
PHYSICAL REVIE% D VOLUME 15, WUNIBE8, 6

Perturbation theory at large order. II. Role of the vacuum instability
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%'e extend our previous study of large orders of perturbation series for nonrelativistic quantum mechanics and
boson field theories to more complicated situations. It is shown that when perturbation theory is performed
around an unstable vacuum and does not reveal any pathology at low orders the existence of real

pseudoparticles, which are responsible for the tunneling to a more stable vacuum, also implies the divergence
and the non-Borel-summability of the series. Conversely, large orders of perturbations around a stable vacuum
are dominated by complex solutions to Euclidean field equations. They quantitatively characterize its behavior
and indicate the Horel summability of the series. Thus the corresponding Green's runctions are unambiguously
determined by their perturbation series.

I. INTRODUCTION

In a, recent work Lipatov' has shown that the
nature of the perturbation series at large orders
for massless renormalizable scalar field theories
may be characterized by classical solutions to
Euclidean field equations of the pseudoparticle
type. This picture also applies to nonrelativistic
quantum mechanics' for which it allows one to
recover the results of Bender and %u. "" In this
article we want to describe the role of pseudo-
particles for large orders of perturbation series
in more complex situations, in connection with the
stability of the vacuum and with the possibility of
spontaneous symmetry breaking.

Let us first summarize the discussion" for
simple theories, such as, for instance, anhar-
monic oscillators with a Hamiltonian

0= pp + 2X +gX

or scalar massless field theories with (Euclidean)
action

I= d "x[-,'(s, p)2+gal'"+ counterterms) .
For unphysical (i.e., negative) values of the cou-
pling constant there exists a classical solution to
the field equations with a finite value of the Eu-
clidean action. This implies that if we consider
some physical quantity E(g) such as an energy
level, a Green's function, ete. , and if we write its
perturbation expansion as

F(g) =+Fr@

then for K large I'~ behaves as

1
Er — [K(A' —&)j!arK~c &+ 0 ~

E large

This is obtained by looking at a saddle point in

combined field and coupling-constant space. The
important point is that the negative value of g at
the saddle point implies that the parameter g of
Eq. (4) is also negative. Therefore Eq. (4) indi-
cates that the perturbation series is Borel-sum-
mable, and in particular that the function F(g) is
unambiguously determined from the knowledge of
the I'~'s.

In some circumstances pseudoparticles may be
present for rea1. physical values of the parameters.
This occurs if one expands around a minimum of
the potential which does not correspond to the true
vacuum of the theory. An example of such a situ-
ation is provided by any potential problem of quan-
tum mechanics whenever one expands around a
relative minimum. It is also known to occur in
non-Abelian gauge theories. "' It will be shown
that these real pseudoparticles imply that the
theory is not Borel-summable. In other words,
for physical values of the coupling constant, either
one is expanding right on a cut in the complex g
plane or one has to add to the perturbation series
terms which are exponentially small with g.

The situation is similar for spontaneous sym-
metry breaking. If one takes for instance the Q4

theory (without internal symmetry except P - —P)
in Euclidean one-dimensional space, i.e. , quan-
tum mechanics with an imaginary time, there is
a real pseudoparticle which leads to the non-Borel-
summability of the perturbation series constructed
around one of the vacuums of broken symmetry.
However, above one dimension there are only com-
plex pseudoparticles for this theory and the per-
turbation series becomes Borel-summable. One
should of course remember that for this theory
spontaneous symmetry breaking cannot exist in
one dimension, but does exist above one dimension.
Therefore real pseudoparticles are responsible for
the fact that perturbation theory becomes meaning-
less if one is expanding around the wrong vacuum,
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and complex pseudoparticles are responsible for
its Borel-summability when the vacuum is stable.
These features will be illustrated below on simple
models taken from potential theory or boson field
theories.

The influence of Borel or non-Borel-summabil-
ity may be illustrated by a simple example. If one
considers the series

1C~ ) gE

the Borel sum

tQ ( 1 )»(tg)»

is well defined for g&0, and therefore if we know

a priori that the function which is expanded is
Borel-summable, e this function is unambiguously
determined. This feature would persist if, in-
stead of (-1)» in Eg. (5), one had phase oscilla-
tions such as cosKH (8a0). The Borel transform
would then have a singularity for complex $ in-
stead of real negative t.

I.et us now examine the situation in which the
861168 18

Kt gE

and expand it in powers of g. It will be assumed
that x =0 is a minimum of the potential and that
around zero it is normalized according to

V(x) = -,' x'+ 0(x') .
The difference (1/g')V(gx)--, x' is treated as a
perturbation. Furthermore, it is assumed that the
potential is analytic in x in some neighborhood of
the real axis. %6 shall focus our attention on the
perturbation series for the ground-state energy
generated through the limit

I Tre ~H

&g- g= lim ——ln—
P Tre"

ln which

(10)

case the asymptotic orders are dominated by the
highest power of x in V. However, if one per-
forms instead an expansion in powers of 8, all
the terms of the potential contribute to the lead-
ing behavior. This semiclassical expansion is of
interest since it corxesponds to the loop expansion
in field theory and since it arises naturally when
symmetries are discussed. In order to generate
this expansion we shaQ write the potential in the
form

1—,v(gx),

The Borel transform, formally f,
"e 'dt/(1- tg),

does not exist for positive real g. Thus, either
the function of g which is being expanded has in-
deed a cut along the positive real axis and the ex-
pansion is meaningless, or the singularity is can-
celed by terms which have all their derivatives
vanishing at g= 0. In the latter case one has thus
to modify the previous integral representation of
the function. There is a large arbitrariness; one
can consider for instance the function

-d)e" „, P{t);) „„)1- tg P(1)

in which P(x) is an arbitrary polynomial. There-
fore if the theory is known to exist for real posi-
tive g, one cannot extract the function out of its
expansion without further information which wouM
fix the ambiguities.

II. PERTURBATION SERIES IN NONRELATIVISTIC
qUANTUM MECHANICS

H =-.' p'+ —,v(gx}, (11a)

P2+ x2 (11b)

The ratio of traces of Eq. (10) is given by the
Feynman-Kac formula

q~-=N dx exp -8 x T
x(O} =x(8}

(12)

in which 8 is the Euclidean action

a ix)= —.'x'(~)+ ~V(gx{r)) d~,
0

and the normalizing factor 8 is such that the ratio
(12) reduces to one for g= 0.

This representation may be used to generate an
expansion in powers of g' of the ground-state en-
ergy

Until now the behavior at large orders of per-
turbation series has been characterized for poly-
nomial potentials V(x) of the form'

V(x) = ~(x'"+ ax'"-'+ ~ ~ ~ ),
in which X is the expansion parametex. In this

which we shall try to characterize at large ordexs.
As explained in Ref. 2, the method consists in
looking for the saddle points in the combined vari-
ables x(~) and g of the integral giving the Kth order
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of the ratio(,„,) =N dg
[ ] 2. ( 2)N+1

x exp[-Q(x(T), g)) .
(15)

Let us assume that we have identified one leading
saddle point (LSP), x, (T), g„corresponding to
a finite action (13) in the large-le limit. This
saddle point is given by the equations

N(T) = VN(T)N(T),

which we can always find since, from transla-
tional invariance, we know that y„(T) satisfies
(22), and perform the change of variables

Z(T)=f(T)+N(T) det(e)
' N(e) 1

(22)

(23)

We now define a solution N(T) of the differential
equation

1
x, =—V'(g~, ),

C

(16a)
This reduces the problem to that of a harmonic
oscillator with a time-independent frequency.
Thus, one is led to

RK 2
dT V(g, x, )

~c Rc o

1 B

dT x,V'(g~, ),
gc o

(16b)

which in the variables y, (T) =g,x, (T) and g, reads

dg' 1
„/, exp ~e{y,) .

y, = V'(y, ), (17a) (24)

Kg, = dT[zy, + V(y, )] ~

0
(17b)

This shows, as expected, that g,' is of order
1/K and justifies the use of the steepest-
descent method. The leading contribution from
this saddle point comes simply from the value
of the integrand at the saddle point and from the
harmonic fluctuations around this classical solu-
tion. We shall first integrate over the y(t) fluc-
tuations and then evaluate the integral over g.

Let E be the energy of the y(T) trajectory of
period I3, such that

—,'y, '= v(y, )+ E.
'The corresponding value of the action is

(18)

Nb. )= . -NN ~ 2 f &N/2fN &(N)l/'"),
gc

(19)

in which y and y, are the turning points where the
velocity vanishes. (See Fig. 1.)

For the calculation of the fluctuations around
this classical trajectory we shall follow the "shift-
ing method. "' The contribution of these fluctua-
tions amounts to calculating the functional integral

For large P the energy goes exponentially to zero
as

~+ 1 1
y) P 4 [2V( ))]1/2

(25)

and the resulting ground-state energy is

where for K large, collecting the contribution of
all leading saddle points, we obtain

r(K+ —,')
E// 2 2&N/2 [ft( )]/) i/~ y+

LSP C

1 1x exp dy
[ ( )), /~

—— . (26)

This formula and the determination of the leading
saddle points will be illustrated by the discussion
of two simple examples.

dZ r exp' —, dv Z'+ V" 7 Z'
z(o)=S(B)=o 2g

in which

g2y
V"(T) -=

8

(20)

(21) FIG. 1. The (real) turning points for an (unstable)
minimum.



PERTURBATION THEORY AT LARGE ORDER. II. ROLE OF. . .

(a) As the first example, we have

1'(v) = '-y' —ry'+-'y'

(i) For
I y I

& 1 we are not expanding around the
absolute minimum of V and there is a real tra-
jectory leaving the origin, reflecting at Y, and
coming back to the origin:

y, = r —(y' —1)'",

r(K+ ,'}-
(y' —1) ' '

K large
(29)

which exhibits, since from (28) 8 is positive for
IyI &1, the non-Borel-summability of the series.

(ii) For ly I
~1 the origin is the absolute mini-

mum of V and the previous pseudoparticle becomes
complex. Actually there are now two complex-
conjugate saddle points which both contribute to
the leading order.

The result for each saddle point is obtained by
analytic continuation of the previous one and gives

Z'(ff+ 2)fmfy (Eel/2)(1 2) 1/22

K large

(30)

l~
3~

v

I /Fly [2+(

= -»(l(y'-1)'"(r -(r'-1)'"1}
(28)

&(y, ) = -3+y —2y(r —1) ln
2 2 1 y+1

y —1'
Therefore, applying Eq. (26) we obtain

in which ft has been defined by (28).
In the limit y = 0 this reduces to the result pre-

viously derived, "
1/2

Z, = (-)" „,3'. r(ff+-.').
K large

Thus one sees that, apart from the exceptional
values

I
y I

= 1 for which two saddle points coincide,
this solves the problem. At the exception values
y=+1, one has a triple saddle point for one degree
of freedom, and in order to integrate over the
corresponding fluctuations one has to take into
account the third-order terms in the expansion
around the saddle point. However, this integration
will not yield any K-dependent phase factor; thus
the series will not be Borel-summable for

I y
I

= 1,
which is to be related to the impossibility of spon-
taneously breaking the symmetry x-1 -x in one
dime ns ion.

(b) As the second example, we have

l'(y) = —.y' -yy'+ 2y',

y.'= r - (r' -1)"',
1 1

ye exp dy )2~( )12/2
—— = 2 (y —1)

8(y.) = 2y - 4 (r -1)»1 l 2 y+1
y —1

(i) y&1. The pseudoparticle is real and

Z'g'i 2)21/2(y2 1) 2/4@ E 1/21
m"' 2 j

which is not Borel-summable.

(ii} -1 &y &1. The pseudoparticle is complex and

21/2v 3/2(1 2) 2/4Z. (K 1)

7t 2 1+y 1 1 2 1+yx»e —() -y ) y () -y )1» .y —.(1 —y) 1» -')1-y

which reduces in the known case" y=0 to the eorreet result, and, thanks to the phase factor, is indeed
Borel-summable with compl, ex singularities of the Borel transform.

(iii) y&-1. The pseudoparticle is still complex, but the action at the saddle point is real and negative.
Then

~1/4 - -K
E = (—) "2 1 (1 — ——'y —'(y —1)y» —y ——y(y —)))»

For large negative values of y this formula coincides with the result' of a pure X' anharmonicity. For
arbitrary y &-1 the leading singu1. arity of the Borel transform lies on the negative rea1. axis. For y= ~1 we
are again in a situation of a triple saddle point as before. However, for y =+1, a situation in which we
have degenerate classical minima, the series will remain non-Borel-summable. For y= -1 the action at
the saddle point remains real negative; the series is Borel-summable, but the result is notgivenby the
same formula. In particular, the correct result for EK involves a different power of K.
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(c) Quantum mechanics with more than one degree of freedom. For a Hamiltonian
n

H= Q pp + —,V(gx),

the same analysis may be repeated. The calculation of the fluctuations around the saddle point can be done
following the lines of Dashen, Hasslacher, and Neveu. ' We shall give here simply the explicit result for
an O(n) —invariant potential normalized to

V(~x~) =-,'(x)'+O(~x~')

for ~x~ small. The only trajectories which go back to the origin at large time are of the form

x (t) = u r(t),
in which r(t) is the solution of the n = 1 problem.

The ground-state energy

Ec=g t"' Er

behaves asymptotically for large K as

Er = Q, ~
F(K+-,'n)[Q(y, )] " ' y, "exp n

K lar&e Lsp ( /2

"+ 1 1
y [2V( )]1/2 t

in which the notations follow those of Eq. (26).
This formula allows one to recover the result

previously derived for the potential V(x) = (x )",
if one notes that there are N —1 saddle points
giving the same contribution.

III. NATURE OF THE PERTURBATION SERIES
IN FIELD THEORY

The discussion of the preceding section may be
repeated here. The existence of real pseudopar-
ticles would lead necessarily to serious difficul-
ties for the perturbation series, whereas complex
pseudoparticles would indicate Borel -summability.
We shall restrict the discussion to boson theo-
ries.

A. Scalar fields

The Euclidean action is

tf(7&) = d x aS, P M g(4)S 48+ V(g@)

G " '(x„,x ) = [do]0(x, ) ' ' ' 0(x )

~ exp(-&{0 g'B
dg 1

A saddle point has to be of the form

(33)

In two dimensions a minimum of 8 should cor-
respond to a vanishing B. In the stable case this
implies V(P'(x)}=0 for any x. This may only oc-
cur whenever V(P) has a set of degenerate va-
cuums continuously connected; an example of
such a situation is provided by a potential in-
variant under a continuous symmetry group. This
picture is consistent with the known result of the
absence of a phase transition with ordering in two
dimensions for a continuous symmetry. '

Let us study now the quantitative consequences
of this analysis and outline the calculation of the
large-order behavior of perturbation series. For
an N-point fu~ ction, at order 2K if X is even (the
same would apply at order 2K+ 1 for odd X),

(31)

in which M is a positive-definite matrix. Let us
assume that one has found a real classical solu-
tion P'(x). We now calculate' 8{/'(Xx) j,

e {y'(~x)j= ~'-'A+ ~-'a. (32)

The coefficient A is positive, and B is also posi-
tive whenever one is looking for a stable mini-
mum. The stationarity of 8 {p'(Xx] for A. = 1 thus
eliminates any real solution for d&2 since (d
—2)A+ dB remains positive.

(34)

in which the $; (t = 1, 2, . . . , q) are arbitrary con-
stants reflecting the possible invariances of the
field equations (translations, dilatation, internal
symmetries, etc. ). We have to integrate over the
fluctuations of ~t} around ft},. 'The collective motions
corresponding to $ changes have to be quantized, "
and this gives a Jacobian

1 8F, ~F,
det ~
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'The remaining integrations over the Q fluctuations
give a g-independent contribution and the integral
over g may now be evaluated. This yields for each
saddle point

0+ Cg xyp o ~ ~ p xpf I + QX+
LSP

&& (8(F,(x},g= i/) ' '"~"'~", (25)

in which the C„are K independent.

8. Scalar and gauge fields

Fox the case of pure gauge field, whenever the
gauge group contains SU(2) as a. subgroup, it has
been shown' that there are real pseudoparticles
in four dimensions. Therefore a perturbation series
constructed around one given vacuum A„=0 is
not Borel-summable. 'This is consistent with the
fact that pseudoparticles are responsible for the
tunneling between different vacuums. s This fea-
ture persists if the gauge field is coupled to scalar
Q' if Q'=0 is a stable nondegenerate minimum of
the potential V(P).

Indeed let us consider the d-dimensional Eu-
clidean action

&(4,&} J&' [.&:8",+*=(~,4. --g&:T',0,)' &(0)],

and assume that one has found a pseudoparticle
A'(x), Q'(x). We then consider'

ft Q '(Zx), uL'(Xx)} = X'-" d'x(-,'F')

+ X'-' d'x ,'(a„y)'-.

+ X
' d'x V(Q) .

'The stationarity at X= 1 implies

(4-s)f a', {',F*)-
+ (2 -d) d "x-,'(D„y)' -d d'x V(y) =0,

and this eliminates all real. solutions for d &4

whenever /=0 is a stable minimum of V. In four
dimensions the solution would have to fulfill the
constraints

D„Q =0,
V(4') = o,

in addition to the field equations for A„. This is
only possible whenever A'„(x) is not a pure gauge
(otherwise the total action would vanish), and

shows in particular that for @ED of scalar par-
ticles no real pseudoparticles may exist and pre-
sumably the perturbation series is Borel-sum-
mable. In the non-Abelian case if $ = 0 is the only
stable minimum of V, then the solution is P'=0,
with the pure gauge field solution of Ref. 4. Be-
low four dimensions this argument does not pre-
vent the existence of real pseudoparticles.

C. Higgs-Kibble Lagrangian' '

lf V(@) has a stable minimum away from the

origin, a constant Q is no longer allowed. If we

assumefor simplicitythat the gauge group is
SU(2) and that P is a vector, its length should be
fixed at the minimum of V. 'The integrability
conditions" of the system

D„p'= 0

imply that for any x,

Z', „(x)@'.(x) = 0,
in which I'„„is the gauge field solution of B,ef. 4.
If we make explicit the corresponding conditions
on Q', it follows immediately that there is no solu-
tion. 'Therefore the vacuum is, as expected,
stabilized by the addition of Higgs scalars and the
perturbation series becomes presumably Borel-
summable.
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