from the quantity

on account of (3.5) and (3.2). The relations (3.5)
and (3.7) then imply the existence of a massless
boson. This is essentially the proof of the Gold-
stone theorem given by Goldstone, Salam, and
Weinbe rg. '

As can be seen in the above proof, the right-hand
side of (3.3) contains only the contribution of the
massless boson, if it exists. In other words, the
operation

choice of B(x) depends on the model. In fact, the
relation (3.10) can be justified by the argument by
Haag, Nishijima, and Zimmermann (the HNZ con-
struction). ' Of course, there is no reason why the
vector field with zero mass does not contribute to
(3.10). We shall economize our argument, how-
ever, by considering only the scalar (or pseudo-
scalar) boson. The D'Alembertian in (3.10) is to
separate out the contribution of the massless field.

The HNZ construction makes it possible to gen-
eralize (3.10}as

d'x'0' 0 T(Q x, 8 x' ) 0 . 312

This form is much more useful for the discussion
of spontaneous breakdown of symmetry, as will
be seen in the next section.

IV. THE NAMBU-JONA-LASINIO MODEL

In order to see the effective use of the relation
(3.12) in the case of spontaneous breakdown of
symmetry, let us take the Nambu-Jona-Lasinio
model. The Lagrangian

&(x) = —C(x)y ~ ss(.)
+g iP(x)4(x))'+ b4(x)y. 4(x))') (4.1)

is invariant under the infinitesimal chiral gauge
transformation

s'„(0
l
T(g(x, ) ~ ~ ~ J'„(x')) l0&

= },C'(0
l
T(y(x, ) ~"B(x'))

l
0&

+ term vanishing when integrated. (3.11)

The substitution of (3.11) into (2.10) gives

&ol5'T(y(x, ) "}lo&

T(y(x) d„(x')). (3.9)

This fact suggests that on calculating (3.3), we
can separate out the contribution of the massless
boson by putting

s'„(OlT(@(x)J (x')) l0&

= q,O'(0
l
T(y(x)B(x')}

l
0&

+ term vanishing when integrated, (3.10)

g(x) —g'(x) = (1+iay, )g(x),

g(x) -g'(x) = $(x)(1+iay, ) .
The generator of (4.2) is

G=— do'„j „5x

with

(4.2)

(4.3)

where g~ is a constant to be determined by the
dynamics of the system, and the operator B(x) is the

interpolating field of the massless boson. The

j„,(x) = ig(x)y„y, g(x) . (4.4)

The generalized Ward relation (2.10) then turns
out to be

T(y,g(x, )g(x, ) P(y, ) )+ T(g(x, )y,(( ) x. g(y, ) )+ ~ ~ + T(P( }gx( ) xg(y, )y, )+

= fd 'x'8„'T($(x, )g(x ) ~ g(y, ) j „(x')). (4.5)
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Upon taking the vacuum expectation value of (4.5) and using (3.12), we obtain

&olT(y, t(x, )4(x.) "4(y,) }lo&+&0lT(4(x, )y,4(x2) 4(y, ) )lo&+ "
+&olT(4(x, )4(x.)" 4(y, )y, ")lo&+"

'x' '&OIT(«x )&(x.) "' P(y, )" B(x ))lo&. (4.6)

In. this particular model, the interpolating field
B(x) may be taken as

B(x)= f0(x)y, 4(x) = p, (x-) (4 'I).

d'x o &ol T(B{x)B(x'))lo&. (4.8)

If we demand, following Nambu and Jona-Lasinio,
that the left-hand side of (4.8} is nonzero, i.e.,

[The normalization of the interpolating field is ad-
3usted by g~, which can be determined for example
by the relation

&ol j.,(x)le& =nzs. &ol p, (x) le&,

with q2= 0.] From the general relation (4.6) it
follows that

&o l7(x)P(x) l
o&

d'x'0'&0
l
T( g{x)y,g(x)B(x'))

l
0&

respectively, by dynamics of the model. If we
assume

&Olr(B(x)B(x')}lo& = 2, d'kn', (k')e"'""',

(4.11)
then Eg. (4.10) gives

(4.12)

Z = lim (-0')4'z()z').

The dynamical calculation carried out by Aurilia,
Takahashi, and Umezawa' indeed confirms the
relation (4.12). [According to Ref. 9, the chain
approximation gives

1 1
8 2 [f(0)]1/2

&0
l
$(x)y(x)

l
0& = ———4 0,

1 M
2 g

we have

(4 9) q, = 4gm(0),

with

M——=sq, d'x'a'O T a xa x' 0 . 4.10

This shows the relation between the mass M of
the fermion and the residue of the propagator of
the Goldstone particle, which are determined,

where A is the cutoff. ] A judicious use of the
relation (4.6) yields a number of interesting rela-
tions. '

V. DYNAMICAL REARRANGEMENT

The power of the relation (4.6) is appreciated when we investigate the dynamical rearrangement of the
transformation (4.2).' Let us denote the asymptotic fields by g"(x) and B"(x), which satisfy

(y ' s + M)g" (x) = 0,

OB"(x}= 0,

(5.1)

(5.2}

and investigate what transformation on g"(x) and B"(x) will correctly reproduce the original transforma-
tion (4.2). For this purpose, we need some relation between the Heisenberg operators and the asymp-
totic fields. According to the Lehmann-Symanzik-Zimmermann (LSZ) formalism, we have

aO m n

SP(x) = Q. . . :II d'x,.q(x, )8(x, x„.. . , x„y„.. . , y, z„.. . , z„) IIq(y, )d'y, II J'(z, )d'z„:,
/=1 k=1

with

q(x) = fZ "'g"( )(xye+I-) 2}(x)= -fZ -'"(-y ~ S+M)y"(x), Z(x) = -fZ,-"'iB"(x)

(5.3}

(5.4)
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8(x, x„.. .) = (0 IT(g(x)g(x, ) ~ ~ ~ g(x, )$(y, ) ~ ~ ~ $(y )B(z,) ~ ~ B(z„))I0&,

where the S matrix is given by
OO l m tl-

1 / t LL d xP(xi)8(xii ~ ~ . ixii3'ii . . iyiit xli ~ . i ~il) LL &(yy)d yi LLd(~ii)d ~li: i
TT 4 TT 4

l, m, n-"0 ~ ' ~ ' + ' i=l

with

'(x " *")=«IT{&(x}"t(x»(y } "C(y.}B(~,)" B(~.))I0&

%e shall first prove that the transformation

q"(x)-q"(x), B"(x)-B"(x)+~h,

(5.5)

(5 6)

(5.7)

(5.8)

with an arbitrary c number 5, leaves the S matrix (5.6} inva. riant, and then using this property we show
that the original transformation

tti(x) —g'(x) = (1+io.y, )g(x)

can be induced by the choice

'5

/+ZAN

i

(5.9)

(5.10)

Thus, the transformation (5.9) is rearranged to (5.8) with (5.10) at the level of asymptotic fields. Note
that the Goldstone field B"(x) carries the entire transformation. In fact, the fundamental function of the
Goldstone boson is to recover the symmetry lost by the asymptotic field g"(x) .

In osder to pursue the above argument, let us first note the kinematical relations

(5.11)

(5.12)

r d "«IT{"'7()0( ) "'}10&&g™(}=o

where it is assumed that no scalar massless mode exists. Applying (5.11)-(5.18) to (4.6), we obtain

(5.18)

J:II d';ri(;)(0IT4, 4( )0(,) B( .))I0& II n(y, )d'yjg d(,)d', :
4=1 j=l k=l

d'x, q(x, )(0 IT{/(x)q(x, ) ~ ~ B(z„)B(x'))lo&ri'd'x' II rf(y, )d'y, II J.'(z, )d'8„: . (5.14)
k=1

I.et us now calculate the change of the S matrix (5.6} induced by (5.8}. Since $(x„.. . , z„) is c number,
the total change is

6S= g
l m n= 0 ~I™~ i~

with

l m ff

J d'x;q(;)8( „.. . ,z„, ')Q n(y;)d'y, II J(,)d'M( ')d' '. , (5.15)

8(x„.. . , z„,x') = (0
I T(g(x, }~ ~ B(z„)B(x'))

I 0&,

af(x')= -iZ ' '0'ab

Using (4.6) and (5.11}-(5.13), we obtain

58=0.

Thus, the S matrix is invariant under the transformation (5.8) for an arbitrary b

Our next task is to show that the choice (5.10) reproduces (5.9). On account of (5.18), we have

(5.16)

(5.1'I)

(5.18)

5{S&(x))= S6$(x)
OO l m fl

:IId', T}(,)s(x, x„.. . , „,x'}II q(y, )d'y, .II J(z„)d'z, L'f(x')d'x'. ,
0 SPE 08 0 j=l k=l

(5.19}



1594 YASUSHI TAKAHASHI 15

S5$(x) =iqz 'Zz 'I'bnSy, g(x) =inSy, g(x}. (5.21)

Hence, the relation

5&(x}= i ny, g(x)

can be reproduced.

(5.22)

VI. DISCUSSION

We have obtained the divergence identity in oper-
ator form by rewriting the fundamental canonical
equation at equal time in terms of the chronolog-
ical product. The vacuum expectation of the iden-
tity is nothing but the familiar Ward-Takahashi
relation. It should be emphasized that the diver-
gence identity holds true for any transformation
which may or may not leave the Lagrangian in-
variant.

Qne of the advantages of the derivation given in
this paper is that the transformation property
of the field operator is explicitly involved in the
identity. Hence, we can write down the relevant
identity without explicit use of the equal-time
canonical commutation relations. In fact, the
equal-time canonical commutation relations can
be derived from (2.10) if we consider the trans-
formation

y(x)- y(x)+f(x),

with

&(x, x„.. . , z„,x') =(0
~
T(g(x)g(x, ) ~ ~ ~ B(z„)B(x'))~0) .

(5.20)

On account of the relation (5.14}, the right-hand
side of (5.19) becomes

with the arbitrary c-number test function f(x).
The derivation of the divergence identity given

in this paper is of course purely formal. The un-
derlying assumption is that all the operations are
mathematically meaningful. In order to ensure
that this is the case, a certain regularization pro-
cedure must be employed. The Pauli-Villars
regulator method seens to be particularly well
suited for this purpose. We can add to the orig-
inal Lagrangian terms involving regularizing
fields with various masses, and derive the iden-
tity in exactly the same way. 'The subtraction pro-
cedure for renormalization can be performed with
the identity as a guide, as was done by Nishi-
jima. '

In applying the identity to the spontaneous-sym-
metry-breaking process, it is convenient to em-
ploy the Haag-Nishijima-Zimmermann construction
method to separate out the Goldstone boson. A
judicious use of the identity then show without
any approximation that the Goldstone boson car-
ries the lost symmetry. Umezawa and his col-
laborators investigated the role of the Goldstone
boson in great detail by using the path-integral
technique and the Ward-Takahashi identity, and
proved that the fundamental function of the Gold-
stone boson is to maintain the original symmetry.
We have shown in this paper that the proof carried
out by Umezawa and others by the path-integral
method can be equally performed in the usual can-
onical formalism.
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