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Fi(a) is defined as the contribution of the one-fermion-loop diagrams to the divergent part of the photon
propagator in massless quantum electrodynamics. To sixth order, the perturbation expansion of F(a) has

rational coefficients: F,(a) =

Q/3)a/2m) + (@/27)? — (1/4)(a/27) +

--. It is not known whether the next

term in this series is a rational number; however, we propose a new method, which uses integration by parts,
for evaluating Feynman integrals which give rational numbers. Using this method we easily rederive the first
three terms in the series for Fi(a) and three other two-loop integrals, including the fourth-order correction to
the vertex function I'*(p,p). We believe that our new integration techniques are powerful enough to evaluate
the fourth term in the series for F,(a) if it is a rational number.

I. INTRODUCTION

The function F,(a) is defined as the coefficient
of the logarithmic divergence in the one-fermion-
loop diagrams which contribute to the photon prop-
agator in massless quantum electrodynamics. To
date only the first three terms in the perturbation
series for F (a) are known:

o3 (E) o) K o

The sixth-order contribution to F,(a) was pub-
lished by Rosner!'? in 1966. Rosner’s result is re-
markable because, although the transcendental
number ¢ (3) appears at intermediate stages of the
calculation, it drops out at the end giving the
rational number %.

The fact that the first three coefficients in the
series (1) are rational has led to theoretical spec-
ulation that the other coefficients might be rational
too, possibly as a profound consequence of the
scale or conformal invariance of the underlying
theory. The most direct way to resolve this ques-
tion is, of course, to calculate the eighth-order
contribution to F () and to see if the fourth coef-
ficient in (1) is rational. Unfortunately, the
eighth-order calculation involves doing formidable
three-loop Feynman integrals for which until now
no systematic procedure has existed.

In this paper we present a new, simple, and ap-
parently very general technique for evaluating the
Feynman integrals that arise in the F (a) calcula-
tion. This lechnique is specifically designed lo
evaluale integvals which are rational numbers.
Thus, if the fourth tevm in the sevies (1) has a
vational coefficient, the technique we arve propos-

15

ing heve should be sufficient lo compute it.

Our new integration technique uses integration
by parts. To illustrate our computational approach
we show how to evaluate in Euclidean space a
simple one-loop integral which is both infrared and
ultraviolet convergent:

_ 4 Pk
I fdk_k4(p_k)2 ) @)
Note that the integrand depends on a 4-momentum
p but that the integral I is a number independent of
p.
To evaluate (2) we note that
b-k Pk
ki D —4k2 ’ (3)
where O is the 4-dimensional Laplacian. If we
substitute (3) into (2) and integrate by parts we ob-
tain

. 1
Ifdle kzD(p - (4)

Now we use the identity

] =—47%6%(p - k) (5)

_t
(p - k)?

to reduce the integral in (4) to a triviality:

1=fa pk‘zk m%6*
The appearance of a 6 function in the integrand of
(4) is a consequence of the masslessness of the
theory.

Evaluating the integral in (2) in this way depends
crucially on finding the derivative identity in (3).
One may wonder whether or not such nice identi-

(p—Fk)=n"
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ties also exist for other integrals. So far, it ap-
pears that they always exist as long as the integral
is a rational number, regardless of how many loop
integrations are involved. In particular, we will
show that all convergent one-loop integrals which
have the form

o S(D,R)
fdkw o ®)

where f has degree 4, may be evaluated using de-
rivative identities and integration by parts.

Furthermore, we enumerate all two-loop inte-
grals of the form

f f d*kd*Lf(p, k, ) @
KUt (p - k) p =D (k-1

where f has degree 12, and show that there are
only 15 independent integrals not related to one
another by symmetry. Of these 15, 14 may be
evaluated using derivative identities and integra-
tion by parts (twice in succession), while the re-
maining one gives £(3). As it turns out, the inte-
grand Rosner used to compute the third term in

the series for F,(a) lies in the space composed of
the 14 integrals which may be evaluated by integra-
tion by parts. Thus, the number may be efficiently
computed without any intermediate stages in which
£(3) appears.

Our method for evaluating integrals is in princi-
ple trivial. First we enumerate the most general
derivative identity like that in (3). (This is easy;
it involves writing down the most general homo-
geneous rational fraction of the appropriate degree
and then taking its derivative.) From this we write
down the most general integral which can be eval-
uated by integration by parts. To evaluate any
particular integral by our method we fit the par-
ticular integrand to the general integrand by solv-
ing an overdetermined linear system of simulta-
neous equations. (This fitting procedure is dras-
tically simplified if we first convert the integrands
to a symmetric form. This symmetrization is de-
scribed in Secs. II and III.) If the system has a
solution then the particular integration is done by
parts, a & function appears, and the number of in-
tegration loops is lowered by one. This process
is repeated until the integral is evaluated.

Thus, whenever the integration gives a rational
number, the problem of evaluating the integral is
reduced to the problem of solving a system of
simultaneous linear equations. Since very large
linear systems of equations can be solved by com-
puter, we feel that there is a good chance of eval-
uating the eighth-order contribution to F () if it
is a rational number. Moreover, if all the coef-
ficients in (1) are rational, the method of integra-

tion by parts may even provide an iterative pro-
cedure for relating the higher coefficients to the
lower ones.

Even if the integral is not a rational number, the
method we are proposing here may still be very
useful as a kind of “Occam’s razor.” It may serve
to simplify the integrand by cutting away every-
thing which gives a rational number and thereby
reducing the integrand to its simplest possible
form.

The remainder of this paper is organized as fol-
lows. In Sec. I we consider the simple case of
one-loop integrals. In Sec. III we extend this dis-
cussion to the case of two-loop integrals. Finally,
in Sec. IV we give a quick rederivation of Rosner’s
calculation of the sixth-order contribution to F, ()
using the new integration techniques we have pro-
posed in this paper. We also compute the fourth-
order correction to the vertex function and obtain

T (p,p) =" [1 . 2—(2%) - %(%)] .

Finally, we evaluate two other two-loop integrals
that arise in the F,(a) calculation.

II. ONE-LOOP INTEGRALS

In this section we consider the general problem
of evaluating one-loop integrals of the form in (6).
This case will enable us to explore in a simple
context the symmetry structure of the integrand.

The function f(p, k) may be expressed as a homo-
geneous polynomial B of degree 2 in the three
variables p?, k%, and (p - k)%

f(p) k) =B(k2;p2, (p —k)z) .
We now rewrite (6) as

- k)Z)] = quB(kzypz: (p _k)Z)

I[B(¥?, p?,
(B, p%, (p TR

®)
The form in (8) is appropriate for studying the
symmetries of I.
A. Symmetries of the general one-loop integral

One symmetry of I becomes evident if we replace
p by =p (which does not affect the integral) and
then shift 2 by p:

d*kB(¥, p%, (p +R)?)
EY(p +R)*

B, p2, (b - B)?) = f

fd“kB(( -p)%, p%, k%)
E'(k -p)*

=I[B((p =B P%F)) . (9)
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To derive another symmetry we use

dQ,

272 =1
and
d‘k _dk
k4 = I_kl— ko
to get
- (49, B(k?, p?, (p - k)%)
=) 2 f fir Jam Bk

1}

f” dk dSadQ, B, P2, (b -k)?)
T 212 (p-h)?*

s[o”,—rgw I&]) .

But g is a dimensionless function of its argu-
ments |p| and |k|. Therefore

gllpl, &) =g p]/|k])

We can now replace the integration variable |4| by
1/|k| and replace | p| by 1/|p| without altering the
value of the integral. We obtain

1= [ g £e 10D

where the arguments of g are reversed. Thus,
another symmetry® of / is

I[B(¥, p%, (p = R)®)] =1[B(p?, K2, (p - B)®)) .  (10)
Combining the two symmetries (9) and (10) gives

I[B(Pz’ kzy (p - k)z)] =I[B(n(p2) kz) (p - k)g))] )
(11)

where I is an arbitrary permutation of three ele-
ments.

B. Evaluation of the general one-loop integral

To evaluate an integral of the form (8) we begin
by symmetrizing the integrand with respect to the
symmetry group. We do this by taking an average
over all permutations:

1[B]=¢1[};B(n,-(pz,k2, (p—k)zn] . a2

(Diagrammatically, this corresponds to averaging
over all labelings of graphs which give the correct
structure to the denominator.) For any polynomial
B this gives
- qu 4 4 4
B] ‘f 2 -k {c1[p +k* +(p - R)*]
+ Co[ DR +p%(p ~ B)* + K2 (p - R)?]}.
For I[B] to exist, the integral in (8) must be in-

frared and ultraviolet convergent. This imposes
the restriction that

C,=-2C,

Hence, after symmetrization,

B¢ [ 1 2y
xX{p* +k' +(p - B)*
=2[ p2R* +p*(p — R + K2 (b = B)*]} .
(13)

To evaluate the integral in (13) we compare it
with the integral 7 in (2), whose value is 72. Re-
writing 7 in (2) in the form (8) gives

d*kB
I= f kQ(p k)4 ’

where B =(p — k[ p? +£% - (p - k)?] .
Symmetrizing this integral, we obtain

6

B (p - k)*

Comparing this result with the formula in (12)
gives

I[B]=-6Cn? . (14)
This simple formula is the result of evaluating the
most general convergent one-loop integral.

C. Examples

To illustrate our method we evaluate two con-
vergent one-loop integrals. The first integral,

2. _1 f a'ki{p® +k* +(p - k) = 2( p?K* +p*(p = B)* +R*(p — )’ ]}

d'k
11=f B —pyt B +1)p k- 4(p- k) - 2p°k*]

arises in the fourth-order F (a) calculation and
appears explicitly in Ref. 2.

To evaluate I, we rewrite the integrand in terms
of the variables k%, p2, and (p — k)?:

B (%, p% (p = B)?)==(p — k) +3k* +3 p* +3 (p — B)*?
+z2(p = B°R =K .

Next, we symmetrize according to the formula in
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(12). The symmetrized integrand is then 0. Thus,
1,=0 .

The second integral we consider arises in the
calculation of the vertex function in momentum
space. Itis

I =[ ._qu___ [pzk"‘—(p-k)z]
2 k4(p - k)4 .
Rewriting the integrand in terms of ¥?, p2, and
(p - k) gives
Bo(k?, 0%, (b - B)*)= =1 (p = k) —3p* =5 k* +3pR?
+3(p = BP* +3(p — k)R .
Note that this integrand is already in symmetrized

form. Comparing with Eq. (13) gives C = —.
Thus, from Eq. (14), we have

I,=-6Cn%=31%/2 .

In the Appendix we show how to evaluate a more
complicated one-loop integral of the form

d'kg (p, k)
I= [kab p k)ﬁ ’

where g (p, k) has degree 10.

III. TWO-LOOP INTEGRALS

Two-loop integrals of the form in (7) may be
written as

o, o[d%k di
I(B) -f O
« B (k=p)% K2, (p =1)% 0%, (L —R)°)
(P-Rp-D"k- l)“ ’
(15)

where B is a homogeneous polynomial of degree 6.

A. Symmetries of the general two-loop integral

The symmetries of (15) are simple generaliza-
tions of the symmetries of the one-loop integral in
(8). One symmetry, the generalization of that in
(9), is obtained by replacing p by —p and shifting
kand! by p. The result is

I[B(lzy (k _p)z; kz; (p _l)2;p2, (l - k)z),]

=1[B((p = 1)%, k*; (R =p)*, 1%0%, (L = B)?)] .
(16)
The second symmetry is the generalization of
that in (10). It is a consequence of the fact that the
integral in (15) remains invariant if we integrate

over the momenta p and 2, or p and /, instead of
k and [:

/ ‘Zk ‘”F(p k1) = ff‘”’ ‘Z,kF(p,k,l)

=f /'{T” %F(p,k,l) .

This equation is obtained by separating out the
angular integrations, introducing a trivial integra-
tion over the angles of p, and performing inver-
sions and scalings. This symmetry can be visual-
ized in a simple way. If we consider B to be a
function of ordered pairs of variables as in (15),
then this symmetry implies that the integral is in-
variant under permutations of the three ordered
pairs. The symmetry in (16) implies that the in-
tegral is invariant under the reversal of any two
of the ordered pairs.

The order of the symmetry group G = {g;} for
two-loop integrals is 24. Note that the elements
of G send absolutely convergent integrals into ab-
solutely convergent integrals. (An integral is ab-
solutely convergent if it is both infrared and ultra-
violet convergent, whether or not the angular in-
tegrations are performed symmetrically.) To
totally symmetrize the integrand with respect to
G we replace the polynomial B by

24
sym(B] = % Z &B
1=1

B. Representation of a symmetrized polynomial

To represent the function B in (15) we have used
the basis p?, k%1%, (p - R)?, (p =1)?, (k ~1)? because
any element of the symmetry group G maps
monomials into monomials. The group of sym-
metries G therefore divides the set of monomials
into equivalence classes of monomials. If two
monomials, m, and m,, are in the same equiva-
lence class then sym|[m, ]| =sym[m,|. Let C be a
set of monomials formed by taking one monomial
out of each equivalence class. All symmetrized
polynomials can be formed uniquely by symmetriz-
ing a linear combination of the monomials in C.
For example, for one-loop integrals there are two
equivalence classes: {p* k%, (p — k)% and
{p%R2,p%(p — )%, K3 (p - R)?}. If we let C = {k*, p2k?}
then all symmetrized polynomials have the form
sym|c k* +c,p?R?].

The dimension of the space of symmetrized
polynomials is just the number of equivalence
classes. This number is precisely the number of
linear equations which must be solved to deter-
mine the value of the integral. The most general
polynomial B in (15) which has six arguments and
has degree 6, is a sum of 462 monomials. The
number of equivalence classes is only 32, which
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is a drastic reduction in the complexity in the sys-
tem of linear equations. Furthermore, the dimen-
sion of the space of symmetric polynomials which
give absolutely convergent integrals is 15.

Finally, the dimension of the space of symmetric
polynomials giving absolutely convergent integrals
which are rational numbers is 14.

C. Derivative identities

Only one derivative identity is required to find
all 14 convergent two-loop integrals. Although the
identity may be expressed in terms of a 4-dimen-
sional Laplacian, it is more convenient to use a
divergence; to wit, we consider the most general
vector function f*(k,1,p) and use the divergence
theorem to evaluate | d'k o, f®. If we explicitly
calculate 9, f* and symmetrize the numerator of
the resulting integrand, we can then evaluate any
convergent integral by comparing the symmetrized
integrands. This comparison consists of solving
a system of 32 simultaneous linear equations.

In the next section, we illustrate this procedure
by presenting some intermediate results in the
calculation of the third coefficient of the expansion
of F (a) in (1).

IV. CALCULATION OF F ()

In this section we outline the calculation of F (a)
to third order in a.

The Feynman rules in Euclidean momentum
space are the following:

BENDER, KEENER, AND ZIPPEL
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1. For each integration the differential element
is id*k(2m)~%. We integrate over all except one
loop.

2. For each vertex insert y*.

3. For each pair of vertices insert ie 2.

4. For each electron propagator insert 1/i§.

5. For each differentiated electron line, indi-
cated on Fig. 1 by atick mark, insert y* (see Ref.
4).

6. Insert one minus sign if the tick marks are
on different sides of the electron loop.

7. For each photon propagator insert (p3g"”
-2*pY)/p*, where A=1+0(a) is chosen to make

the vertex function I'* (p,q) finite; when p =g,
T*(p,p) takes the form (see Refs. 2 and 4)

T*(p,p) =y )_ B™.
n=0

8. We define a = e */4n.

After simplifying using Ward’s identity, the con-
tribution to F (a) to sixth order may be repre-
sented diagrammatically as in Fig. 1. The dia-
grams have been grouped together so that each
pair of parentheses represents an absolutely con-
vergent integral.

Upon taking traces we find that the integral which
represents the sixth-order contribution to F (a) is

&) [ ] wtrm bt e

where

~nN
+

G
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FIG. 1. Diagrams contributing to F(a) in sixth order.
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Ff(p, k1) = e%* +{10e® +(=2f +10c — 10a)e? + [-2f2 +(2d - 4c +3af —cd +2c? - 2ac]e}b?
+(5e* +(~10f —4d - 10c - 14a)e® + [ -3f% +(117d — 38¢ +27a)f +3d® +(9¢ +2a)d — 15¢? +3ac +9a%] e?
+{4f° +(=6d +12¢ —3a)f? +[2d* +(3a — 25¢)d -12¢* +31ac 150 | f
+9cd? +(5¢% = 3ac)d— 4c® +2ac? +2a%c} e +(4c — 2a)f* +[(4a — 8¢)d +8¢? - 10ac +2a%] f*
+[(4c = 2a)d® +(~6c? +9ac - 3a?)d - 4c* +8ac? — 4a*c] f +(3a® - 3ac)d? +(2c® - dac? +2a%)d)?
+((=8f +4d = 12c)e* + [ -2/% + (19d +12¢ +26a)f- 4d* +(6¢ - 4a)d +6c? +15ac] e®
+147°% +(=19d +24c - 2a)f? +[~21d? +(~45¢ - 27a)d +20c? - 1Tac - 26a®] f
+26cd? +(=6c? - 9ac)d +4c? +13ac? — 15a%c} e?
+{-21*+(2d - 2a)f® +[4d? + (18¢c +8a)d +40c? - 42ac +4a®] f?
+[=4d® +(33¢ = Ta)d® +(17a® - 2¢®)d +24c® - T0ac? +33a’c +8a®] f
+(=20c = 4a)d® +(=20c? = 5ac)d? +(=2c® - 8ac? +9a?c)d +2¢* +2ac® - 4a’c? e +(2a - 8¢)f*
+[(24c —6a)d —24c?* +20ac - 2a*] f* +[(6a - 24c)d® +(46c? — T0ac +19a®)d - 8¢® +18ac? — 10a’c] 12
+[ (8¢ = 2a)d® +(~48¢? +T9ac - 17a?%)d® +(4c® - 46ac? +55a% - 13a®)d +8¢* - 16ac® +8a’c?] f
+(20c? = 1Tac - 6a?)d® +(-2c® +15ac? - 15a% +2a®)d? +(-2c* +2ac® +2a%c? - 2a°c)d)b +(8¢ - 8d)fe*
+[(8d - 8¢)f? +(4d® +16ad - 4c® - 16ac)f - 4ad® +8acd - 4ac?]e®
+{(12¢c - 2d)f* +[22d® + (—14c - 12a)d +16¢® - Bac] f?
+[-19ad® +(-8¢c? +21ac - 10a%)d +8 ¢* - 18ac? +20a’c] f
+4ad® +(a® - 14ac)d® + (16ac? - 15a%c)d - 6ac® +6a’c?} e?
+1{(2d - 8¢)f * + [-6d? + (20c — 2a)d — 40c? +8ac] 3
+[4d® + (3a — 58¢)d® +50c? - 26ac +6a%)d — 40c® +62ac?] f?
+[(24c +a)a® +(=32¢* +49ac - 9a®)d? +(16¢° - 50ac? +Ta’c +2a%)d - 8c* +36ac® — 18a°c? — 8a’c| f
+2acd® +(-6ac? +11a% +8a%)d? + (6ac® - 5a’c® —a’c)d - 2ac*® +2a’c% e +4cf*
+[(~16¢ —2a)d +16¢* - 8ac] f* + | (20c +8a)d® + (~48c* +48ac +4a®)d +16¢® - 24ac? +4a’c] f?
+[(~8¢c = 10a)d® +(60c? — 42ac — 29a%)d® +(-32c> +104ac® - 44a’c - 2a°)d - 8ac® +8a’c?| f?
+[4ad* + (=24c® - 10ac +26a%)d® +(28¢® — 62ac? — 20a%c +26a°)d? + (40ac® - 52ac? +12a°c)d - 4c?

+8ac*—4a’c®f +(4dac +3a?)d* + (12a%c - 6ac?)d® + (-11a?c? +16a’c - 5a*)d? + (2ac* - 4a’c® +2a°c?)d .

(17)
In (17) we have used the notation
a=k:, b=p? c=13 d=(p-1)? e=(k-1)? f=(k-p)?.
After symmetrization, the function f(p, k,1) in (17) simplifies to
sym| f(p, k,1)] =2 sym[10e%h* - 20aedb* — 4afb* +4adb* +13e°b> —90ae?b® +43afeb® +5Tadeb® +32aceb®
+28a%b® +8a%b® +8acdb® — 16adb® +44ade®? +101ace?»? + 25a% % ® - 118a’feb?
—-88acdeb? - 18a%deb? — 44a’ceb® + 15a%f%b? +48acdfb® +4a’cfb®] . (18)
Matching the symmetrized version of f in (18) to where
e meticed netrand iened o ST (0, =87 900
tegration. The resulting one-loop integral is +[112(p - k)® = 528K%(p + k)? +19TKp - k] p?

o\’ d*kg(p, k) 19
~\27, 24m2ESp2(p - B)T (19) +112R2%(p - k)% .
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To evaluate the integral in (19) we symmetrize
its integrand and match it to the integrand in (13).
The final result is

_ % <%>3 , (20)

which agrees with Rosner’s calculation in Refs. 1
and 2.

It is worthwhile noting that the diagrams in Fig.
1 represent the divergent part of the (gauge-in-
variant) vacuum polarization tensor Huv only in the
finite gauge; that is, only when X in the photon
propagator is chosen to be

.|

1= () o 21)

For other choices of A, the diagrams in Fig. 1
represent the divergent part of a gauge-dependent
quantity, which Rosner refers to as 1) [see Eq.
(24) in Ref. 2]. As a further test of the computa-
tional techniques proposed here we have calculated
the sixth-order contribution to the divergent part
of H,(f’,), for arbitrary A. The result is a quadratic
polynomial in A whose three coefficients are all
two-loop integrals.® All three integrals give
rational numbers:

3
o
sixth-order contribution to coefficient of logarithmic divergence of 1%) =(;A%=3x +1) <—2;> . (22)

Note that if we take x =1 (finite gauge) then (22)
reduces to (20).

The result in (22) is useful because part of the
contribution to F;() in eighth order comes from
evaluating the diagrams in Fig. 1, with X given in
(21) and identifying the terms proportional to
(a/2m)%. If we do this, we obtain

3 <_a_ !
4 \ 21) °
As a final test of our calculational procedures
we have evaluated the two-loop integral which
gives the fourth-order correction to the vertex

function T'*(p,p). We find that it too is a rational
number®:

T (p,p) = [1+3—‘<§T> Z<%>+] (23)

In general, we have found that the trace calcula-
tions required to produce a two-loop integrand
like that in (17) requires about one minute of com-
puter time. Symmetrizing the integrand to give a
formula like that in (18) also requires about one
minute. Solving the system of simultaneous equa-
tions and performing the first loop integration
takes an additional two seconds of computer time.
The second loop integration takes less than one
second.
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r
APPENDIX
To further illustrate our integration technique,

we show how to evaluate one-loop integrals of the
form

d'kg(p, k)
I= ./pzkﬁ T (A1)
where g(p, k) has degree 10.

After symmetrization g will have the form

sym(g] =sym|C k" +C,k%* + C k%"
+qu6p2(p - k)2 +Csk4.174(.b - k)ZJ )

where sym represents averaging over all six
permutations of &%, p2, (p - k).

Imposing the requirement that the integral (A1)

be absolutely convergent reduces the number of
constants to two:

=sym[C|k" - 6%%* +4k%* +6R%D(p - k)?]
ColRP%(p = k)* = 2k (p - R)?]] .
(A2)

When C, is zero, one can simplify the integral
by dividing both numerator and denominator by
PPR(p - k)?; the resulting integral,

d*kC,sym|k* - 2p°R?|
1= [

sym|[g]

==21%C, , (A3)

is evaluated using (14).
When C, and C, are arbitrary we need a new de-
rivative identity:
Ak (pk=p¥
PR T (p =R

The integral is easily evaluated using integration
by parts.

Performing the indicated differentiation in (A4)
and symmetrizing the integrand gives

=472 | (A4)
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dnte f d'k sym|—4R%° +24K%% — 16K%* — 21K%p(p — k)? + 18k%*(p — k)]

2p%k°(p - k)°

A glance at (A2) shows that for this integrand C,=-2 and C,=-21/2. Thus, recalling (A3), we have

d‘k
7wt (g ei-zo

(A5)
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