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We prove that if perturbation theory is reliable and if the propagator of the field satisfies the Kallen-Lehmann

representation then asymptotic freedom is equivalent to having Z3(g i0) = 1 in the g$' model. One may have

Z3(g)@0 and nonasymptotic freedoms but then Z3{g i0) ~ 1. More generally nonasymptotic freedom implies

f4f any model that Z3( g ~ 0) & 1. The case P(g) =0 ivve have proposed before and in which perturbation theory

breaks down is also examined and is shown to allow Z3ig~O) = 1 when Z,ig}+0 and to give an anomalous-

dimension function of the coupling constant when Z,(g) +0.

I. INTRODUCTION

It has been claimed' that if the wave-function
renormalization constant Z, (g) of a field is a
finite nonidentically vanishing function of the cou-
pling constant then the field is necessarily asymp-
totically free. Since it is known that ordinary non-
gauge theories are not asymptotically free, the
previous result mould imply that for these models
Z, (g) —= 0. We shall discuss this point in detail
here. In fact, we shall prove that, in the gQ' mod-
el in four space-time dimensions, if (1) one has
the Kallen-Lehmann representation with positive
weight function for the propagator, (2) g inverti-
bility is satisfied and consequently one has re-
normalization-group (HG) representations, and (3)
perturbation theory is reliable, then the necessary
and sufficient condition for asymptotic freedom is
Z,(g-0)=1. If Zs(g-0)(I then the model is not
asymptotically free and one has two possibilities:
(a) Z, (g) $0 is a finite function of g or (b) Z, (g) =-0

for all g. These results are general for any mod-
el in which p (g) starts at second order. For mod-
els in which p (g) starts at third order one has
Z, (g-0) = 0 in all cases, and one can again have
nonasymptotic freedom with Z, (g) $0.

In Sec. II we treat the m = 0 case and in Sec. III
the massive case. In the m +0 case we considex
an explicit model of a situation in which perturba-
tion theory is not reliable, and which can lead to
Z,(g-0) = 1 without asymptotic freedom when Z, (g)
$0 and to an anomalous dimension depending on
the coupling constant when Z, (g) -=0.

I' '"'(p, ; 8,gs) be the 8-normalized vertex func-
tions of the model. %'e define the functions
z&(P'/8, gs) in the following way:

The norMalization conditions are

where 82&0 is the spacelike normalization point.
We also introduce the function z,' by

p2 zo(ps/8s g )s
8ssge =

zo(f, s/8s

and the RG invariant r) (P /8s, gs) corresPonding
to the bound group G(Z,Zs ), defined by

o J Ae
8sl~gs zo(ps/8s g )

'

The RG equations for these functions„which re-
sult from the change of variable

are'

II. m = 0 CASE

A. Some useful formulas
i=1,3,5,

I.et us recall some useful formulas. We shall
follow Ref. 2. If the postulate of g invertibility is
satisfied we can write the RG equations. I.et

or ) 8 egs
8

8 gs
8 8 8 8 z, (i)n/8", g,)
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8, 8'
yi(ge) Q g2/B«2 Bg I B«2 «ge'8 —zo

age gee

(7)
with the derivatives e(B/Be) taken keeping ge, fixed.
We have the relation PQ(ge) =gey,'(ge) =g,[2y', (g, )
—y, (ge)], and a Perturbation-theory calculation
gives

representation resulting from the postulates of
causality and unitarity, the function z, (x,ge),
which is normalized to 1 for x = 1, is decreasing
in the interval 1 —x & ~, and positive. We have
then 0&z,(x,ge) —1 and Bz', (x,ge)/Bx & 0 for finite
x, so that we conclude from (ll) that

ye(ge)~ 0 ge&g ge ~0.

p Q(g ) =f) g '+ b ) 0

yl(g)=c. ge'+'", cQ» ~

(8)

For ge =g„the function y', (ge) may vanish.
We define now the wave-function renormalization

constant Z', (ge) by

The fact that c,& 0 is a consequence of unitarity,
as we shall see, and is model independent.

The group invariant vQ(x, g) obeys the differential
equation

Z', (g, ) = limz', (x,g,), gee 0,

and Z, (0) as the limit of Z', (ge) when ge-D, i.e. ,

(18)

which can be integrated using the initial condition
vQ{l,ge) =ge to obtain the usual Gell-Mann-Low
(GML) eiluatlon

vo(xegg)
lnx= 2 (10)

On the othe~ hand, the functions z,'. (x,g) obey the
differential equations

x ' ' ' = --,'z', (x,g, )y',(v'(x, ge)).

,. P' z,'(P'/e', ge)
i B«2 «g)g zQ('g«2/82 g ) — g

ga"ga = o, 2 2s (8'2/S, g~)

(12)

which is implied by the invertibility of the change
of parameter ge-ge, .

Let us caD g„the asymptotic value of the group
invariant (invariant charge), i.e. ,

v'(x, g, )„„„=g„. (13)

By definition one says a model is asymptotically
free if g„=0.

One has [see (8)] that pQ(0)=yQ(0)=0. The func-
tion)3 (v) is positive near the origin, and for
v & 0 either it has a zero at a finite value g„,
pe(g„)= 0, or it does not. In the first case one
has from (1D) that for ge) 0 and small (precisely,
ge&g„)vQ(x, ge)„„=g„=g„,and in the second case
one has vQ(x, ge)„=g„=~. For ge& 0 (Ref. 3) and
small, EII. (10)implies v'(x, g, )

— -„-g„=0,i.e.,
asymptotic freedom.

Consider now EII. (11) for 2= 3. The 2-point
vertex function 1"'"=4 ', where 4 is the propaga-
tor of the field, is related to z,'(x, g, ) by (1). Be-
cause & satisfies the Kallen-Lehmann spectral

We remark that all the equations we have written
are consequences of the identity

»om the properties of z', (x,g, ) implied by the
Kallen-Lehmann representation we must have
o —Z2(ge) —1.

Let us integrate (11) for i = 3, using the initial
condition z', (1,ge) = 1; one obtains

*:)*g.)=«m --*' J «2 («—g )) '. , .
1

(17)

B. Connection between the function Z3~(g) and asymptotic
freedom

Let us study now the connection between the
function Z', (g) and asymptotic freedom (AF). In
(17) we make the change of variable f- v = vQ(f, g),
invertible because of {9), and we obtain

«« Ig«ge) yQ(v)"
z', (x,g,) = exp — dv P'( )v-'

TRklIlg tile llm1t x ~ 111 (18) Rlld uslllg (13) RIld

(14) one has

{18)

Z', (0) = exp — dv,' & 1.y', (v)
JB'(v)

(20)

g~ yQ(v)Z', (g,) = exp — dv P'( )v'

Consider now the case ge & 0. Then one has g„=0,
i.e. , asymptotic freedom, and Z'2(ge)&0. More-
over (19) shows that Z', (D) = l.

Let us study now the case g~&0. Then g„40
and we are in the situation of nonasymptotic free-
dom. Two cases are possible: (a) y,'(g„)4 0, in
which case Z', (ge) =—0, (b) yQ(ge) = 0 in such a way
that the integral in (17) converges [this means
that y,'(vQ(t, ge)) &O((lnt) ')-0 for f -~], in which
case Z'2(ge)+0 will be a finite function of ge. But
in case (b) we shall IIot have Z,(ge-0) = 1, as one
is tempted to believe, since f dvyQg,e(v)/p (v) iQs

strictly positive and cannot vanish. We have
rather
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This result just comes from the fact that in Eq.
(17), which implies Eq. (19), the limits x-~ and

g&-0 cannot be intex changed. This is clear since
the integrand in (17) depends on v (0t, g()&, for which

0= Iim lim vo(t, g) & limlim vo(t, ge)=g„, (21)
o Eg 0 gtjt Pf a)

where g„is independent of g~. An alternative
definition of Z', at g~ = 0 by

Z', (0) = lim lim z', (x,g,)
x» co gg» 0

would give 20(0)= 1, as can be seen from (17),
since v'(t, g,)~,„,=0 and y,'(0}=0. But then the
function Z,'(g()) wouldbediscontinuous atg() =0.

i,et us remark that Z', (0) & 1 is consistent with
the Kallen-Lehmann representation Z, ' = 1
+ J,

"p(s)ds. Take as an example p(s) = og, 'm'/
(ge's+I')', then p-0 when g~-0 at fixed s, but

g, '- l+n.
%'e see then that in the case of nonasymptotic

freedom Z', (0) & 1. This result is in agreement
with the remarks of SyIQanzik ln Ref. 3, stating
that if a solution exists for the model with g~& 0
(it can be argued on physical grounds that the solu-
tion should not exist') it should be considered as
a different mode and not as some kind of continua-
tion of the solution for g~&0. These discontinui-
ties are still more striking if one looks at the
vertex renormalization constant Z', (g())
=z', (x,ge) ~„„.For g(&&0, finite g, and Z', (g, )
& 0, one easily sees that Z', (g,)-~ as g, ' for
ge-0, while for g() &0 one has Z)0(g~) -=0.

Let us comment now on the discussion of Ref.
1. The basic equation there ie obtained from (6)
for t = 3 by taking the limit x=p'/8'-~. One ob-
tains, using (15) [and using 8(e/8 8)z,(p'/8', ge)-0 because of the Kallen-Lehmann representa-
tion],

y'. (g.)%(ge) p'(g~)-, ' = o

if Zo(g~)c0 [and just 0=0 if Zo(g()}=—0], Integrating
(22) one has

Z', (g,)= Z', (0) exp dv

which is just Eq. (19), but there the initial condi-
tion is explicitly exhibited. The argument in Ref.
1 can be stated roughly in the following way: As-
sume Zo(0)= 1 in (23), then for g~& 0, as one
knows that y', (v) & 0 and Z', (g,) & 1, one concludes
that p'(v) must be negative near v=0, i.e. , asymp-
totic freedom. This proof is cex'tainly correct;
what is misleading is to relate Z', (g,) & 0 to the
property of AF, since Eq. (23) is consistent with
nonasymptotic freedom.

The discussion we have done applies without

changes to any one-charge model in which the
series for p'(g, ) starts at second order. This is
because the basic equation we use is (19), which
is model independent, but we need there y03(v)/

P'(v) to be integrable at the origin v= 0, and this
is the case if

p '(g~) = b.g&'+ O(g~'), y!(g~) = c.g&'+ O(g&').

The other one-charge models are such that po(ge)
starts at third order {for instance g()(t&y, (t&(t),

e,T(&y„(t&A', etc, ), and y', (g~) at second order. Put
p'(v) = bv'yO(v'), y', (v) = cv'+O(v'), with c& 0 be-
cause of the Kallen-Lehmann representation. The
integrand of Eq. (19) is now singular near v=0,
where it behaves as

y', (v)
p '(v) bv

= —[1+O(v)]. (24)

For b& 0 one has nonasymptotic freedom, and for
b & 0 one has AF. We ccnsider now AF (b& 0).
One has from (19) that Zo(g(&} =—0 if y', (g„)+ 0 and
Z', (g()) &t 0 if y', (g„)= 0. In this second case we ob-
tain from (22) for small g~, when integrating be-
tween & and g~,

c /2b

&l((;,)=&l(c)(,'. (25)

and we see that Z, (g8-0) =0. As is well known,
this is the situation in finite @ED in the QML case
[3e„&~such that p'(e„)=0],since there one has

y,'(e,)/p'(e, )= 2/eg so that y,'(e„)=0, and from (22)
one obtains

C. Asymptotic behavior of general vertex

functions I ~ "~{p;;O, g~)

Let us look now briefly at the asymptotic be-
havior of general vertex functions I"")(p,; 8,g~).
From the identity

We consider now AF (b& 0). One has from (9) that
v'(x, g()}„„„g=0, more precisely, vo(x, ge)' van-
ishes as —(b inx) '. I,et us calculate now Z', (g, )
from (17), taking there the limit x —~. We re-
place in the integrand y', (v) = cv', which is certainly
allowed for small ge since v'(I, g~) =g~ and v'(x, g~)-0 when x increases. Using vo(x, ge)'
= 0(- (b lnx) ') we obtain from (17) that Z', (g, )
= z', (x,g()) ~„„vanishesas (Inx)'~". We see then
that when P'(g()} starts at third order one can have
Z', (g(&) $0 without AF, and that in this case Z3O(g(&
—0) = 0. Finally, we conclude then that nonasymp-
totic freedom is consistent with Zo(g~) $0, and
that nonasymptotic freedom implies always Z', (g()
-0)& 1.
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gt2 tf

r"")(p,. ;e,g,)=z; 8 g. r""'(p,.;e,g, .),

and using (17) for zo2(X2, go) one has

(27)

(26)

with g, , given by {5), one obtains (putting 12= 8 "/
82)

r(2n)(yP . 8 g ) y4 2' 0(y2 g )nr(2lr)(P . 8 VO(y2 g ))

"dt
2 1(*p),=p+ —, '(l,p), p*—,, , (',p)), (»)

1

where the functions (P,.(1/x, v) are related by

The 8-normalized vertex functions
I""'(P;;8', m2, g, ) can be defined by

g2I""'(p- 8' »(2 g )—= d g I""'(p. »(2,g) l

n dtI (2")(Xp,. ; e,g, ) = 14 '"exp ——,—yo(vo{f,g,))

2n)~(p 8 VO()(2 g))

The dominant term for A.2-~ will be
[v'(&,g&),=.g.]

(28)

We also introduce the functions

p' I' d,.(p2/»(2, g)
8' ' 8' '

d, (8'/»(', g)
d (82 /fft 2,g )

i=1,3, 5,

(33)

~4-2nL'(p-,'p&(n ))r(2n)(p . 8 g ) (29)

Consider nonasymptotic freedom. In the case
Z2(g()) = 0 one has the anomalous dimension y,{g„)
&0, but when Z', (g,)p'0 one has y,'(g„)=0and one
obtains canonical scaling in X' '". Of course, for
Green s functions containing composite operators
8, , canonical behavior is not obtained since in
general y,' (g„)& 0. Consider now AF. Here g„

L

=0 and consequently y', (g„)=y',(g„)=0,and one

has canonical scaling for all Green's functions

[up to logarithms when po(gn) starts at order
three, since then z, (x2, go) l, = (Lx2)'~22]

III. MASSIVE CASE

A. Our formalism

We introduce here our formalism following Ref.
2. Let r(2")(p(;»(2,g) be the renormalized vertex
functions, and define the dimensionless functions
d, (x,g) and d, (x,g) by

normalized at p'= 82, i.e. , z,.(l, m2/8'lgo)= 1. Two
coupling constants ge and ge are related by

2'
& (el 2/82»(2/82 g )

m' (9 2

82 l 82 )g() R 2 lg d (el2/ 2
)

~

(34)

The quantity g(p, = v(8 "/8', »('/8', g()) is the group
invariant (invariant charge). For 82=»(2 the 8
normalized theory becomes the initial renormal-
ized theory,

r' '{p(' 8' »(' g2) I =- = r""'(p»(' g)

and for 82-~ the 8-normalized vertex functions
go into the bare vertex functions (only mass re-
normalized).

We have the identities (i = 1,3, 5)

r"'(p, p:»', p)=(p* '».*)4,(, ,p).
HZ Qg I PZ

The normalization conditions are d, (1,g) = d, (l,g)
= 1. We also introduce the functions d, (x,g)
=d, (x,g)'/d, (x,g) and v„(x,g) ~g/d, (x,g). If g in-
vertibility is satisfied for the change of variable
gn=g/d, (82/m2, g) -=v„(8'/I',g), 82~ p»2, then we
can write the HG representations for the G(Z,Z, ')
group' in the form

with

2 82
1 2 f 2 PA j

"dt 1
d, (x,g) = exp — —(t), —,v„(t,g)

i=1,3, 5

(30) g2 8
g rn z.

PB

Bing

yn'
2r 82 &g
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vs(x, g)'F,&l/x, vs(x, g))
svs(x, g)sg

y; —„,g d;(x, g) t} —,-,
Sd, (x,g)

Qg

sd, (x,g)
ex

=gg;(*,g&g; —,,(g,g&) (gg&

Because of the Kali&. -Lehmann representation for
the propagator we have d, (x,g) ~ I, sd, /Sx & 0,
x —1, so that we conclude from (30) that

(1/x)(I&,(1/x, vs(x, g) }&0, x —1. We define Z, (g)
as ln the fl'l, = 0 case by

Z.(g) =-d, (x,g) I. ... g«,
and Z,(0)=Z,(g-0). Two cases are possible now;
either

g. —,g, (g, g&)
—0((( »', g- —", (40)

and then Z, (g) & 1 is a finite function of g because
tile integral 111 (30) converges, 01'

where all derivatives are taken keeping g~= v„(8'/
II(,g) coils'tRII't. Oils 11Rs f} =g}gg=g(2'yg —'/I). Fol'
8'- —~ Eqs. (32) are the usual Callan-Symanzik
(CS) equations, and the functions l}(II(g/8', g) and
'r,,(m'/8', g), when perturbatively expanded and for
8'- —~, become the usual CS functions p (g) and

~,(g},

f}(g)= fIO g'+' ' '

(36}
y, (g)=c,g + ", e,&0,

wllel'e f&~ Rlld co RI'e the 8RIlle Rs ill (6} (tile seFles
becomes different at higher orders). From the
definition of the functions I} and y; we obtain (x
= 8'/In' )

1 xsvs(x, g)/sx
P x ' Svs(x, g)/sg

0;.{I/x),= 0;.(0) & ".
%e define the bare coupling constant g, vrhich

is the effective coupling at high energy, by

(43}

Asymptotic freedom is defined as the case in
which fI~ =0.

%e shall distinguish in what follows between two
posslbIIltles: (1) Perturbation tlleoFy 18 FellRMe
in the sense that the functions Q,.{0,v) are well
represented by the series

0;(0,v) = g 0;„(0)v",
l

(44)

which exist because (t,„(0}& ~, and (2) perturbation
theory is not reliable.

8, Behavior of Z3( g) in relation to asymptotic freedom

with the GML function defined by

P, (x) = v F,(0, v) =v'Q g„(0)v".

The asumptotic invariant v„"(x,g)=g+0(g') is
obtained in perturbation theory by dropping fx om
the perturbation series of vs(x, g) all the terms
that vanish when x- —~. Integrating {46)between
—1 and x & —1 one obtains [putting q(g) = vtg(- l,g)
=g+ o(g')]

I et us study now the behavior of Z, (g) in rela-
tion to asymptotic freedom. %e start with case
(I) where the analysis is the same as in the m = 0
case. We want to study the limit gs= vs(t, g)~ I„
FI'QIII (31) we ol&'tR111

»s(xi g) =,(g,g&'g,, ;, (*,g&)

The function vtg(x, g) will have the same asymp-
totic behavor as vs" (x,g) solution of the GMI equa-
tion

g. —., g,(,g&)) O(((gg»* (41) In)xf =
~g(& s t)

(g& &.(v)
'

and Z, (g) = 0 because the integral in (30) diverges.
The pex'turbative properties of the function

(t&„(l/x,v) are as follows. Expand

which is the QML equation. This equation replaces
Eq. (10) of the m = 0 case and can be analyzed in
the same vray. One has

8 = Q 8 ~

(42)

P(g)=2g'[0 (0)+gN (o)+ "]
4,{v)= v'F, (0, v) = v'[(t, (0) + v &I (0) + "~ ].

(49)

E —e= $ —U"

where g„(1/x)= p, „,I(1,/x). One proves2 that

No te that p (g) + 2&, (g) [they are equal up to third
order as can be seen in (46)]. From (49) and (36)
we see that fI, = 2$,(0)& 0. We can now repeat the
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Z, (g) =Z, (0) exp dv y, (v)

p v
(51)

which replaces Eq. (23). The analysis is done in
the same way and we conclude again that asymp-
totic freedom is equivalent to Z, (0) = 1. In the case
of nonasymptotic freedom one can have Z, (g) & 0
with Z, (0) & 1, and the anomalous dimension of the
field which ls here Qn(0, gs) will vamsh because of
(40). The study of models in which P (g) starts at
third order is done again by the same techniques
and leads us to the same conclusions as in the
m = 0 situation.

We consider now case (2) in which perturbation
theory is not reliable in the sense that the func-
tions P;(O, v) are not represented by the series
(44). Among the variety of cases (see Ref. 5) one
is particularly appealing; it is the situation in
which gs is a finite function gs(g) of g. We have
given in Ref. 2 an explicit example that realizes
this case reproducing all the known information
from perturbation theory. Let us give some gen-
eral features of this case. From (37) we see that

p (g) =—0 because Bvs(x, g)/Bg~ „=Bgs/Bga 0 and
xBvs/Bx -0 [we assume only that xBvRIBx is not
an oscillating function so that vs(x, g) -gs & ~,
x- —~, implies xBv„/Bx-0, a condition that is
verified in the example given in Ref. 2]. Note that
(37) implies that if gs is finite, then p (g) can be
different from zero only if Bgs/Bg= 0, i.e. , if gs
is independent of g. Coming back to our example
we see that E,{1/x,v) =„0for fixed v belonging
to some domain g). The points v (=-X3 are the set
of values that g~ can take. But from the relation

I, 1 L 1 1I' —v = —(II) — v = —2Q — v -(t) — v'x'' v 'x' v 'x' ' x'
(52)

we see that we must have

2P, —,v =(1), —,v, v fixed, v(=g) ~

(53)

Now, from (30) for t = 3 we find that either the
integral converges if P,(1/t, vs{t,g)) ~ O((lnt} ')

analysis of Eq. (10) to conclude that for g& 0 one
has asymptotic freedom, while for g& 0 one has
gs=gs if $.(gs)=0~ gs &~~ orgs = ~ if tt'+(g&) has
no finite zero.

Let us take now the limit x- —~ of (38}for i= 3.
We obtain (xBd, /Bx -0)

BZ3
y (g)Z (g}-p(g) Bg'=0

if Z, (g)o0, and 0=0 if Z, (g)-=0. Integrating (50)
one has

and d, (x,g) „.„=„Z,(g)n-' 0 or the integral diverges
and Z, (g) =—0. In the first case, using (43) and
(53) we see that P,(1/x, gs)-0, P, (1/x, gs)- 0,
x- —~, g~ c~, so that neither of these two func-
tions if of the GML type [P,(0,vs(~})= 0 does not
fix a value of vR(~); see Ref. 5]. Moreover, from
(50) we see that y, (g)Z, (g) =-0 [p {g)=-0 here] so
that y, (g) = 0. One can see by studying explicit
models of this kind of situation' that one may now
have Z, (0) = 1 without asymptotic freedom. The
second case, Z, (g) =-0, will give an anomalous-
dimension function of the coupling constant as we
shall see below.

C. Asymptotic behavior in the massive case

Let us study now asymptotic behavior in the
massive case. From (32) we obtain the identity

82

82
I &2n&(P . 8& 2 m2 g ) (54)

Putting 1'= 8 "/8' and after some manipulations
(for details see Ref. 7) we obtain the identity

F(2n)P~ . 8n m2 g )

=X' '"exp -n

a consequence only of g invertibility. From (34)
we see that v(t, m'/8, ge),„.= gs ~ On the other
hand, the exponential in (55) is just equal to
z, (g', m'/8', g, )"; this is because we have used to
obtain (52) the RG representation

P 1R
g2~ g2 y~e

""'dt t'm' m'
=em„— —, 0;ll ~, , t. . .z)), (56l

(g2t & & g2 & 8

which reduces to (30) for 8'=m'. We see then
from (33) that Zor Z, (g) 4 0 the exponential tends to
[Z,(g)/d, (8'/m', g)]". The vertex function on the
right-hand side of (52) goes into a zero-mass-
limit vertex function evaluated at the value g~ of
the coupling when A. 2- ~, so that the P; must be
Euclidean nonexceptional momentum for which we
know the m2-0 limit to exist for the 8-normalized
theory in perturbation theory.

Let us consider case (1). When g~=0 (AF) one
has Z, (g) & 0 [when p (g) starts at second order]
and (52) implies
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~4-2n s(g)
Z (2n&(p . 82 0 0)

d, (8'/m', g)
(57)

$,(O,gs) WO, and the dominant term is
yz-2n((+4~(o, ts &]F(m)(p . 82 0 g. ) (59)

When p (g) starts at third order, one has canonical
scaling up to logarithms as we have explained for
the m=0 models.

In the case of nonasymptotic freedom with Z,{g)
40 the result is

2n s(g)
Z (2e)(p, 82 0 )

d, (8 '/m', g)

that is still canonical scaling provided the zero-
mass vertex functions exist for g=gs W 0 (same
remark for Green's functions of composite opera-
tors as in the m=0 ease). Finally, when Z, (g)
-=0 the field obtains the anomalous dimension

We consider now case (2) and, more specifical-
ly, the situation we have explained when g~ is a
finite function gs (g). If Z, (g) O 0 we shall obtain
(5'I). But when Z, (g) =—0 an interesting possibility
arises, since one obtains again {55)but now the
anomalous dimension $,(O,gs(g))& 0 becomes a
function of the coupling constant g.

I.et us finally remark that we have constantly
used in our discussion the BG representations;
i.e. , we have assumed the validity of g invertibil-
ity, a postulate that may be false, ' as it is demon-
strated to happen in an explicit model of field
theory9 where the violation of the HG representa-
tions is explicitly exhibited.

~Laboratoire associe au Centre National de la Recherche
Scientifique.

g Postal address: institute for Theoretical Physics,
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