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Perturbation theory at large order. I. The $ interaction
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A new method for calculating the large orders of perturbation theory in quantum field theories has been

discussed recently by Lipatov. %'e show that the same method applied to anharmonic oscillators in quantum

mechanics allows one to rederive and generalize results previously obtained by Bender and %'u. %'e have also

verified and generalized I ipatov's results to the case of an internal O(n) symmetry. These results show the

divergence of the %'ilson-Fisher a expansion and indicate its Sorel summability which is used for critical

exponents. Similarly, the Callan-Symanzik functions for the P theory in three dimensions are characterized.

I. INTRODUCTION

Several years ago Bender and Wu, ' in a series
of papers, showed that perturbation theory for
one-dimensiona. l quantum mechanics with a poly-
nomial potential is divergent, and they were able
to calculate several terms which characterize
the behavior of the coefficients of the perturbation
series at very high order. Recently, it has been
shown by Lipatov' that. the same results hold for
renormalizable scalar quantum field theories.
He made the beautiful observation that the large
orders of perturbation theory may be described
by a classical structure with small quantum fluc-
tuations, but around a pseudoparticle solution of
the classical field equations. Such results are not

only of conceptual but also of practical impor-
tance. They give a definite way of extracting bet-
ter results from low-order perturbation theory.
The first obvious applications concern critical
phenomena in three dimensions, or the Wilson-
Fisher' & expansion, but it is clear that there are
many different directions in which this could be
useful~

The purpose of this article is the following:
(1) We have verified that the results of Bender
and Wu may also be obtained within the for-
malism used in field theory, and we have
studied the case of a Hamiltonian with internal
symmetry. (2) We have calculated the leading
contributions to the Green's functions of re-
normalizable scalar theories and recovered
Lipatov's results for the P function. ' (3) We have
generalized these calculations to the ca,se of an
O(n) internal symmetry in view of applications to
critical phenomena. (4) We have applied the
same techniques to the Q' theory in less than four
dimensions, in which long perturbation series have
been recently calculated in view of computing
critical exponents. ' (5) We have characterized
the nature of the & expansion.

The setup of this article is the following: We

first give the basic argument which explains why

the problem is tractable; we then treat completely
the slightly simpler problem of the ground-state
energy of the quantum-mechanical O(n)-symmetric
anharmonic oscillator. We end up with field theo-
ry and its renormalization problems.

In all cases the results have the following struc-
ture: If the perturbation series for any given
quantity are ordered in terms of the loop param-
eter (g' '" " for a, gP'" theory), the Kth order
reads for large E as

K!a Ee $+0—X b

K

The parameter a, which may be simply calculated,
is the same for all quantities in a given theory;
it does not even depend on the possible existence
of an internal symmetry. The parameter b is also
simple, but it depends on which Green's function
is considered and on the internal symmetry; the
parameter c, which is momentum dependent in
the case of Green's functions, requires detailed
calculations which are given here for various
theories. It is only at this level that renormaliza-
tion appears, and not beyond the one-loop level.
Finally, there is a systematics to calculate the
inverse powers of E beyond the constant which
is certainly cumbersome, but goes without con-
ceptual dif ficulties.

l. Results

(o) Anhovmonio osri Gator.

l ppH, ~ l gx, +g(f*')*,
Gf ON'rtd-S tPte elk,e'Vgg:

Z(!)= g A»g,

A» r„„[K(N—1)]!o»K'o[1+ O(1/K)],
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I 1(2N/(N - I)) "-'
2 I"'(N/(N —1))

b=n/2 —1,
1 (N —1)"/2 I'(2N/(N —1)) "/

rr I (n/2) I'(N/(N —1))

(b} Eield theory.

(ii d=2N/(N —1), N& 2.

The 2M-point vertex functions ax'e given in Sec. ID.

p function:

!3(g)= g t!,g,
P« „[Z(N—1)]!e«Z—'c[I+ 0(I/Z)],

1 N —1 ' " 1 I'(2N/(N -1))~"'
N 2 «"(2N —I)!.NN/(N —I)),

b=N'/(N-1)+n/2-1,

2s«-. /2-(. -r) («/(«-r)+ r/2! „«-3/2
F(N+n/2) N 1 N —1 3N —1 I'(N/(N —1)) l

I'(l+ (N+ I)/(N —I))[21+ (N+ 1)/(N —I}]
l!r(2N/(N —1))

N(2N —1)(N —1) 2 NPT —1)
l+ 1 X —1 /+N N —1 E+ 1 N —1 I+X N —1

N(2N —l)(N —1) '+ (n —1)N(N —1) ' J (n —2+ 2N)N'

[l+ 1/(N —l)][l+ N/(N —1)] j (N —1)(2N —1)
'

p&) d=4, X=2.

Prr=K! rr E c[1+0(1/K)],

(1 = —1/1 err',

=b2+/ n, 2

c= "' m2"-'"2""/"(" "5-'/'e~[-8- —"(n-I)+-'y(n+8)]
I'(2+ n/2)

(l+ l)(l+ 2) (l+ l)(l+ 2) (l+ 1)(l+ 2) (l+ 1)'(l+ 2)' i

p is E11161' 8 collstkllt, Kr (x) 18 tile 1110dlflecl BSSSSI
function

K,(x)= dte "'"'coshtdt.
0

These results are in agreement with those of
L1patov for fl = 1.

This leads to the numexical values

2.193, tt = 1

0.543, g= 2

0.125, yg = 3.

Compaxison of the asymptotic formula with expli-
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~
exact
4 p

cts)%1P

cit perturbation calculations for px= (gv2)» 'pr
gives, for K= 4,

dg e-6&4)
()

2't7T
(3)

be extracted by considering the contour integral

4.90
6.08
7.34

5.33
5.28
4.84 K 1 2Nd'x y, '" ——{5n),

(2!V)'
(4)

inserted in a functional integral over Q. For large
K we look at the saddle point in the fg, P) vari-
ables,

A Pade-Borel analysis of the P function calcu-
lated up to order four in perturbation theory does
not give any nontrivial zero, even if one modifies
the analysis in order to incorporate the informa-
tion beyond the Et contained in a K'c.

(l. El) & expansion, 6 =—4 —d.
The series are of the form

For the infrared-stable fixed point g~(e)

a = —3/(n + 8), h = 4+ n/2

Criti cat exPonents:

3+ n/2 for q

h= 4+n/2 for 1/v

5+n/2 for &o.

A Pade-Bore1. analysis of the bad & series gives,
for n=1, 2, 3, ~=0.79~0.01.

If we include the additional information provided
by a and 5 in the Pade-Borel technique, the results
are essentially unchanged.

(i v) Ca)lan-Symanzik equation in three dimen-
sions.

P (g) = Q g K!a"K' c,
E 1az'ge

a = (-w 36.091) ',
h=n/2+3.

Z. Out1ine of the derivation

Consider the scalar massless quantum field
theory' g@'" in dimension d = 2N/(N —1), in which
it is renormalizable. The Euclidean action g(P}
reads

+ counterterms
j e

and through the rescaling

( ) 1/(2N 2)q

(5)

II. ANHARMON IC OSCILLATORS

Consider the Hamiltonian

n f -g
H= — I'-2+- X.2+g

&=1 1=1

The ground-state energy may be obtained by taking
the limit

1 Tre ~+
E E = lim ——ln

p Tre

and these traces are expressed through the path
integral

Tre '~
Sxt

we discover that g„which is negative, goes to
zero as (1/K)' '" "provided there exists a solu-
tion to the equation

g 2y y2E-1

for which fd~x P"&~. Such solutions do exist and
will be given later. Since g, is infinitesimal for
large K, the counterterms may be treated as small
perturbations, and are to be omitted from Eqs.
(4), (5). They do not play any role at leading order
and may be included in an expansion around the
saddle point. The leading contribution is given
by

(-) expS. —ltt(e.)+K»(-g.)p,

and since 6 (P,) is proportional to K this gives
already the K! and the a of Eq. (1). Variations
around the saddle point are necessary to obtain
b and e. This is slightly simpler for quantum
mechanics, which we treat first as an illustration.

n(y) Ju'* le„ys.=y+
~

~ y*"+na, (2)

in which 58 includes all the counterterms of the
theory. The Kth order of perturbation theory may

xexp I- dr[-,' (x'+ x')+ g(x'}"j,
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in which X is such that this ratio reduces to one
for g= 0. The Eth order in g is projected out by
the Cauchy formula as in Eq. (3) and, in principle,
the integration over g is to be performed first.

In this particular problem this of course may be
done easily, and it leads to the following calcula-
tions:

T re-/)8 (]() ( E r s [ ~ 8

, )( . a (t)exp — ( dr:, —,'(&+ ')-((( dr[ '(r)] ).Tr8
~~I

~
~~

~
~

~

I ~ ~
~

~

~

~

~~l
~I ~2 ~

~

~2 ~
~

~

I (9)

The saddle points in x are given by the equations

in which we have denoted by I(x}

f[x}= dt[P(t)]N.
0

Through a rescaling of x(t) this equation reduces
to

x=x -x(t)(x')" '.
The leading contribution to the action in the large-
I3 limit is a trajectory labeled by an arbitrary time
origin 7 and an arbitrary direction characterized
by a unit vector u:

trix of the second derivatives at the saddle point,

Q2'" "=~"(t,)~"(t,)
8

x —(x'+ x') —Kln d7(x')"
o 2 0

(l.'7}

d2 N
M ~(t„t,)=] —,+1 —

2( }
() ~

2(N —1)N(('(( ]
& t

cosh'(N —l}t,]

+ 2 —~™,'x,2"-)(t,),2"-)(t,)

(o(,p = 1, . . . ,n),

x,(t) = ux, (t-v),

x,'" '(t) = N/cosh'(N —1)t. (14)

which can be decomposed into a longitudinal and a
transverse part,

M =M/(( u +Mr(5 —(( (( ),

The trace operation of Eq. (8) involves solutions
such that x(t,)=x(t, +P). In the large-p limit the
solution (14) fulfills this requirement provided one
takes a large interval symmetric around t = 0. It
is convenient to define

tJ= cNXO I',

a()o

N/(/(Ã-()2(](+()/(](-() P2(N/(N 1))
N —1 I'(2N/(N —1))

The corresponding argument of the exponential in
Eq. (9}has a limit when the interval [O,P] goes
to infinity

~ 8/2 ~ oh
8,= lim

] (fr~(x, '+x, ')-Kln d&[x, (&)]"
"Bj2

= NK —NK 1n2NK+ K(N —1)lnJ.

The last part consists of quantizing the vibra-
tions over one classical solution (13) and obtaining
their leading effect. %'e thus differentiate the ex-
ponent (9) once more and obtain the stability ma-

d (2N —1)N-.h(N 1)t '" -"
+ — x '" '(t )x '" '(t )

d2 N
cosh qÃ —1jt,

(19)

The Gaussian integrals over the small fluctuations
yield the inverse square roots of the determinants
of these operators, but one has to extract first
the collective motion of the classical solution (14),
which should be properly quantized.

%e first consider the transverse part. Let X be
the one-dimensional Hamiltonian

) ()(+1)
cosh2x

The bound and scattering states of K are easily
determined in terms of Jacobi functions (for inte-
ger values of X this is a Bargmann potential~),
and it is easy to show that

det(3C —z) I'(1+ )/ —z)I'()/-z)
det(R, -z) I'(1+)(+ )/ g)I"()/:g —)()

'



E. BREZIN, J.-C. LE GUILLOU, AND J. ZION-JUSTIN

For the transverse problem we have to apply this
formula for 1=1/(N —1), -z=1/(N —1)'. How-
ever, we must separate first the zero eigenvalues
of Mz corresponding to a global rotation of the
saddle-point solution (13); x,(t) is thus the cor-
responding eigenfunction. We then obtain, taking
into account the R of the Gaussian integral which
goes with every eigenvalue,

2x det(X —z) 1
~--i~nx-i&' —1/(N —1)' -z det(&, -z) (N- 1)'

N+ 1 I' (N/(N —1))
2(N —1) r(2N/(N —1))

det(M+ I«&&«I) =(de~~)(I+(«l~ 'I«&) (27)

since l«& is the subspace orthogonal to the zero
eigenvalue of &I. Noting that

x'~-'l = M xo 2(1 N)-
we obtain

responding eigenfunction is thus dxo jest, which is
orthogonal to the projector on x,'" '. We can thus
apply the formula

Since there are n —1 transverse directions, the
total contribution of these modes is equal to

N+ 1 I'(N/(N —1))
2(N —1) I'(2N/(N —1)) (22)

There is an additional factor generated by the
separation of this zero eigenmode. Indeed, the
proper quantization around such solutions is by
now standard. ' If one chooses for instance the
collective-coordinates method' we will separate
the rotation mode by the change of variables
x(t)- (u, c„),

We are thus led to the same soluble potential
problem. However, M~ has now one negative
eigenvalue corresponding to the ground state of
the Hamiltonian problem. Thus, as expected
(once we have extracted the zero mode) we are
left with a positive detM~. We apply again Eq.
(21), with now

and obtain

x= ux, (t)+ Q c„g„(t), (23)

2x det(K —z) 1
lim

z--i/&x-~» —z —1/(N —1)' det(3C, -z) (N-1)'

in which the c„arecoefficients on the orthonormal
basis P„corresponding to the degrees of freedom
orthogonal to the rotations, whose contribution
has been taken into account in Eq. (22). The Jaco-
bian of this transformation is equal to the (n —1)th
power of the norm of xo,

1 I'(N/(N —1))
2 1(2N/(N-1))

The proper extraction of the time-translation mode
involves here again a Jacobian proportional to the
norm of dx, /dt.

A simple calculation yields

(24) dt = KN —1 (3o)

The total contribution of the transverse modes is
thus

2v" '
( )(„,)(, 'v(N+ 1) I"(N/(N —1))

1"(n/2) N —I I'(2N/(N —1))

in which the integration over the directions of u
has given the factor 2x"~'/I'(n/2).

The longitudinal problem is similar; the opera-
tor M is a sum of the local operator

M~= —,+1—, 5(t, —t,), (26)

and of a one-dimensional projector. Again M~ has
a zero eigenmode corresponding to time transla-
tions which should be properly quantized; the cor-

Therefore the total contribution of the longitudinal
modes is

2
-'"" '"-"' ~'"ZN

N —1 2 I"(2N/(N —1))

(31)

in which integration over time translation yields
the factor P.

This ends the calculation of the Kth order of
Tre ~"/Tre z"0. The logarithm of this series is
now to be taken, but it is easy to verify that the
leading contribution of the coefficient of g in the
series In(1+2, c@~) is ex[I+0(1/K)] when the
c~'s grow faster than K'f for large K. Dividing out
by the factor -p which appeared above, we collect
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x,=x,+ 2Ng~, (x,')N ', (33a)

(fi (x,')". (33b)

Note that g, is negative, and that through the re-
scaling

( 2Ng )-( /(2N-2)x»

E(I. (33a) becomes identical to (12), which thus
explains the sign of g, . The rest of the calculation
is very similar. The only differences are at the
following stages:

We have to integrate over fluctuations around

g, . If we rescale x by (g,/g)'/"" "there is no
coupling between the x-x, and g-g, fluctuations.

The transverse stability matrix is unchanged,
but the longitudinal one is M~ and not M~. This
matrix has a negative eigenvalue. If we integrate
formally over these fluctuations and take

(deth/f~)'/' = —i(- det/(7~)'/', (34)

we find exactly the results that were established
by the previous method.

the formulas (16),(25), (31) and end up with

1)(~&)g2

(E E )(K) ( )N+( N Ã I If(n-()/22-N
w I'()2/2)

P{2N/(N 1)) N(N ()+ n/2

I'{N/(N —I))

)(exp K(N —I) ln I+0-K(N —I} 1
e K

(32)

and if we set n equal to 1 in this result we recover
the result of Ref. 1.

Let us now briefly describe an alternative meth-
od, which generalizes more easily to field theory„
where the Kth order of perturbation theory is a
mixture of interaction and counterterms. We have
not done it directly since its significance is better
understood through the previous calculations.
Assume we do not integrate over g the contour
integral (3) and consider the saddle point in the
jg, x(t)} space. They are determined by the e(lua-
tions

function will be evaluated by a functional integral

If we write

g e-E' Ln(-g)
2iN 3 g " 2iN g

the saddle points, as shown in the Introduction,
ale given by

= —
( ), i d'x(T{),2)N,

g ~ ~ g
(~ I), An(42 )

and if we perform the rescaling

(2N I) ) ) /{2N 2)

&c
C

so that

(36)

(37)

(38)

g, (x) = u){(2 2"/'p, {){(x—a)),

q i/2(m- x)

x} (I+N2)-(/(N-»
(N —1)'

~

(40)

'The possible existence of solutions of finite
action in lower dimension will be discussed
below. The solutions (39) are labeled by an
arbitrary translation a, dilatation X, and di-
rection in internal space u. Let us note that for
these solutions

{)'0 =-4 (4')" '

we see that -g, is of order (I/K} ' and P, of
order gx/2

Therefore the only counterterms relevant, as
long as we do not go beyond the order of E(I. (I),
are g({t)2) ' for N) 2, and in addition g'(T{)2)2 for
N= 2. Any higher counterterm would yield nega-
tive powers of E. We thus treat first the inter-
actions with N& 2 and discuss afterwards the P'
theoxy.

In dimension d = 2N/(N —I}, in which the theory
is renormalizabie, the massless E(I. (38) admits
conformally covariant, spherically symmetric
solutions of finite action which are'

III. FIELD THEORY J=- 8„$ d~x

Now that we understand the origin of the various
factors which enter in the result, we are in a

*

position to go to field theory. Let us first discuss
what counterterms will be relevant at the order
for which we are doing the present calculation.
We take n massless scalar fields {t) coupled by a
g(P )"/(2N)} interaction. An arbitrary 2/(f-point

4N(( N/(N-() I {N/(N I))
(N —1)' I'{2N/(N —1))

If we consider an arbitrary 2M-point Green's
function, the first contribution to the result is

(41)
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thus equal to the exponential of the action at the
saddle point (without the counterterm) which,
noting that -g, = (2N —1)!(J/2NK)" ', is equal to

C, =- exp K—(N —1)+K(N —1) ln
2'

1 d 1 ~ N(2N —1) 1
df N —1 (N —1) cosh'f '

in which me have defined the P operators by

(52)
—Kln(2N —1)! .

1. Small oscillations around the saddle point

Wee ignore at present the possible ultraviolet
divergences and postpone their discussion to the
stage where the question mill arise.

If me make the change of variables

the osciHations of g and g decouple. The oscilla-
tions around g„together with the 1/g, left over
from the g integration, give a contribution equal
to

xh
C, = —(N —1)K (43)

The CRslQlll operRtol" of the d-dlmenslonal rotR-
tion gxoup has the eigenvalues

r.~= l(l +d —2), l = 0, 1, . . . ,

mith a degeneracy

1"{l+d —2)(d+ 2l —2)
r(d 1)r(f+1)

(47)

In order to determine the eigenvalues of the radial
problems it is convenient to make the change of
variables and of function

4(1 )=1"' ""X(e'), (49)

in which dilatations are represented by t transla-
tions.

The corresponding locRl opex'ators ln I, Rx'e fox' R

given l state

Small oscillations around Q, lead again to trans-
verse and longitudinal modes corresponding to the
operators

4X
M = — —

( ) (1 )
6 ( — '),

4N(2N —1) 1
M~- —8 —

{ ), (,), 5 (r —r ), (45)

in which the differential operatox' 9 is in spheri-
cal coordinates

We are led again to the same one-dimensional
potential problems as in Sec. II and me have to use
Eq. (21) in order to obtain the determinants of
these operators.

The transverse operator has one zero eigen-
value for k= 0 coxresponding to the rotational col-
lective motion, as in Sec. II, which has to be eli-
minated. Its eigenfunction is proportional to the
transform by (4S) of |!),of Eq. (40) and it has a
norm equal to [K(N' —1) (N-1)] '~'. Thus we ob-
tain from the I= 0 transverse contribution

(N'-1) 1'(N/(N -1)) "-]("-"
r (2N/(N —1))

(53)

For l ~ 1 there is no spurious eigenvalue; me thus
obtain R contribution which ls

('()+)(i(N —()) )+ ( )(1)i( ))())
' '""~'

~~ r{f)r(f+2N/{N -1)) 1+ ll(N 1)-
which results of application of Eq. (21) with -z
=[1+1/(N —1)]' and X= 1/(N —1); 5, is the degen-
eracy given by Eq. (48).

For the longitudinal operators me have to treat
separately the first two I's:

(i) l= 0. The corresponding P~o operator has one
negative eigenvalue as in Sec. II, one spurious zero
eigenvalue corresponding to the dilata. tion mode,
with a,n eigenfunction proportional to
sinhf(cosht) '~'. Once this mode has been ex-
tracted, we obtain by application of (21) a con-
tribution equal to

~C, -=[K(N 1)) ~;"-2—'(N 1)
'""/'"-'" '".

2 r (2N/(N —1))

(ii) f = 1. There is now a collective translation
mode. The eigenfunction is proportional to
(coshf) h, a11d gives a JacolHan 111 tile collec-
tive-coordinates change of vax'iables equal to
X[IC(N —1)/N]' . We obtain then the contribution

dC, -=X[K(N —1)/N]'"

N —1 1'(N/(N —1))
4N r(2N/(N —1))

(56)
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in which X is the arbitrary scale of the solution
(»)

(iii) l) 2. There is no zero eigenvalue, and the
result is

(57)

Before we go on let us summarize what has been
obtained up to now: We have explicitly calculated
the contribution coming from the saddle point and
from the harmonic vibrations around it. The
spurious zero eigenvalues of rotation, translation,
and dilatation has been extracted. It remains
though to evaluate the integrals over the collec-
tive coordinates of translation and dilatation. The
integral over the translation may be evaluated
without difficulty, and this restores translation
invariance; however, before we integrate over
dilatation we have to consider the renormalization
problems.

2. Renormalization

The infinite products (54) and (57}are in fact
divergent for large l; this calculation has been up
to now meaningless since we have neither regular-
ized nor renormalized the theory. Any regular-
ization would cut off the large-l contribution to
(54), (57). Assume that this has been done in some
way, for instance, by adding the regulator (1/
2A')P (8')'/to the action. The cutoff dependence
will be removed by the addition of the one-loop
counterterm proportional to g(Q'}" ' which makes
the (2N —2)-point function vanish at zero momen-
tum. We are going to evaluate this term at the
saddle point in the l basis, which we have used
above, and multiply it by the one-loop Feynman
diagram which goes with it. This may be conven-
iently done by the following procedure. This one-
loop counterterm may be found by expanding to
first order ing the operator given by the second
derivative of the action

(4.')" ' 5, 2(N-1)
)

— '+g(2N' 1)! +g
(2N 1)!0, 4', (0,')" '

(y &)& I
yg I g(y &)& 1

(2N —2)! 2 (2N —1)! (56)

in which 8' stands, in fact, for S ' —(I/A')(S')'.
In the l representation this calculation may be done by expanding in powers of X the operator

2 — dt' N —1 (N —1)' cosh'f „dt' N —1 (N —1)'cosh't

(59)

to first order in X and setting X equal to 1 (regularization is meant here again). This calculation
may be done easily again with Eq. (21), which gives that expression (59), to first order in X, reduces to

n —2+ 2N N
' 2[i+1/(N —1)] (N —1)' ' (60)

which has to be added to the classical action since this is the one-loop counterterm at the saddle point. If
we take into account (54), (57} together with the exponential of —5A given by (60), we find the sum

I' (l+N/(N- I)) l+ (N+1)/(N —1} I' (l+N/(N —1)) 1
I'(l)I'(l+ 2N/(N —1)) l+ 1/(N —1) I'(l —1)I'(l+ 2N/(N —1)) I+ 1/(N —1) i

n —2+ 2N N (n —1)N N I'gN/(N —1)) (n —2+ 2N)N(N+ 1) }~

l 1/(N —1) (N —1)' N —1 N —1 I'(2N/(N —1)) 2(N —1)' i

(61)

In going to expression(61) we have let the cutoff go to infinity before summing over l, and it is elementary
to verify that for N) 2 the sum over l is now, as expected, convergent. This may be seen more easily if
we simplify the expression (61). Using the identity

5, (d+ 1) —5, , (d+ 1)= 5,(d), (62)



the expression (61) takes the simpler form

r(I+ (X+ I)/(N —l))[2f+ (IV + I)/(N —1)]
C6 —exp —a Z I!r(2!v/(fv —1))

l[l+ (N+ 1)/(iV —1)) (I —1)[l+ 2N/(N —l)]
} [I+ I/(N —1)][I+N/(N —1)] [I+ I/(N —1)][1+X/(N —1)]

2 2V
(Iv —I}' [I+ I/(fv - I)][I+fv/(fv —I)]I

3fv -I -, rgfv/(Iv - I)) fv(2}v -I), , r'(fv/Pr I)) fv-(2fv I)-"'"p
2pr I)

'"
r(2}v/(Iv I)) 2(lv I)(wr I)

' " '"
r(2fv/(Iv —I)) 2(fv-I)'

(n - I)fV, IV rgfV/(fV I)) -(n - 2+ 2fV)IV' Ix-I r(2!v/(fv-I)) (fv —I)(2fv —I) I
' (63)

3. Integration over translations and dilatation

The regularization breaks the scale invariance of the classical action, and will cutoff the integration
over dilatations.

C onside r first the 2N -point function

(64)

In addition to the previous factors, for a given scale X and origin a we obtain a contribution proportional
to

IIx" " 'y,' (x(x,. —a)).
1

(65)

It remains to integrate over a, and over )). with the measure dX/)). [corresponding to I -translation invari-
ance of the P operators of Eqs. (50), (51)]. We collect from (56) and from the regularization a factor
))~ exp(- p'A'/A'), with

P =—p 9 Q~ x dx. (66)

This yields, coHecting Eqs. (42), (43), (53), (55), (56), (63),

(2&) 6@p;)&, , =
2 C, ' '' C, da —X~exp —p' —,

2E 2X

IId,. '""*II x"-""y'()).(,. ))( . ~ ~ ~ . . ),
1

in which (u, ' ~ )c„)stands for the O(n) rotation-group tensor~2N

1 (n/2)
(Q~ '''&u )=

2 „yP cAsu„' ''u~

2~iv! r(lv+-,')r(&/2)

(67)

(66)

From (67), extracting the ohvious O(n) tensor structure (68), we get

y&~+& "
Ch

0 1

in which

(-) -~i2(~-)) Ic(& —I)' r(2!v/(& —I)) '"
r(IV/(IV l )) (1~ ~2)l l&lv-) )
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Let us note that

(71)
&ip. x &N/(N-1) vN/(N-1) 4d'x dg g-&P /'4-&/& =

(1+x')'""-" F(1/(X —1)) ., r (1/Pr —1)) ip i

in which the modified Bessel function K, decreases exponentially for large ~p~, but for small p behaves
as

ff (P)= —1+—(1nP+y —&}+O(P inP)
1 p' 1 4

1 p

From this formula we see that the X integral (69) diverges logarithmically when A goes to infinity as

(72)

(78)

A few comments concerning this result should be made. First, at leading order in K there is no con-
tribution from the disconnected diagrams. Secondly, the Green's function

&'&'&'--G&, (p, p,„)Qp,.' (74)

in which the external legs have been removed is automatically one-particle irreducible, again for K large.
Finally, the leading diagrams at order K give a single power of lnA, they are those which do not involve
any divergent subgraph; i.e. , they are the completely irreducible diagrams.

This logarithmic divergence is removed by a coupling renormalization. If we define the renormalized
coupling by some prescription, for instance, as the value of I'""' for all internal indices equal, at the
symmetry point

P/P/ 2~ 1
(~ jj 1)l (75)

we obtain

(76)

Let us consider now a function with less than 2N points; for instance, the propagator, through similar
calculations, takes the form

dA. )G(2) (p} ( I C . . . C ew2L2/A2$2 g f, y 2
(K) 2~ ]. 6 y c y

(77}

Again it behaves as 1/p for P small, which shows that there is no contribution from one-particle-reduci-
ble subgraphs, and thus the inverse propagator I'"' is

f&(2) (p)
( I C C dy -P2H/A2y

y
3 f

6 ~ & &~
~ (78)

Mass renormalization gives

Z'"(p}= — C C, dye ""/~'y ~, y, ~ —11m[x'y (x)]'
0 LA. A. ~- o

(79}

which is proportional to (lnA) for large A, as one can see from (72). This means that the leading contri-
bution at large K to wave-function renormalization is proportional to ln A. We shall come back to this
point below.

There are no divergences in the X integration for a 2M-point function with M) N, and the result is

I I ) (P P ) C C ( )/f ) 'ig P M (80)

4. Renormalization-group equations

The previous results will allow us to calculate
the coefficients of g, for large K, of the functions
which appear in the renormalization-group equa-

tions

8p. Bg
p —'+ p (g)

'
My( g) r' '= 0. (81)
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We first notice that, since $, is proportional to
E' ', the wave-function renormalization will not
modify at this order the result (76) for the renor-
malized vertex function. Indeed, this means that
the coefficients for the perturbation series ofI""'are not modified at leading order in E by
division by [I'"(P)/P2]2". It is then easy to derive
that

6(g) =g PNg',
2

has the behavior'

(82)

!3 (- 1) —C ~ C lim [x'P,(x)]2N. (83}

This may be seen, for instance, by demanding
that I"""', given by (76), fulfills (81) with no
leading contribution due to y(g). In fact, Eq. (76)
involves the bare coupling constant. However,
when we substitute the renormalized it modifies
Eq. (81) only at order I/K.

The calculation of the large-K behavior of the
expansion of Z(g) requires going beyond the order
considered in this work. The leading order van-
ishes as implied by the ln'A behavior of the field-
strength renormalization constant. Indeed,

8
y(g) =!—

g a

plies that the coefficient of ln(A/p) vanishes, as
may be checked from the explicit expressions
given above.

IV. P4 THEORY

There are two slight additional complications
for the four-dimensional field theory. First, we
need to take into account the one-loop counter-
term of coupling renormalization of the form
g'f(&2)2d'x We. shall see that this term subtracts
the remaining infinity which appears in the sums
(63) when N goes to 2. Second, the mass counter-
term gfQ'd'x gives a fictitious infrared diver-
gence at the saddle point. We should, in principle,
repeat the calculations with an infrared regulator.
However, it will be shown that this divergence
disappears by going to the representation (I, f)
used above. In fact, (t)' with N& 2 may be re-
garded as an infrared regularization of (It)'.

The form of the coupling-constant counterterm
depends on the renormalization prescriptions.
We will make a particular choice which simplifies
the present calculation. For any other choice,
the coefficient c of Eq. (1) would be modified by a
finite calculable amount. The easiest one-loop
counterterm results from expansion of (58) up to
second order in g, i.e. , it is

lnZ=c g'ln —+ + ~ c g" ln—2 0 Z K o

~ (d»4&—
Q4, {2N —1)',

A
y(g) = c,g, '+ ~ + Q 2cxg,xln —.

K

If we substitute the renormalized coupling con-
stant

A
g =g+ "+ d g" ln—

0 K

the leading contribution to y{g) is

A
y(g)=c, g'+ + Qg ln —(2cx+2c2dx, ).

K

The finiteness of y(g) when A goes to infinity im-

(y 2)N-1 I (y 2)N-i

(-8') (2N -2)! (- a') (2N —2)!

(84)

in which p,, is some arbitrary scale. This mill
yield a one-loop counterterm for the (4N —4}-point
function which will subtract the infinity of the 4-
point function when X goes to 2. The function Q,
in Eq. (84) depends of the dilatation parameter X,
as in Eq. (39). Thus after rescaling, from the
expansion of (59) up to second order and through
the identity (62), we obtain now

1 X '~ n —1 ' g I'(I+ (N+ 1)/(N —1))[2l + (N+ 1)/(N —1)] N'(2N —1)'
4 2 (2N —1) I!I (2N/(N —1)) (N —1)'

[I+ 1/(N —1)] [I+N/{N- 1)]

If we separate 5g into two parts through

(85)

the first term subtracts the infinity of the sum (63) when N goes to 2, and yields a, modified C, factor
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C, = exp + 2(n —1) ln3 ——', (n+ 2) —=',-1n5 —,'n—ln2 ——,', (n+ 8)

(l —1)(l+ 4) l(l+ 3) 2(n+ 2) 2(n+ 8)
(1 ~ 1)(l+ 2) (1+ 1)(l+ 2) (l+ 1)(l ~ 2) (1 ~ 1)'(1+ 2)' }

(86)

The second term of 58 gives a finite limit when d goes to 4 equal to

n+8
(87}

The resulting integral over dilatations is thus modified and gives instead of (76}the expression

(88)

The coupling constant g, which multiplies (88}, is partially renormalized since we have only performed
one-loop subtractions and it depends on the arbitrary scale p,0.

The renormalized coupling constant is defined in terms of I'4' at the symmetry point p, ; thus

(89)

in which a(l(,„/l),) is a finite number which we need now to calculate. This may be done by computing the
(4N —4)-point function at the one-loop order, taking into account the counterterm (84), in the limit d goes
to 4. The result is

n+ 8 1 ',
I 1 1 fd'ku'(k)/(p+ k)'

6 (2v)' ~
~
p'(p+q)' p' fd'ku'(k)

taken for q'= —', p, ', in which u(k) is the Fourier transform of g, '(x):

(90)

(91)

This gives

o.'= —
2

2~
(

dk k'u'(k) ln (92)

and it is simple to derive

n+ 8, p2
, 3-1n, —2y,

96& 3 P0
(93)

in which y = 0.577 . . . is Euler's constant.
We can now proceed to the calculation of the J3 function. The first step is to calculate it in terms of the

intermediate constant g:

(94)

and to replace g by g~. This will generate an
additional factor. Indeed, let us write

in which

p~ ~ ataxia'c,
K~~

=go —+gz +' ''

It is easy to verify that

P(gR) P PIC gR
2

in which, for K large,

Pa=Ps~

Thus, taking o. from (93) and a= —1/16w2 from
(42), we obtain
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«„g - n+8, "Ch d !!,"-- p ' n+8
P(g )=P g '+ +~(- I) "—C C exp — (-, +ln3 —2y) —p ——P — exp ln—

A. dp, x '
A. 3 p.

(95)

If we use the explicit formula (71) for 4! we end up with

P (gs)=p, gs'+ "'+ p (- I)"gs —C, ' ' C, exp — (-,'+ln3 —2y) (4v)'(3K)'
2m 6 3

x dxx&"")~"'E ' x

A few words about the dependence of p on the
renormalization conditions is in order. Assume
we have chosen two different renormalization
sehernes with coupling constants g, and g, :

P (g }=Pg '+'"+P g + "
P.{g.}=Pg. + '+"P..«g. +'" (97)

gg+ kg+co ~ +gg+eee
From the previous calculations we know that

pi I( E ~El' E Cj~

p~~ —EIa E'C„
5~—E&a E 5.

Expressing the covariance law

P, (g,)=P,(g,), '

we obtain

13, e'2~' —P, +P —1+0 1 E .

It is therefore easy to go from scheme (2) to
scheme (1) provided we know how to relate g, to g, .

V. IMPLKATIONS FOR CRITKAL PHENOMENA

P (g, «) = —«g+P (g), (102)

Critical behavior for ferromagnets is related to
the infrared-stable fixed point of (@')' below four
dimensions. It is possible to calculate various
physical quantities like critical exponents, in
powers of &=4-d, as first shown by Wilson and
Fisher. ' From numerical grounds it was expected
that this expansion was only asymptotic, The
previous results give a proof of this fact. Indeed,
let us consider first the expansions of the infra-
red-stable fixed point g*(«). If we use dimension-
al regularization" to calculate the p function
(which we called W in previous work connected with
statistical mechanics} it has the structure

in which p is the four-di. mensional function. In
the preceding section it was shown that, for any
definition of p, one has

P(g)='' ~ + g g K! — . K""~'C 1+0—

{103}

Therefore solving P (g*,«) = 0 one finds asymp-
totically

1C

g*(«)= ' '+ Q «K! — K""i'C'. {104)
g ggpge 8 + 8

As a consequence the critical exponents I/v and

q have the same eharaeter, governed in fact by
the lowest-order contribution to the functions I /v(g},
n(g), «» g=g*"

These results show the divergence of the e ex-
pansion; however, it indicates its Borel summability
and one should try to calculate critical quantities
through Pad6-Borel transforms or more sophisti-
cated transforms which incorporate the E' factor.
Preliminary results fora "bad" «series like &u(«}

indicate that an accuracy of a few percent can now
be expected from three terms of the & expansion.

Similarly, three-dimensional calculations have
been performed by computing the coefficients of
the three-dimensional Callan-Symanzik equa-
tions. '2' In this three-dimensional case the solu-
tions to the classical field equations ean only be
obtained numerically. From the leading solution
one finds

P(g)='' + g A!g (—«36 091 ) K'"i'C

If we use the normalization of Ref. 4 this means

P(@)=—t!+t!'-+~ ~ ~ + P K!!!(-0 148 . . ) K. ""@.C.

The other two functions from which critical ex-
ponents are calculated have exactly the same
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structure as Eq. (106}. This justifies the use of
the Pade-Borel transformation of Ref. 4.

The application of these methods to a general
situation in nonrelativistic quantum mechanics
and other fieM theories vrill be discussed in a
subsequent publication. "
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