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Quantum electrodynamics is modified by including exponential couplings of a massless scalar field so as to
make the theory conformal invariant. Nonpolynomial Lagrangian techniques are employed to calculate the
electron and photon self-energies to lowest order in the fine-structure constant and show that the usual
ultraviolet infinities are suppressed, the minor coupling constant providing the cutoff. A proof of ultraviolet
finiteness of the theory to arbitrary order is also presented.

I. INTRODUCTION

Ultraviolet infinities in field theories, especially
electrodynamics, have worried theoreticians for
a long time. These infinities persist' even in ex-
act solutions of certain field theories (with poly-
nomial interactions) in two and three space-time
dimensions. This suggests that the fault probably
does not lie in the perturbation expansion, but in
the assumed nature of interaction. One is naturally
inclined to look towards nonpolynomial inter-
actions which, fortunately, are known to have re-
markable convergence properties.? While ad hoc
nonpolynomial modifications of quantum electro-
dynamics (there are innumerable possible varieties
of them) could be made® to cure it of the ultra-
violet infinities, it is clearly desirable that there
should be a natural choice for such a modifica-
tion. Now, the gravitational interaction is well
known to be nonpolynomial and it has been con-
jectured by several theoreticians* that infinities
in electrodynamics may be cured by taking into
account the curvature of the space-time around
the elctron and the photon. Isham, Salam, and
Strathdee®® have shown that quantum electro-
dynamics modified by Einstein’s tensor gravity
does indeed have a natural cutoff provided by the
gravitational coupling constant.

Nonpolynomial Lagrangian theories have their
own problems; in particular, they suffer from
Borel ambiguities and ambiguities of distribu-
tion-theoretic origin.” Lehmann and Pohlmeyer®
have shown that for nonpolynomial Lagrangians
belonging to the localizable class (this includes,
for example, Lagrangians of the exponential type
but not of the rational type) these ambiguities may
be removed by employing reasonable physical
criteria on the large-momentum behavior of the
superpropagators; moreover, such Lagrangians
are free of Borel ambiguities and possess the
desirable features of “good” field theories.®” It
is desirable, therefore, to work with localizable
Lagrangians as is, indeed, done in Ref. 6 by
adopting the exponential parametrization of the

vierbein field.

While in principle it is possible to remove ultra-
violet infinities in quantum field theory by harness-
ing gravity, the complications of tensor gravity
make it very difficult to put it in practice; more-
over, the infinities of quantized gravity itself have
not been cured or even circumvented,’ and one
cannot claim to have achieved a consistent field
theory with no ultraviolet divergences. The
purpose of the present paper is to present a simp-
ler alternative which does not have these dis-
advantages and which retains almost all advantages
of gravity-modified field theories. QOur pre-
scription is to invoke conformal invariance, which
can be achieved'® by multiplying individual terms
in a Poincaré-invariant Lagrangian by powers of
exp[ fo(x)], where o(x) is a massless scalar field
transforming inhomogeneously under conformal
transformations. With this prescription, ex-
ponential couplings appear in those terms in the
Lagrangian which have their original scale dimen-
sion different from -4; in particular, they ap-
pear in the mass terms. By applying appropriate
field transformations the exponential couplings
can be removed from the mass terms. After this
transformation, there is generally an exponential
factor in every interaction term in the Lagrangian.
Now the absence of ultraviolet divergences can be
demonstrated in the usual manner®®7; the minor
coupling constant f provides the cutoff. In this
paper we have carried out this program for quan-
tum electrodynamics.

A lesson that one learns from the work of Isham,
Salam, and Strathdee®'® is that, whereas the electro-
magnetic interactionalone cannot provide for stable
matter, the electromagnetic and gravitational in-
teractions together can. Now, the full glory of
tensor gravity, while it may be needed to explain
various gravitational phenomena, may not after
all be essential for the stability problem; some
simpler version of it may do as well. The present
work is an example of this; indeed, the exponential
interaction of the massless scalar fields is es-
sentially scalar gravity.!! The simplification so
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brought about can be exploited while constructing
finite theories of other fundamental interactions.
An extra bonus is that such theories, with built-
in conformal invariance, will have highly de-
sirable scaling properties.

The formalism of conformal-invariant quantum
electrodynamics is presented in the next sec-
tion. In Sec. II, lowest-order calculation of
electron and photon self-energies is presented,
and the ultraviolet divergences are shown to be
absent. Section IV contains a discussion of gauge
invariance. The proof of ultraviolet convergence
of the theory in a general order is presented in
the last section.

II. CONFORMAL-INVARIANT QUANTUM
ELECTRODYNAMICS

The conformal group contains, in addition to
the transformations of the Poincaré group, the
dilatations

x* ~x®=e*x*  x real 2.1)
and the special conformal transformations

x4 4+ BH 2
B B = B

BT IOTY 2.2)

A convenient method of constructing representa-
tions of the conformal group from those of the
homogeneous Lorentz group is based on the ob-
servation'® that all transformations of the con-
formal group have the following property:

ax’
det (—5—;>
The transformations of the Poincaré group and
the dilatations (2.1) obviously satisfy (2.3); that
the special conformal transformations (2.2) also
satisfy (2.3) canbe easily verified. It follows from

Eq. (2.3) that if x* - x’* is a transformation of the
conformal group, then

ax’
is a Lorentz matrix. Now, if a set of fields ¢ ,(x)

transform under the homogeneous Lorentz trans-
formation x -x"=Lx as

0o (') =[D(L)]ap $s(x) (2.5)

then the transformations

ax"\|?
clearly provide a representation of the conformal
group. The number [, is the scale dimension of

the field. We will assume, for simplicity, that
the scale dimensions have their canonical values,

1/2

ax’* ax™
&oo - (2.3)

Bx ox0 SwrT

-1/4 ax'H

A, (x) = ~7

(2.4)

/4
TUID(A(X)) | $5(0)  (2.6)

oL (x") =

that is, I,=-1 for scalar and vector fields and
l,=-% for the spinor fields.

To construct conformal-invariant Lagrangians,
we introduce a scalar field o(x) which transforms!®
as

1 ax’
Pt — . It
U(x)—o(x)+4f In det<8x>l' 2.7
For Poincaré transformations, the inhomogeneous
term clearly vanishes; for the scale transformations
(2.1), Eq. (2.7) simplifies to

o’(x’) = o(x) +\/f . (2.8)

The transformation law (2.7) can also be written
in the following useful form:

ax’
The space-time dependence of the transformation
coefficients in Eq. (2.6) implies that the derivatives
of fields will not have a linear homogeneous trans-

formation law; this property is enjoyed by the co-
variant derivatives'®

A,b=8,06—f(l,g, —1S,,) (3°0)¢ (2.10)

which have a transformation law similar to (2.6)
with[,~1,- 1. Here S , are matrices representing
the Lorentz generators in the representation of the
¢ fields. For spin 3 and spin 1, they have the
following forms:

1/4
exp[fo(x)]. (2.9)

exp[fo’(x')]=

Spin % : SHV = %Z[’}’u, Yv] ’
spin 1: (S, A),=i(g,4, -8,,A,).

To ensure that the action is conformal invariant,
we need the following transformation property
for the Lagrangian:

ax’

When ordinary derivatives have been replaced by
covariant derivatives in a Poincaré-invariant
Lagrangian, each term in the resulting Lagrangian
will be conformal invariant except for powers of
|det (8x’/8x) }; this deficiency can clearly be cor-
rected by multiplying each term by appropriate
power of exp( fo). To this Lagrangian we must
add the kinetic-energy term for the o field. In
this connection, we mote that the covariant de-
rivatives (2.10) of the fields exp(+fo) vanish
identically; however, we can employ the Lagrang-
ian

(2.11)

-1
£(x) = [£(x) + four-divergence].

(2.12)

£,=30,0 8%cexp(- 2f0), (2.13)

which is conformal invariant up to a four-
divergence.!®
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We are now prepared to construct a conformal-
invariant Lagrangian for quantum electrodynam-
ics. Noting that

AA -A A =8,A -9,A,=F,,, (2.14)
we obtain the following Lagrangian:

L£=3i[¥y*D, ¥ - (Du;l./)'y“\ll] - m¥¥ exp(- fo)

- iF,, F*+38%0,0exp(- 2f0), (2.15)
where
D, V= (8,+ieA)+f(3g,,+iS,,) (8" 0)¥. (2.16)
Applying the field transformation
¥(x) = y(x) exp[zfo(x)] (2.17)
and after some simplifications, we have
L=L+ L+ L, (2.18)
where
Lo=bi[Py¥a,i- (3,9) v ¥]-m Ty
-iF, F¥+38,008%0, (2.19)
Lon==3e(r")ag[Va» ¥s]A,exp(f0) , (2.20)
and
& =zilIr*e, 0~ (0,0)y"y] (e~ 1)
+30%00,0(e 7~ 1). (2.21)

We shall employ the exponentially modified electro-
magnetic-interaction Lagrangian £, to calculate
the electron and photon self-energies in the fol-
lowing section. The coupling constant / is assumed
to be very small (]fm ]<< e). In this connection we
note'! that the field exp(- 2f0) couples to the trace
of the energy-momentum tensor [a simple way to
see this is that exp(fo) terms are inserted in only
those terms in the initial Poincaré-invariant
Lagrangian which have the scale dimension [ # - 4;
these are precisely the terms that contribute to the
trace of the energy-momentum tensor]; the
additional interaction is, therefore, scalar
gravity.

III. SUPPRESSION OF ULTRAVIOLET DIVERGENCES IN
LOWEST ORDER

In this section we shall apply the techniques
similar to those in Refs. 5 and 3 to the interaction
Lagrangian of the previous section to calculate
the electron and photon self-energies to the lowest
order in e. The diagrams for these processes
are the conventional ones with an additional super-
propagator!? between the two vertices.>®

A. Electron self-energy

In lowest order, the matrix element for electron
self-energy is

T(p) =ie? / d*x ey 4S(x)y, D(x) exp[f?D(¥)] ,

3.1)
where
1
D(x)=(0 ]T(U(x)U(O)) IO>=" i) (3.2)
and
S(x) = (0| T(¥(x)¥(0)) | 0)
_ [ d sipex __Y'Ptm
—L./(Zn)“ e pPP—mPrie (3.3)
Now
2 =) el
D(x) exp[/*D()] =3 == [D(x)]

n

1
o

L [ arE 2 rIpw,

" 2m Je

(3.4)

where C is the contour enclosing the positive real
axis clockwise. The contour can clearly be opened
up to lie parallel to the imaginary axis with -1
<Rez<0; we call this later contour C’. Now,
making use of the Gel’fand-Shilov formula'?

ol [ L o

y (4”)-2(2-1)(_ k2)z-zr(2 _ Z)

T'(z) ’
0< Rez <2
(8.5)
we obtain
2P =g [ de T 2)2(p,2), (3.6)
c
with
_ d't  , vy (p-k)+m
2(0,2)=FC) | Gor v" o vie
x ¥ (= k) (3.7)
and
F(z):_iez(_fz)z _(él)izz(__z_) (3.8)

T'(2)

We note at this point that the contour C’ in (3.6)
can be shifted to the left as much as we like. For
sufficiently negative Rez, the convergence of the
integral in (3.7) is assured; moreover, as we
shall presently see, no new singularities appear
for Rez <0 after the momentum integration, so
that the contour can be taken to be C’ again. Now
we have, after simple manipulations,
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Z(p,z) =y pA(p*,2) +mB(p*,2) , (3.9)

B(,2)= g TE[3(p,2)] =4F @) 1($%,2),
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A(p*,2)=- ﬂ(- {6’2 ) I'(l-2)T'(-2)

X[F(1-2,-2;2; p*/m®)

(3.10) -z (+1)F(1-2,-2;3; p*/m?)],
and (3.14)
1 I*m? e
A(9*,2)= 355 Trly*pE(p,2)] 5= 7 (- o [ ) ra-ore )
XF(l1-2z,-2,2;p%/m?). 3.15
=_2F(z)[1(p2,z)+——l(p2z+1)] ( »230%/m’) (3.15)
The contour C’ in (3.6) can now be replaced by
where (3.11) C. When the z integration is carried out, con-
tributions are obtained from the double pole at
1(p%,2)= f [ (3.12) z=0 and triple poles at z=1,2,.... The contribu-
(2m?* (p-k)P-m +ie’ : tion from z =n has terms proportional to £ In(fm)
2n, -
Proceeding as in Ref. 6, we obtain ?.nd to %", 1F therefore represents the (regular
ized) n-graviton exchange to the second-order
2 electron self-energy. Considering the double pole
I(p%,2) = 15 16 Tgz T-2)TA+2)m™ at z =0 only and writing
XF(1-z2,-2;2;p%/m?. (8.13) Z(p) =y pA(p®)+ mB(p?) ,
This gives, after a simple calculation, we obtain
af /am mZ_pZ[ m? + p? mz—pzﬂ s sl 2
A(P)——'z—,,'r')m <mf)+ 3 1+ 7 1‘1( p -t ;§+O(f Inf), (3.16)
47 m? - p? m? - p?
B($)= {m _f> e m( =F >_gy+ ;] +0(/?Inf) . (3.17)
—

This gives, for the electron self-mass,

om =m[ A(m?) + B(m?)]

z,, {31n(mf>—:-y+ :—}O(lenf), (3.18)

and, for the renormalization constant,

Z, = 1= A(m®) - 2m2[A'(m?) + B'(m?)],  (3.19)

where y is the Euler constant. [Equation (3.19) con-
tains the usual infrared divergence.] Asexpected, the
minor coupling constant f provides a natural cut-
off; the terms with In(47/mf) in the above formulas
are reminiscent of the logarithmic infinity in the

f =0 theory.

B. Photon self-energy

The lowest-order matrix element for the photon self-energy is

1,,(k) =ie? f d*x e'** Tr[y,S(x)y, S(- x)] exp[ f2D(x)]. (3.20)
Proceeding as before, we have
1
I‘Iw(k)=2—m_j;'dz (- 2)1,, (&, 2) (3.21)
with
,,(k,2)=ie*(- f2)* f d*x e'**Tr[v,S(x)7,S (- x)] [D(x)]*. (3.22)

To be able to apply the formula (3.5), we write
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1
1 ()= 11, (k,0)+ 5 fc dz T(= 2),, (k,2) ,

(3.23)

where the contour C’’ is parallel to C’ with 0<Rez<1. In the integrand in Eq. (3.23), we can now use Eq.

(3.5) and obtain

Huu(k,2)=K(Z)ff?%;%;ﬂ—%;(—qz—ii)"zTr{vu

where

K(@)=- (- e T8

veb+m

pP-mi+ie "V (p+q-R)P —m2+ic

Yy (p+q=Rk)+m :J’ (3.24)

(3.25)

To secure convergence of the integral in (3.24), we shift the contour in Eq. (3.23) to the left. In the pro-
cess we encounter a simple pole at z=0 whose contribution cancels the II,,(k,0) term in Eq. (3.23) and

then no other singularities so that we can write

1 .
I, (k)= 5— f dz T(= 2)M,, (k,2)

N

(3.26)

where 1, (k, 2) is still given by (3.24) and the contour C’’’ is parallel to the imaginary axis with — 2 <Rez

<-1. We now write
,,(k,2) = (k%g,, — k,k,)C(*,2)+g,, D(k?,2).

Proceeding as in Ref. 5, we obtain

C(k*,z)

_a ( f2m?>z I'(-2z)I'2-2)T(4-2)
U o4V \ 4 T'E-2)

and

m? [T(1-2)]’T(2-2)

3a f2m2>’
2 = — -—
D(k’z)"4777( a2 ) z+1 TC-2)

(3.27)
k2
3F2<4—z,2--z,_2:;4,g—z; 4m> (3.28)
3 k2
+F 2—2,1_2,—1—2;3,5—2;1}/’—77)‘ (3.29)

We now fold the contour C’’’ on the positive real axis. Writing the decomposition analogous to (3.27) for
IT,,(k), we calculate the contribution of the double pole at z=0 for C(k*) and of the simple poles at z=-1

and z =0 for D(k?). We obtain

a 472 2201 /x+1\1/2
o= g (o) - B (31) “n

8

(L+)Y2evx 11
T2 vyx 787X

—3y+ln4}+0(f2 Inf) , (3.30)

(3.31)

where \= - k%/4m?. This gives, for the photon wave-function renormalization constant,

Z,=1-C(0)

a 4"\ 1 1 2
= 1—§?[m<n—12}@>+ —6- - 3'}/+ 11'14‘] +O(f ].nf) .

(3.32)

Once again, the minor coupling costant provides a natural cutoff.

IV. GAUGE INVARIANCE

A nonzero value of D(k?) clearly implies lack of
gauge invariance. This is not quite unexpected be-
cause effectively we are working with the Lagrang-
ian £+ £, which is not gauge invariant; only the
total Lagrangian £+ £, + £’ is gauge invariant.
From the structure of £’ one might expect that its
inclusion would affect only terms of order f2Inf
and above; however, the mechanism which pro-

duced f? term in D(k?) might operate here as
well.

We note in this connection that the =2 term in
D(k?) is reminiscent of the quadratic infinity in
this quantity encountered in a naive perturbation-
theoretic calculation** in conventional quantum
electrodynamics (which is based on a formally
gauge-invariant Lagrangian); in this latter situa-
tion a careful calculation employing a well-defined
gauge-invariant current operator'®'¢ or appropri-
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ate gauge-invariant regularization'’ does ensure
D=0. This would suggest that the fault probably
does not (entirely) lie with the omission of £’

and that even its inclusion may not, after all, en-
sure gauge invariance.

The need for a modification of the current opera-
tor is there in our formalism as well, because the
product of field operators at the same space-time
point is singular as usual. We will now show that
a calculation along the lines of Ref. 16 employing
the modified current operator does ensure gauge
invariance to zeroth order in the minor coupling
constant.

If we replace ¥ v*¥ in £, by the strictly gauge-
invariant current operator

O A e

x=€/2

(4.1)
we have to consider the additional interaction
' 20 €\ o, €
£l =ie’Y X+5 )y Ple-3 A, (x)
x+€ /2
x explfo)] [ A0 4.2)

x=€/2

To obtain the additional contribution IIj, (k) to the
polarization tensor, we must express the first-
order S matrix due to £, in the form'®

Sl=if£;m(x)dx

=_i:f AR A* (R, (R)A (R) s+ -+, (4.3)
where the dots indicate other terms in the normal-

product expansion, and

A, (R) =(711172— fd“xe"”"‘Au(x) .

The ¢ intergration can be carried out along a
straight-line path by writing

1
£=x"+35€, -1ss<1.

Noting that

(0|P(x+z€)y,¥(x-2€) |0)==Tr[y,S(- 6],

we obtain,'® after a straightforward calculation,

I, (k) =ie*¢, Tr[y,S (- €)] 7’;—2—€ sin <k—2€—> .

(4.4)

This gives, in the limit € -~ 0, a quadratically di-
vergent contribution to D(k2) which cancels the
usual quadratic infinity in D(%?).

Calling the contribution to D(k?) from (4.4) as
D’(k?) and using Eqgs. (3.21) and (3.27), we have

[D)] g = D8 + 55 fc dz (- 2D, 2)

=D'(k®)+ D(%?,0)
+ -2_11rz- C”dz I'(-z)D(k%,z). (4.5)

Now, D(k?,0) is nothing but the usual quadratically
divergent quantity and, as mentioned above,

Elvlr_r}) [D’(F?) + D(k?,0)]=0. (4.6)

We have, therefore
: 1
(D) =57 [ A2 T2)DE). (47)
cre

Now, the contour C’’ parallel to the imaginary axis
with 0<Rez <1, Eq. (4.7), on folding the contour to
the right, will (formally) give terms of order f2
Inf and higher. Had the quantity on the right of
Eq. (4.7) been finite as such, our demonstration

of gauge invariance to order f° would have been
complete. Unfortunately, this is not the case,

as we have seen in the previous section (the con-
tour had to be shifted to the left). We will now
show that inclusion of £’, which also gives (form-
ally) contributions of the same lowest order in f,
makes the right-hand side of Eq. (4.7) convergent
without shifting the contour to the left.

To include the effects of £/, it is sufficient® for
our purpose to consider the diagram shown in Fig.
1. Dashed lines represent the superpropagators.
This diagram represents the sum of diagrams with
and without the indicated modifications due to £’
so that each of the superpropagator lines with
momenta q’, q’’, and g’’’ represents the sum of
zero,one, two, . ..graviton exchanges (and not
merely one, two, . .. graviton exchanges as the

FIG. 1. Photon self-energy supergraph.
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structure of £ might suggest); in the language
of Ref. 6, “cradling” in the above-mentioned three
superpropagator lines is understood.

It will be useful to first consider the modified
electron- electron-graviton vertex shown in Fig.
2. (Remember that the dashed lines are superpropa-
gator lines.) The matrix element for this diagram
is

1

RADHEY SHYAM 15

FIG. 2. Electron-electron-graviton “supervertex.”

1
yoq'(-q'?)22 | (4.8)

MCq"- [ denie) [ day-a

Y U-q)-m"

Y (l-q'+q")-m

The function k(z) includes the z-dependent factors other than (- ¢%)**% in Eq. (3.5) and the various constants.

The diagram of Fig. 1 gives

D) ~ dzfc'dzzh(z)h(zz)fffqd“q"

c’

1 1 1
-k M -k,q" -k
XTr [y ey MUb =R i YR T
rr rr 1 —J 2)2-2 1712\2,=2
XM(p+q"', - q )m (= ¢°)*%(~ q’"?)%="?, (4.9)

which is to replace Eq. (4.7).
The ¢’ integral in Eq. (4.8) is convergent without
shifting the contour C’. Moreover,

lim  M(l,q”")< |q”| (In|g"" ™,
a1 (4.10)
lim M(,q'")<(In |l |)%,
1]~
where n, and n, are some positive integers. Now
a look at the integrand in Eq. (4.9) shows that,
taking (4.10) into account, both ¢’’ and ¢ integra-
tions are convergent without shifting the contours
C’ and C’’. This implies that D(k?) vanishes up to
terms of zeroth order in f.

V. SUPPRESSION OF ULTRAVIOLET DIVERGENCES TO
ALL ORDERS

We will now present a simple proof to the effect
that ultraviolet infinities are absent in the theory

formulated in Sec. II in any order in e. We do not
hope to keep the level of mathematical rigor of,
for example, Ref. 19 (where finiteness of a simple
exponential coupling theory has been demon-
strated); however, we believe our proof can stand
the stress of full mathematical rigor.

Consider a general graph in an arbitrary order
in e. It has, between any two vertices, a super-
propagator, at most one photon line, and at most
two fermion lines. Working, as in Sec. III, in the
Feynman gauge, the photon propagator can always
be absorbed in the superpropagator as was done in
the electron self-energy calculation (in a general
gauge the same can be done after using some cal-
culus of derivatives). Now, ignoring the term £’
in the Lagrangian for the time being, the matrix
element for a general diagram can be written in
the symbolic form

l I f3? >zij I'2-2z,,-a,,)
- 4 - - ij ij - 2\Z; 40t g =2
M f i<y 4215401, 7= 21) ( 1672 T(z;;+ay) (—q; )t

. . 1
XI:I a’p, Yh-m IKI (Py-2p-229), (5.1)

where p’s and ¢’s represent the momenta of in-
ternal electron and superpropagator lines and P,
is the sum of external momenta at the Kth vertex.
The symbol a;, (=0 or 1) represents the number

of photon lines between the ith and the jth vertices.

All inessential factors have been omitted. The
contours for the z,; integrations lie parallel to the

imaginary axis, with - 1<Rez,;,<0. It has been
assumed that, whenever necessary, the contours
have been shifted to the right to make the expo-
nents z,;;+ a,, satisfy the condition 0< Re(z;;+ a;;)
<2 and, after substituting the Gel’fand-Shilov
formula (3.5), have been brought back to the
original position as was done in the photon self-
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energy calculation [see Eq. (3.23)]; this causes
no problems.

Now, one can proceed to apply the power-count-
ing arguments, as in Ref. 20; however, a simple
observation, which is based on our experience with
the photon self-energy calculation in Sec. III,
simplifies the proof tremendously. This is that
the variables z,, appear with a positive sign in
the exponents of ¢;;? and in the I functions in the
denominator and with a negative sign in the T’
functions in the numerator; this circumstance
can be exploited to shift the contours for z;; to the
left as much as necessary to secure convergence
of g;; integrations, without encountering singularit-
ies. Now, after the momentum-conserving 6 func-
tions have been used, we can have one of the fol-
lowing two situations:

(i) All the independent loop momenta can be
chosen to be the superpropagator momenta; these
can be made ultraviolet convergent as explained
above.

(ii) Some of the electron momenta have to be
chosen as independent loop momenta; this happens
when there is an electron loop as in the II,, cal-
culation. In such situations, at least one of the
electron propagators will involve a linear combin-
ation of the loop momentum and one of the super-
propagator momenta [see Eq. (3.24)]. This fact,
combined with the fact that the ¢;; integrations
can be rendered as much convergent as we please,
ensures the convergence of all p integrations.

After the momentum integrations, we have

MN_[ I<I r_(:z”)r(z_z”_aﬁ< f? >’u

T(z;;+a;) 167
xf(P,z2), (5.2)

where f(P,z) is some function of the external mo-
menta and the z; j’s. Now, it is not difficult to see
that f (P, z) is a bounded function of the z;,’s on
their contours. The convergence of the integrals
in Eq. (5.2) is, therefore, governed by the gamma
functions. Now I'(z), with Rez fixed and |Imz |
taking large values, goes to zero very fast, and
since there are two I' functions in the numerator a
and one in the denominator, the integrals in (5.2)
are convergent. More precisely,*

T(az +b)~ V21 e™%(az)®*-1/2, (5.3)

|argz | <m, a>0.
Writing z =x +iy =re® , Eq. (5.3) gives

|T(az +b) | ~ const X e™*(ar)®**>1/2¢™® | (5.4)

Remembering that y and 6 alwyas have the same
sign, the assertions made above are easily
verified.

Since the above arguments apply to any graph as
well as to all its subgraphs, the proof of ultraviolet
convergence of any graph computed with the
Lagrangian £+ £, is complete.

Now we consider the inclusion of £’. This brings
about the following modifications:

(a) Two new types of vertices are introduced:
those involving electron and o lines only and those
involving o lines only. This fact by itself does not
affect our arguments above because nowhere
have we made any crucial use of the fact that all
vertices should be of the type of £, only.

(b) The couplings in £’ will give rise to some
momentum factors at the vertices. This also does
not affect our arguments above because our con-
vergence argument (based on shifting the contours
to the left) is powerful enough to take care of any
such additional factors.

(c) What could possibly create trouble is the
fact that the z;; contours for the superpropagator
lines arising from the couplings in £’ will lie in
the region 0< Rez,;;<1, so that when one of these
contours is shifted to the left the factor I'(- z,,)
gives a singularity at z;,=0. However, thisisnot
troublesome because the additional contribution
from the pole at z,;=0 is finite. To see this, we
note that the pole term corresponds to replacing
the vertices of £’ involved in such a superpropa-
gator by appropriate “kinetic energy kinks”® in an
electron or ¢ line. This clearly does not create
any convergence problems.

1t follows that the arguments presented above
remain valid when the additional term £’ in the
Lagrangian is included. In fact, one could start
withthe whole Lagrangian in the beginning and
construct a finiteness proof along similar lines.
However, we have found it simpler to present it
as above.

ACKNOWLEDGMENTS

One of us (T. D.) would like to thank N. Mukunda
for some useful discussions and for the hospitality
and facilities provided at the Centre for Theo-
retical Studies, Indian Institute of Science, Ban-
galore, where the work was carried to completion;
he is also thankful to A. K. Kappor and M. S. Sri
Ram for some useful discussions.




1588 TULSI DASS AND RADHEY SHYAM

ISee the articles of J. Glimm and A. Jaffe, in Local
Quantum Theory, Proceedings of the International
School of Physics “Enrico Fermi,” edited by R. Jost
(Academic, New York, 1969).

2For a review and references to earlier literature see
A. Salam, in Developments in High Energy Physics,
edited by Paul Urban (Springer, Vienna, 1970).

3see, for example, P.Budini and G. Calucci, Nuovo
Cimento 704, 419 (1970).

‘See, for example, W. Pauli, Theory of Relativity,
(Pergamon, London, 1967); and S. Deser, in Pro-
ceedings of the Symposium on the Last Decade in
Particle Theory, Austin, 1970 (unpublished).

5C. J. Isham, Abdus Salam, and J. Strathdee, Phys.
Rev. D§, 1805 (1971).

6C. J. Isham, Abdus Salam, and J. Strathdee, Phys.
Rev. Dé, 2548 (1972).

"For a review, see A. Salam, in Developments in High
Energy Physics, Proceedings of the International
School of Physics “Enrico Fermi” edited by R. Gatto
(Academic, New York, 1972).

8H. Lehmann and K. Pohlmeyer, Commun. Math, Phys.
20, 101 (1971).

%S. Deser, in Proceedings of the XVII International
Conference on High Energy Physics, London, 1974,
edited by J. R. Smith (Rutherford Laboratory, Chilton,
Didcot, Berkshire, England, 1974), p. I-264.

¢, J. Isham, A.Salam, and J. Strathdee, Phys. Lett.

31B, 300 (1970); see also J. Ellis, Nucl. Phys. B22,
478 (1970).

1A, Salam and J. Strathdee, Phys. Rev. 184, 1760
(1969).

12A. Salam and J. Strathdee, Phys. Rev. D 1, 3296
(1970).

131, M. Gel’fand and G. E. shilov, Generalized Functions
(Academic, New York, 1964), Vol. I.

143, M. Jauch and F. Rohrlich, Theory of Photons and
Electrons (Addison-Wesley, Reading, Mass., 1955);
J. J. Sakurai, Advanced Quantum Mechanics (Addison-
Wesley, Reading, Mass., 1967).

153, schwinger, Phys. Rev. 75, 651 (1948).

16K, Johnson, in Lectures on Particles and Field Theory,
proceedings of the Brandeis Summer Institute, 1964
(Prentice-Hall, Englewood Cliffs, N. J., 1965).

173, D. Bjorken and S. D. Drell, Relativistic Quantum
Mechanics (McGraw-Hill, New York, 1964).

18N. N. Bogoliubov and D. V. Shirkov, Introduction to
the Theory of Quantized Fields (Interscience, New
York, 1959).

197, G. Taylor, J. Math. Phys. 14, 68 (1973).

%R, Delbourgo, K. Koller, and A. Salam, Ann. Phys.
(N.Y.) 66, 1 (1971).

“Handbook of Mathematical Functions, edited by
M. Abramowitz and I. A. Stegun, National Bureau of
Standards Applied Mathematics Series, No. 55
(U.S.G.P.O., Washington, D.C., 1964).



