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F,(a) is defined as the contribution of the one-fermion-loop diagrams to the divergent part of the photon
propagator in massless quantum electrodynamics. To sixth order, the perturbation expansion of F,(a) has
rational coefficients: F,(a) = (2/3)(a/2~) + (a/2n. )' —(1/4)(a/2n. )' +.". It is not known whether the next
term in this series is a rational number; however, we propose a new method, which uses integration by parts,
for evaluating Feynman integrals which give rational numbers. Using this method we easily rederive the first
three terms in the series for F,(a) and three other two-loop integrals, including the fourth-order correction to
the vertex function I "(p,p). We believe that our new integration techniques are powerful enough to evaluate
the fourth term in the series for F,(a) if it is a rational number.

I. INTRODUCTION

The function F,( )ois defined as the coefficient
of the logarithmic divergence in the one-fermion-
loop diagrams which contribute to the photon prop-
agator in massless quantum electrodynamics. To
date only the first three terms in the perturbation
series for F,(n) are known:

2 ~ (y
2 1F (n) = — —+1 ————+ ~ ~ ~ .

3 2m 2v 4 2m

The sixth-order contribution to F,(o.) was pub-
lished by Rosner" in 1966. Rosner's result is re-
markable because, although the transcendental
number g(3) appears a, t intermediate stages of the
calculation, it drops out at the end giving the
rational number &.

The fact that the first three coefficients in the
series (1) are rational ha. s led to theoretical spec-
ulation that the other coefficients might be rational
too, possibly as a profound consequence of the
scale or conformal invariance of the underlying
theory. The most direct way to resolve this ques-
tion is, of course, to calculate the eighth-order
contribution to F,(o.) and to see if the fourth coef-
ficient in (1) is rational. Unfortunately, the
eighth-order calculation involves doing formidable
three-loop Feynman integrals for which until now
no systematic procedure has existed.

In this paper we present a new, simple, and ap-
parently very general technique for evaluating the
Feynman integrals that arise in the F,(n) calcula-
tion. TIzzs (echnzque is specifz'cally desi gned to
evaluate integrals which are rational nwnzbers.
Thus, if the fourth terna in the series I'l) has a
rational coefficient, the technique tee are Propos-

k (P —k)
(2)

Note that the integrand depends on a 4-momentum
P but that the integral I is a number independent of
P.

To evaluate (2) we note that

P ~ k P k
u4 -4u' ' (3)

where is the 4-dimensional Laplacian. If we
substitute (3) into (2) and integrate by parts we ob-
tain

p k 1
-4k (P —k)' (4)

Now we use the identity

to reduce the integral in (4) to a triviality:

4 2 4I= d'k, v'0'(P —k) =v' .

The appearance of a & function in the integrand of
(4) is a consequence of the masslessness of the
theory.

Eva. luating the integral in (2) in this way depends
crucially on finding the derivative identity in (3).
One may wonder whether or not such nice identi-

ing here should be sufficient to conzpute it.
Our new integration technique uses integration

by parts. To illustrate our computational approach
we show how to evaluate in Euclidean space a
simple one-loop integral which is both infrared and
ultraviolet convergent:
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ties also exist for other integrals. So far, it ap-
pears that they always exist as 1,ong as the integral
is a rational number, regardless of how many loop
integrations are involved. In particular, we will
show' that a// convergent one-loop integrals which
have the form

f(P, k)
k'(p —k)' (6)

where f has degree 12, and show that there are
only 15 independent integrals not related to one

another by symmetry. Of these 15, 14 may be
evaluated using derivative identities and integra-
tion by parts (twice in succession), while the re-
lllaillillg oils gives ( (3) ~ As lt till'Ils out» the lllte-

grand Rosner used to compute the third term in

the series for E,(n) lies in the space composed of

the 14 integrals which may be evaluated by integra-
tion by parts. Thus, the number may be efficiently
computed without any intermediate stages in which

g(3) appears
Our method for evaluating integrals is in princi-

ple trivial. First we enumerate the most general
derivative identity like that in (3). (This is easy;
it involves writing down the most general homo-

geneous rational fraction of the appropriate degree
and then taking its derivative. ) From this we write
down the most general integral which can be eval-
uated by integration by parts. To evaluate any

particular integral by our method we fit the par-
ticular integrand to the general integrand by solv-
ing an overdetermined linear system of simulta-
lleous elluations. (This fitting procedure is dras-
tically simplified if we first convert the integrands
to a symmetric form. This symmetr ization is de-
scribed in Secs. II and III.) If the system has a
solution then the particular integration is done by
parts, a 6 function appears, and the number of in-
tegration loops is low'ered by one. This process
is repeated until the integral is evaluated.

Thus, whenever the integration gives a rational
number, the problem of evaluating the integral is
reduced to the problem of solving a system of
simultaneous linear equations. Since very large
linear systems of equations can be solved by com-
puter, we fee1. that there is a good chance of eval-
uating the eighth-order contribution to E (a) Iif it
is a xational number. Moreover, if all the coef-
ficients in (1) are rational, the method of integra-

where f has degree 4, may be evaluated using de-
rivative identities and integration by parts.

Furthermore, we enumerate a// two-loop inte-
grals of the form

d'kd'I f(P, k, f)
k'I'(P —k)'(P —I)'(k —I)'

tion by parts may even provide an iterative pro-
cedure for relating the higher coefficients to the
lower ones.

Even if the integral is not a rational number, the
method we are proposing here may still be very
useful as a kind of "Occam's razor. " It may serve
to simplify the integrand by cutting away every-
thing which gives a rational number and thereby
reducing the integrand to its simplest possible
form.

The remainder of this paper is organized as fol-
lows. In Sec. II we consider the simple case of
one-loop integrals. In Sec. III we extend this dis-
cussion to the case of two-loop integrals. Finally,
in Sec. IV we give a quick rederivation of Rosner's
calculation of the sixth-order contribution to E,(cI)

using the new integration techniques we have pro-
posed in this paper. %e also compute the fourth-
order correction to the vertex function and obtain

Finally, we evaluate two other two-loop integrals
that arise in the E,(n) calculation.

II. ONE-LOOP INTEGRALS

I(B(ka pa (p k)a))
& kB(k', P» (P -k) )

k'(p —k)'

The form in (8) is appropriate for studying the
symmetries of I.

A. Symmetries of the general one-loop integral

One symmetry of I becomes evident if we replace
P by -P (which does not affect the integral) and
then shift k by P:

fjB(k', P', (P —k)')] = d'kB(k', P', (P +k)')
k'(P +k)'

d'kB((k -P)', P', k')
k'(k —p)'

=f[~((P-k)', P', k')) . (8)

In this section we consider the general problem
of evaluating one-loop integrals of the form in (6).
This case will enable us to explore in a simple
context the symmetry structure of the integrand.

The function f(p, k) may be expressed as a homo-
geneous polynomial 8 of degree 2 in the three
variables P', k', and (P —k)':

f(p, k) =B(k*,p', (P -k)') .
We now rewrite (6) as



1574 BENDER, KEENER, AND ZIPPEL 15

To derive another symmetry we use

dQg
2m

-'

dk
IkI

B. Evaluation of the general one-loop integral

To evaluate an integral of the form (8) we begin
by symmetrizing the integrand with respect to the
symmetry group. We do this by taking an average
over all permutations:

6

l[B]=~l ZB(fl;(P', k', {P-k)')) . (»)

dQ&
" dk B(k', p', (p —k)')

2»', IkI
'

(p —k)'

" dk dQg, dA~ B(k',P, (P -k)»)
IkI 2»2 (p —k)'

Ikl
g(lpl, Ikl)

But g is a dimensionless function of its argu-
~~~t~ Ipl and Ikl. Therefore

k'(I p I, IkI) =g(I p I/Ikl)

We can now replace the integration variable IkI by
1/I kl and replace I Pl by 1/IP I without altering the
value of the integral. We obtain

(Diagrammatically, this corresponds to averaging
over all labelings of graphs which give the correct
structure to the denominator. ) For any polynomial
J3 this gives

~I&I f,,=t, , «, [u' ~~"u -~)']

+ C, [P k +P (P —k)2+k~(P —k)2])

For 1[B] to exist, the integral in (8) must be in-
frared and ultraviolet convergent. This imposes
the restriction that

Hence, after symmetrization,

k g(lkl, lpl),

where the arguments of g are reversed. Thus,
another symmetry' of I is

I[B(k',p', (p —k)')] =I[B(p', k', {p —k)')]. (10)

Combining the two symmetries (9) and (10) gives

I[B(p', k', (p —k)')] =I[BR(p', k', (p —k)'))]

(11)
where II is an arbitrary permutation of three ele-
ments.

&& (P +k +(P —k)

-2 [p'k'+p'(p —k)'+ k'(p —k)']] .

To evaluate the integral in (13) we compare it
with the integral I in (2), whose value is»'. Re-
writing I in (2) in the form (8) gives

d'kB
k'(P —k)'

where B =(p —k)'[p'+k' —(p —k)'] .
Symmetrizing this integral we obtain

d'k jP'+k'+ (P —k)'- 2 [P'k'+P'(P —k)'+ k'(P —k)']]
6 k'(P —k)'

Comparing this result with the formula in (12)
gives

I[B]=-8C»' . (14)

C. Examples

To illustrate our method we evaluate two con-
vergent one-loop integxals. The first integral,

This simple formula is the result of evaluating the
most general convergent one-loop integral.

4

I, = 3p +A'p ~ k —4P A —2pk

arises in the fourth-order E,(n) calculation and
appears explicitly in Ref. 2.

To evaluate I, we rewrite the integrand in terms
of the variables O', P', and (P —k)'.

B,(k', P', (P —k)') = -{P—k)'+-,'k'+-,'P'+-,'(P —k)'P'

+~ (p —k)'k' -p'k' .
Next, we symmetrize according to the formula in
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(12). The symmetrized integrand is then 0. Thus, d4u d'l
, I'(p, k, l) = d'k

E(p, k, l)

The second integral we consider arises in the
calculation of the vertex function in momentum
space. It is

pRjP p p 2

Rewriting the integrand in terms of O', P', and
(p —k)' gives

&,(k', p', (p —k)') = =' (p —k)' --'p' --'k'+2p'k'

-'(p —k)'p"-'(p —k)'k' .
Note that this integrand is already in symmetrized
form. Comparing with Eq. (13) gives C = =, .
Thus, from Eq. (14), we have

f, =-6cv'=3m'/2 .
In the Appendix we show how to evaluate a more

complicated one-loop integral of the form

d'kg (p, k)
p'k'(p —k)'

where g (p, k) has degree 10.

III. TWO-LOOP INTEGRALS

Two-loop integrals of the form in (7) may be
written as

„I3«', (k P)'; k', (P -I)';-P', (I -k)')
(p - k)'(p - I)'(k -I)'

where 8 is a homogeneous polynomial of degree 6.

A. Symmetries of the general two-loop integral

The symmetries of (15) are simple generaliza-
tions of the symmetries of the one-loop integral in
(8). One symmetry, the generalization of that in

(9), is obtained by replacing p by -p and shifting
4 and L byP. The result is

f[B«', (k -p)'; k', (p - I)';p', (l —k)')J

=f[&((P-I)', k" (k-P)' I';P', (~-k)')J .
(16)

The second symmetry is the generalization of
that in (10). It is a consequence of the fact that the
integral in (15) remains invariant if we integrate
over the momentaP and k, or P and I,, instead of
0 andL:

F(P, k, l)

This equation is obtained by separating out the
angular integrations, introducing a trivial integra-
tion over the angles of P, and performing inver-
sions and scalings. This symmetry can be visual-
ized in a simple way. If we consider B to be a
function of ordered pairs of variables as in (15),
then this symmetry implies that the integral is in-
variant under permutations of the three ordered
pairs. The symmetry in (16) implies that the in-
tegral is invariant under the reversal of any two
of the ordered pairs.

The order of the symmetry group C' = Jg;J for
two-loop integrals is 24. Note that the elements
of C' send absolutely convergent integrals into ab-
solutely convergent integrals. (An integral is ab-
solutely convergent if it is both infrared and ultra-
violet convergent, whether or not the angular in-
tegrations are performed symmetrically. ) To
totally symmetrize the integrand with respect to
6 we replace the polynomial B by

Sv j&l = „ga & .

B. Representation of a symmetrized polynomial

To represent the function 8 in (15) we have used
the basis P', k', l', (P —k)', (P —l)', (k —I)' because
any element of the symmetry group 6 maps
monomials into monomials. The group of sym-
metries 6 therefore divides the set of monomials
into equivalence classes of monomia, ls. If two
monomials, m, and m„are in the same equiva-
lence class then sym[m, ] =sym[rn, J. I.et C be a
set of monomials formed by taking one monomial
out of each equivalence class. All symmetrized
polynomials can be formed uniquely by symmetriz-
ing a linear. combination of the monomials in C.
For example, for one-loop integrals there are two
equivalence classes: $P', k', (P —k)'j and
Itp'k', p'(p —k)', k'(p —k)'} If we let C. = Jk', p'O'J
then all symmetrized polynomials have the form
sym[c, k'+c,P'k'].

The dimension of the space of symmetrized
polynomials is just the number of equivalence
classes. This number is precisely the number of
linear equations which must be solved to deter-
mine the value of the integral. The most general
polynomial 8 in (15) which has six arguments and
has degree 6, is a sum of 462 monomials. The
number of equivalence classes is only 32, which
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is a drastic reduction in the complexity in the sys-
tem of linear equations. Furthermore, the dimen-
sion of the spa.ce of symmetric polynomials which
give absolutely convergent integrals is 15.
Finally, the dimension of the space of symmetric
polynomials giving absolutely convergent integrals
which are rational numbers is 14.

C. Derivative identities

Only one derivative identity is required to find
all 14 convergent two-loop integrals. Although the
identity may be expressed in terms of a 4-dimen-
sional Laplacian, it is more convenient to use a
divergence; to wit, we consider the most general
vector function f (k, l, P) and use the divergence
theorem to evaluate J d'ks f . If we explicitly
calculate a„f and symmetrize the numerator of
the resulting integrand, we can then evaluate any
convergent integral by comparing the symmetrized
integrands. This comparison consists of solving
a system of 32 simultaneous linear equations.

In the next section, we illustrate this procedure
by presenting some intermediate results in the
calculation of the third coefficient of the expansion
of E,(a) in (1).

IV. CALCULATION OF Ft (~)

In this section we outline the calculation of E,(u)
to third order in cz.

The Feynman rules in Euclidean momentum
space are the following:

1. For each integration the differential element
is i d' k(2w) '. We integrate over all except one
loop.

2. For ea,ch vertex insert y .
3. For each pair of vertices insert ie,'.
4. For each electron propaga. tor insert I/ip'
5. For each differentiated electron line, indi-

cated on Fig. 1 by atickmark, insert y (see Ref.
4).

6. Insert one minus sign if the tick marks are
on different sides of the electron loop.

7. For each photon propagator insert (P'g""
—Ap"p")/p', where A. = I +0(n) is chosen to make
the vertex function I'" (p, q) finite; when p =q,
F"(p, p) takes the form (see Refs. 2 and 4)

r (pp)=, g
n=o

8. We define o = e,'/4v.
After simplifying using Ward's identity, the con-

tribution to E,(a) to sixth order may be repre-
sented diagrammatically as in Fig. 1. The dia-
grams have been grouped together so that each
pair of parentheses represents an absolutely con-
vergent integral.

Upon taking traces we find that the integral which
represents the sixth-order contribution to E,(o) is

d'kd'l f(p, k, l)
2v 48''k'l'(p —k)'(p —l}'(k —l)'

where

F~ (Q)= 2 2
768 7r

+2

+2 +4

8 + 4
(2)

+ 2

FIG. 1. Diagrams contributing to E, (~) in sixth order.



NE% APPROACH TO THE CALCULATION OF F) (n) IN. . .

f(p, k, &) = e 'b ' + ( 10e' + (-2f + 10c —10a)e' + [-Q' + (2d - 4c +3af-cd + 2c
' —2ac] eJ b '

+(5e'+(-10f —4d —10c —14a)e'+ [-3f'+(17d -38c +27a)f+Bd'+(Qc +2a)d —15c'+3ac +Qa'] e'

[4f3 ( Bd+12c-3g)f2y[2d2+(3g —25c)d-12c +31ac-15a ]f
+Bed'+(5c' —3ac)d-4c'+2ac'+2a'c]e+(4c —2a)f'+ [(4a -Bc)d +Bc' —10gc +2a']f'
+ [(4c —2a)d'+(-6c'+9gc —3a )d -4c'+Sac —4a c]f+(3a —3ac)d' +(2 c'-4ac' +2 a~ c)d)b

+((-Bf+4d —12c)e'+ [-2f'+ (19d +12c +26a)f 4d'-+ (6c -4a)d +6c'+15ac] e'

+ [4f'+(-19d +24c —2a)f '+ [-21d' +(-45c —2Vg)d +20c' —17ac —26a'] f
+26cd'+(-6c' —9ac)d +4c'+13ac' —15a'cje'

+ [-2f'+(2d —2a)f'+ [4d'+(18c +Ba)d +40c' —42ac +4a']f'
+ [-4d'+(33c —Va)d'+(17a' —2c')d +24c' —70ac'+33a'c +Ba']f
+ (-20c —4a)d'+ (-20c' —Sac)d'+ (-2c' —Bac'+9a'c)d +2c'+2gc' -4a'c']e + (2a —Bc)f'

+ [(24c -6a)d —24c'+20ac —2a'] f'+ [(6a —24c)d'+(46c' —70ac +19a')d -Sc'+18ac' —10a'c]f'
+ [(Bc —2a)d' +(-48c2+79ac —17a')dl +(4c3 —46ac' +55g c —13a )d +Bc —16ac +Ba c )f
+(20c —17ac —Ga3)d'+(-2c'+15ac —15a'c +2a )d +(-2c +2ac'+2a'c' —2a'c)d)b +(Sc —Sd)fe

+ [(Bd —Sc)f' + (4d' +16ad —4c' —16ac)f—4ad' +Bacd —4ac'] e'

+ $(12c —2d)f' + [22d'+ (-14c —12a)d +16c' —Bacjf'

+ [-19ad' + (-Sc' +2lac —10a )d +8 c —18ac' +20a c]f
+4ad +(a —14ac)d +(16ac —15a c)d — Ba'c+ B'ac) 'e

+ {(2d—Bc)f' + [-6d' + (20c —2a)d —40c' +Sac]f'
+[4d'+(3a —58c)d'+50c' —26ac +6a')d —40c'+62ac'] f'
+ [(24c +a)d' +(-32c'+49ac —Qa')d'+ (16c' —50ac'+ Va'c +2a')d —Bc'+36ac' —18a'c' —Ba'c Jf
+2acd3+(-6ac2+lla c+Ba )d +(6ac —5a c -a c)d -2ac +2a c ]e +4cf

+ [(-16c—2a)d +16c' —Bac]f'+ [(20c +Ba)d'+ (-48c'+48ac +4a')d +16c' —24ac +4a'c] f'
+ [(-Bc—10a)d' + (60c' —42ac —29a')d'+ (-32c'+ 104ac' —44a'c —2a')d —Sac'+ Sa'c' Jf'
+ [4ad' w (-24c' —10ac +26a')d'+(28c' —62ac —20a'c +26a')d'+(40ac —52a'c +12a'c)d —4c'

+Sac' 4a'c']f +(4a-c +3a')d'+(12a'c —6ac')d'+(-lla'c'+16a'c —5a')d'+ (2ac'-4a'c'+2a'c')d .
(17)

In (17) we have used the nota, tion

a-=k', b=P', c-=I', d-=(P I)', e-=(k--i)', f= (k P)'--
After symmetrization, the function f(P, k, I) in (17) simplifies to

sym[ f(p, k, I)] =2 sym[10e'b' —20aeb' —4afb'+4adb'+13e'b' —90ae'b'+43afeb'+5Vadeb'+32aceb'

+28a'eb'+Ba fb +Sacdb' —16a'db'+44ade'b +10lace'b'+25a'e b' —118a feb

88acdeb' —-78a'deb' - 44a'ceb' + 15a'f 'b' +48acdfb ' +4g'cf b ']

d'kg(P, k)
2v 24m'k'p'(p —k)' (19)

Matching the symmetrized version of f in (1S) to
the symmetrized integrand obtained from a deriva-
tive identity allovrs us to perform the one-loop in-
tegration. The resulting one-loop integral is

g(P k) =(197k'P k —90k')P'

+ [112(p ~ k) —528k (p ~ k) +19Vk p ~ k] p

+112k (p ~ k)' .
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To evaluate the integral in (19) we symmetrize
its integrand and match it to the integrand in (13).
The final result is

Q

4 2m
(20)

which agrees with Hosner's calculation in Refs. 1

and 2.
It is worthwhile noting that the diagrams in Fig.

1 represent the divergent part of the (gauge-in-
variant) vacuum polarization tensor II&, only in the
finite gauge; that is, only when A. in the photon
propagator is chosen to be

For other choices of A, the diagrams in Fig. 1

represent the divergent part of a gauge-dependent
quantity, which Bosner refers to as ll~~) [see Eq.
(24) in Ref. 2]. As a further test of the computa-
tional techniques proposed here we have calculated
the sixth-order contribution to the divergent part
of II~~, for arbitrary A. . The resu1t is a quadratic
polynomial in A. whose three coefficients are all
two-loop integrals. ' All three integrals give
rational numbers:

tl-o ce t 'o t'o to coeff'cte tof loge 'to 'co'verge ce of lief =(-,'t' ——,'t ~ l) ( ) . (22)

Note that if we take ~ =1 (finite gauge) then (22)
reduces to (20).

The result in (22) is useful because part of the
contribution to F,( )oin eighth order comes from
evaluating the diagrams in Fig. 1, with ~ given in
(21) and identifying the terms proportional to
(a/2v)'. If we do this, we obtain

3
4 2m

As a final test of our calculational procedures
we have evaluated the two-loop integral which
gives the fourth-order correction to the vertex
function I')'(p, p). We find that it too is a rational
number'.

ct 3 Qr" (P, P) =y" I+ —————+ ~ ~ . (22)
4 2m 8 2v

In general, we have found that the trace calcula-
tions required to produce a two-loop integrand
like that in (17) requires about one minute of com-
puter time. Symmetrizing the integra, nd to give a
formula like that in (18) also requires about one
minute. Solving the system of simultaneous equa, -
tions and performing the first loop integration
takes an additional two seconds of computer time.
The second loop integration takes less than one
second.
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APPENDIX

To further illustrate our integration technique,
we show how to evaluate one-loop integrals of the
form

d'kg(P, k)
p'k'(p —k)'

where g(P, k) has degree 10.
After symmetrization g will have the form

sym[g] = sym[Ctk" +C,k'p'+C, k'p'

(Al)

When C, is zero, one can simplify the integral
by dividing both numerator and denominator by
P'k'(P —k)'; the resulting integral,

d'k C., sym[k' —2p'k']
k'(p —k)'

is evaluated using (14).
When C, and C, are arbitrary we need a new de-

rivative identity:

d'k (p k —p')'
(P -k)'

The integral is easily evaluated using integra. tion
by parts.

Performing the indicated differentiation in (A4)
and symmetrizing the integrand gives

+C,k'P '(P —k) ' +C,k'P '(P —k) '],
where sym represents averaging over all six
permutations of k', p-, (p —k)'.

Imposing the requirement tha. t the integral (Al)
be absolutely convergent reduces the number of
constants to two:

sym [g] = sym[C, [k" —Gk'p'+ 4k'p' +6k'p'(p —k)']

+C, [k'p'(p —k)' - 2k'p'(p —k)']] .

(A2)



15 NEW APPROACH TO THE CALCULATION OF F1(a) IN 1579

4m' =
d'k syrnl 4-k~0 +24kBP ~ —16k6P» —21k6P ~(P —k) ~ + 18k'(P —k) ~1

2p'k (p —k)'

A glance at (A2) shows that for this integrand C, = -2 and C, = -21/2. Thus, recalling (A3), we have

d kg(p k)

P k(P-k) -''-"" . (A5)
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