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Properties of a 20-component spin-1/2 relativistic wave equation
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A new 20-component relativistic wave equation is studied. It is shown that this manifestly Lorentz-covariant

equation describes particles with unique mass m and spin 1/2. A nonsingular g matrix is also shown to exist.

The free wave equation is equivalent to the Dirac equation, but when a minimally coupled external

electromagnetic field is introduced the new equation behaves differently from the Dirac equation. For
example, the magnetic moment of a particle described by the 20-component equation depends on a free

parameter and can thus take on any value including zero. The proposed equation is irreducible and the I „
matrices satisfy a fourth-order minimal algebra, and thus 10 is nondiagonalizable. Previously, examples of
irreducible wave equations with nondiagonalizable 10, that could continue to propagate causally inan
external field, were not known. The equation proposed here is an example of such a theory.

I. INTRODUCTION

Since the discovery and subsequent successes of
the Dirac equation for spin-& particles, equations
of the same general form

( ir„e-" + m)g(x) = 0

have been studied extensively to construct analo-
gous theories for particles of any spin. ' Some of
these studies have revealed that there are other
wave equations, or even classes of wave equa-
tions, of the form (1) that can also describe spin-
—,
' yartieles. ' The behavior of a physical system
described by these equations may be different
from the behavior of particles described by the
Dirac equation when an interaction with an exter-
nal field is considered.

In this paper a particular relativistic wave equa-
tion is introduced. This equation is equivalent to
the Dirac equation in the free-field case, but has
new properties, that the Dirac equation does not
have, in an external-field interaction, and thus
may be more suitable for describing spin-& parti-
cles other than the electron, or physical systems
whose dynamics are different from those of the
electron in simple external fields. Furthermore,
this equation sheds new light on the theory of gen-
eral SL(2, C)-invariant arbitrary-spin wave equa-
tions.

Specifically, the following will be shown: (i) The
proposed equation is equivalent to the Dirac equa-
tion in the free-field case, but in a minimally
coupled external field it is equivalent to the Dirae
equation with the interaction B(x) where

B(x)=-eg(x)+i&,o,„M"(x).

(ii) The I' satisfy

g (r„r„g„„)r„r,=o
fy(g vip)

as the minimal algebra. The o Qvh. p) denotes the
sum over all permutations of the indices p, v, X,
and p. (iii) As a consequence of (i), the new equa-
tion will remain causal in a minimally coupled ex-
ternal field. The imylieations of this result will
be discussed further in the final section.

II. GENERAL ASSUMPTIONS

[r„z,.]=0,
[[A„r,],A, ] = r,

and deflnUlg I s as

(4a)

(4b)

For the equation considered in this paper T(A)
= (1,—') 8 (—,1)S (0, —,') 6 (—', 0) 8 (0, —,') 8 (—,', 0)—:A +A

62(BSB), where A, B are the representations

Relativistic wave equations (1) are often required
to satisfy several basic requirements derived from
the general yhysical assumptions. The proposed
equation will be required to satisfy the following
properties in common with the Dirac equation:

(a) Lorenfz cooariance. The equation is of the
form

( ir„e"+m)y(x) =0,
where m & 0 is a real multiple of the identity and
the equation transforms covariantly under a (re-
ducible) representation of SL(2, C), A- T(A).
Consequently I were chosen so that

T(A)r„T(A)- =A. r„,
T(A)g(x) = g'(Ax) .

This condition can be written in terms of the in-
finitesimal generators of the representation T(A).
If we denote the rotations for T(A) by J,. and the
boosts by N&, then Eq. (3) is equivalent to choos-
ing l", consistent with
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conjugate to A and 8, respectively.
(h} Unique mass and sjin T. he equation de-

scribes a un1que mass I, and syin —,
' with a mini-

mal number of independent comyonents needed to
describe the both negative- and yositive-energy
states on equal footing, i.e. , 2(2s+ 1) which for
8=@ 184.

Unique mass is realized if the minimal yoly-
nomial of &, is (Harish-Chandra)

I',"(1,' —1)= 0, n ~ 0.
In the present case n=2.

(c) Hermitizing matrix g. One requires that
there exist a Lorentz-invariant sesquilinear form
on the positive-energy solutions of (1}. Among
other things, this allows one to derive the equation
of motion (1) from an invariant Lagrangian and to
construct a I orentz-invariant Hermitian inner
product on the solutions of (1). This property can
be realized if there exists a nonsingular matrix
g such that

8 8 A A B g~l tt L I
I /2 I /2 5/2 I /2 W2 I /2 I /2 I /2

I f
I f if I/2 B

f
-if I/2

if I/2 B

FIG. 1. The matrix I'0.

with respect to iTi(x) = g'(x)q (Appendix A).
The choice of coefficients of &, (and hence F;)

is one of many possible choices consistent with
(4). However, the choice made in Fig. 1 is the
simplest and the most convenient one for an equa-
tion with the desired properties. '

(h) The equivalence of the free I" equation to the
free &irac equation The fr. ee I" equation with I'„
as in Figs. 1 and 2, is equivalent to the free Dirac
equation. Consider the I" equation in the following
fo1'Dl:

For the Dirac equation, as an example, g = p,.
(d} IrxeduciMe I'„. The set of matrices I'„are

an irreducible set, i.e. , I'„considered as a set
of linear transformations acting on the representa-
tion space of T(A} have no invariant subspaces. '
Not only does the yroyosed equation share this
yroperty with the Dirac equation, but without it
the new equation in minimal coupling wouM not be
distinguishaMe from the Dirac equation in minimal
coupling. '

These yroyerties wiQ be explicitly verified in
Appendix A.

III. THE EQUATION

(a) &onstruction of the equation. Let S", i" be
the generators of 8 -&"i"(R), the two-dimen-
sional irreducible unitary representation of SU(2),
and let E,""denote the spin- & E matrices that
appear as the connectors of the spin- g and sp1n-
2 yieces in the generators of the boosts N", ~2) for
the (-,', 1}or the (1,—,') representations of SL(2, C).
I'0 is chosen consistent with (4) and I', are com-
puted from (5). Figures 1 and 2 show I', and I'„
respectively, in their SU(2) block forms. Here f
is to be chosen as a real or a pure imaginary num-
ber.

The equation (1) with the I'„of Figs. 1 and 2 can
be derived by varying the Lagrangian

J,[g(x), s„ii(x)]I=iiit(x)q( iI" s + m)g(x)-

(y)
I

-~fK
(&)

3 i

-2S; -fK )f8'

-ffK; -~f8; -Rifsi
(&) (') . (')

2ifSi

~fK
(&)

3 i

~3fS( 2
(-')

(i)
2ifSi 2

FIG. 2. The matrit:es 1";.

(-iI' s+m)i'(x)=0

is equivalent to

iy'+ m iX s gati(x) =0
-iy. s + m &o(x)

2ÃS.,
(k)
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which yields

( itt+m)y(x) —iX s(o(x)=0,

i-Y sp(x)+ma)(x) = 0,
or on rearranging

( iy-'+m)y(x)+ X—s Y sy(x)=0,
m

1 .gx) =—iY.sy(x);

(10)

Therefore, Eq. (13a) is

( if+ m)4(x) ———f'&r, „E""(x)4(x) = 0.2 ze

It will be shown that

X,Y, = ,'f o,-.-= —~f'I.W„&.]
in Appendix B.

The magnetic moment for a particle described
by the I' equation is

ut Xo, ~0 are chosen so that

X 9Y 9=0

and (11) becomes

( iy'+m-)P(x) = 0,
i .

(o(x) =—il' sf(x) .

Hence, the I' equation is equivalent to the Dirac
equation and a set of dependent components ur(x)
are completely determined by the independent com-
ponents P(x) (which satisfy the Dirac equation).

(c) External field interaction by minimal cou
pling and magnetic moments. The structure of the
I' equation in an interaction &(x)=-eI',A" (x) can
be considered as follows:

XOF0=0 ~X'9 P'g =0

by boosting to arbitrary Lor entz frames.

X g V 9 = 0 mX„F,+X„l = 0,
since

The equation

( il" D+—m)4 (x) = 0,
where

D, =s„—ieA, (x)

can again be written as

M= (I+-'f'),2' 3

or the gyromagnetic ratio g is

Z= (I+ —,'f ') (I&)

Originally, f was an arbitrary complex number.
It is chosen to be either real or yure imaginary so
that M is real. %'ith this arrangement g can have
any real value one desires, negative or positive,
including zero.

(d) Causality. Velo and Zwanziger' have shown
that equations of the form (I) are sometimes "un-
stable" with respect to external-field perturba-
tions in the sense that they develoy modes of proy-
agation that exceed the velocity of light in regions
with sufficiently strong external fields. This is
the phenomenon of noncausal propagation. There
are classes of equations that do not suffer from
this problem, including the Dirac equation for
spin —,

' and the equation proposed here.
In the case at hand, a detailed analysis is not

carried out since the causality problem for the
I' equation can be reduced to the same problem
for the Dirac equation as follows:

The original equation for the wave function @(x)
can be reduced to the equation for the independent
components 4 (x),

[ iQ+m-+ other""E „(x)]4(x)= 0,
and a *'constraint" equation

Q(x) =—iY.DC (x);
1.

(-i@+m)4 (x) +—X"Y "D„D„C(x) = 0,

Z

Q(x) = YD4(x)— (1sb)

or, alternatively, Q(x} can be given in terms of
only the spatial derivatives of 4(x):

Q(x)=—[Yoyo(y D+ m+o.o""E„„)—Y D]4(x).

~X Y„D"D"4 (x) = ~(X Y„D"D"+X„Y„D"D")4(x}

= —'X„Y„(D D"—D"D")4(x),

since

[D",D "]4(x)=ieE„„(x)4(x),
X„Y„D"D "4(x)= 2ieX„Y„F""(x)4(x).

Since the independent components 8atlsfy the Dirac
equation in the external field B(x), which is known
to be causal, so the I' equation is also causal.

The same arguments apply for other more com-
plicated interactions of the 1 equation as long as
the dependent component Q(x) can be solved in
terms of the components 4(x).
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A more detailed proof can be constructed from
the techniques discussed in the references. '

IV. DISCUSSION AND SUMMARY

First, it has been shown that an anomalous- mag-
netic-moment term can be obtained from a first-
order Lorentz-invariant, Dirac-type equation
interacting with an external field by minimal cou-
pling. On the other hand, in the free-field case,
the new equation is completely equivalent to the
Dirac equation. '

The g factor can have any value for this new
equation in a minimally coupled external field ex-
cept g=1. The case g=1 makes the 1 equation re-
ducible by forcing f to be zero. Otherwise the as-
sumytions of Sec. II are not strong enough to spe-
cify the value of g any further. It is a matter of
choice just as the mass m of the particle is. How-
ever, one may pick a value by fixing f as, for ex-
ample, g= 0 where f= —,'iv 3. In such a case the
equation describes a spin--,' system with no intrin-
sic magnetic moment, which has also been dis-
cussed by Chang. '

It should also be pointed out that similar equa-
tions exist for any spin, and thus a first-order
wave equation for a given spin does not always have
a fixed magnetic moment in minimally coupled ex-
ternal electromagnetic fields.

The second general point is related to the causal
yroyagation proyerty of the new equation. Equa-
tions of the form (1) do not suffer from the Velo-
Zwanziger pathology as long as I', is diagonalizable
and the external- field interaction is minimal cou-
pling: B(x)= eI' "A„(x)." The equation given here
is the first examyle of an irreducible wave equa-
tion with nondiagonalizable I', that remains causal
in an external field. If the irreducibility require-
ment is suspended, then one can easily construct
causal wave equations for arbitrary spins with
B(x)= -er„A'(x) and

r,"(r,' 1)=0

for any n&1; but for irreducible wave equations
the same statement is not known to be true. In
fact, examples of irreducible causal equations
for B(x)= -er,A" (x), with n&1, were notknown.
In the case of multimass equations, analogous
statements apply where the degree of nilpotency
of the null-eigenvalue submatrix of 1", exceeds 1.

APPENDIX A

In Sec. II, four conditions were stated, that the
equation proposed in this payer was required to
satisfy. In this appendix these conditions will be
verified more explicitly. The first three condi-
tions are easy to check and fairly standard, so
these will not be considered in detail.

(a) The equation is manifestly Lorentz covariant
under the SL(2, C) representation A -T(A), where
T (A) = (~, 1)8 (1,—,') 63 2[(0, ~) 8 (2, 0) j by construction.

(b) The fact that the equation describes unique
spin is clear from the observation that I', connects
only spin--,' yieces. Alternatively, the yarts of the
wave function &t(x) that transform under R
-D'~'(R), the representation of SU(2) occurring
in the SU(2) restriction of T(A), are zero in the
rest frame. The independent components, which
are the nonzero components in the rest frame,
transform under the spin--,', R -D'~'(R) represen-
tations of SU(2).

If one considers the eigenvalue equation for Io,
it is found that

~r, u~=~(& 1)=0,

so by the Hamilton-Cayley theorem

r, '(r, ' 1)=o

is the characteristic polynomial. It is also the
minimal polynomial since

r,&r,
* »=~ ).0.io 0

(0 YoyoXO

Owing to the results of Harish-Chandra. , (Al) im-
plies that the equation describes a unique mass m.
Lastly, the independent components arise from
y, in I'o, and thus there are 2(2s + 1) independent
components.

All these qualities are obvious from the Jordan
canonical form (JCF) of I', :

I' (J(:F)= r&~~2&(J(; F)(E& r&'~'&(JCF),

I (3/2) P0

r,"~2&(JCF) in block form, with each block being
a 2&& 2 matrix, is given in Fig. 3.
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FIG. 3. The Jordan canonical form of the spin-& and
spin-& submatrices of I'o.



(c) When f is real, choose q as in Fig. 4, and
when f is pure imaginary, choose q as in Fig. 5.
It can be easily checked that q~= q, T~(A)qT(A),
and (qi' )t =@I'„.

(d) For a wave equation of the form (1) irreduci-
bility" means that I', , when considered as linear
transformations on the representation space R (T)
of T(A), leave no proper subspace invariant.
First, if I'„ leaves any subspace invariant, it also
leaves a maximal subspace invariant which is an
SL(2, C) subspace of R(T); i.e. , the maximal-in-
variant subspace is a representation space of some
combination of representation ln T(A). Second
since

R(T) =Q+n, R(T,)

when

T(A)=Q+n T,
there exist projection operators that are Hermi-
tian and idempotent, which can project any SL(2, C)
subspace in R(T). All the possible projectors
commute with the representation matrices T(A),
and some of the projectors have the following
property with respect to I', :
(I',P PI', P) = 0~ [I'„P]P= 0 ~ (1 —P)I', P = 0.

(A2)

Now, for every vector Q inR(T), (A2) is satisfied
if and only if PQ, an SL(2, C) subspace of R (T), is
an invariant subspace of I', (and hence of I"„); i.e. ,
I', (and I',.) leave this subspace invariant when con-
sidered as a set of linear transformations on
R(T). If the only projectors P that satisfy (A2)
for a given wave equation are I and 0, then I"0

leaves no proper subspace invariant and hence
the wave equation is irreducible. Otherwise it
is reducible.

The most general projector of this kind for I'(A),

A A
B 1~~B B

I

A

B n~~s B
I

FIG. 5. The q matrix for imaginary f.

considered in this paper, is of the form given in
Fig. 6.

Now, (1 —P)I',P = 0 gives the following relations
for the coefficients of I"

(1) (1 —a)b —ihfb + (1 —a)qi f= 0,
(2) (1 —a)fc = 0,
(2) (I - a)f - ihff + (I - a)ifg = 0,
(4) (I - b)a+iffa (I - b)ifP-=0,

(5) (1 —b)fd=o,

(6) (1 —b)h+ij fh —(1 —b)ife= 0,
(7) (1 —c)fa = 0,
(6) (1 —c)fh = 0,
(9) (1 —d)fb = 0,

(10) (I d)fj=0, -
(11) pb —(1 —e)ifb+pqif = 0,
(12) Pfc=0,
(») ff (I-e)ifi+Pifg-=0,
(14) qa+(1 g)ifa ifqp-=0,

(15) qfd = 0,
(16) qh+ (1 g)ifh —ifqe=-0.

We can now consider all the possible solutions of
these equations for fw 0. Conditions (12) and (15)

P-

I/2 I/2 3/2 I/2 5/2 I/2 I/2 I/2
0 h I/2 8

I/2 8
W2

A
I/2

a, b, c,d, e, g ER
3/2

A
I/2

I/2 8

I/2 B

FlG. 4. The g matrix for real f. FIG. 6. The general projector.
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c=o

{8) (7)
h=O o=o

d=o

b=Oj=o
/(io) P

e=o
&1

d=o

(9) (io)

J=O

(~)
qr {g)

o=o
(2)

(i) -q=o

-g=o

FIG. 7. Case (a): assuming c=0, 8=0 leads to P=O. FIG. 9. Case (c): P = 0, d = 0.

yield four cases: case (a): c=0, d=0; case (b):
c=0, q=0; case (c): p=0, d=D; and case (d):
P =- 0, q = 0. The only solution for case (a) is P = 0
as shown in Fig. 'I. Furthermore, for cases (b)
and (c), once again P has to be zero to satisfy
(A2) as shown in Figs. 6 and 9, respectively.

In case (d) equations (l)-(16) simplify to

(1') (1 —a)b —if h b = 0,

P=O. If e=0, Fig. 10 ayylies to show I'=0. If
e=1, Figs. 11, 12, and 13 show that I'=I. It can
be concluded that for the equation given here,
when f 0 0, there does not exist any projector onto
a proper subspace of R(T) that satisfies (A2). If

was reducible, such a yrojector would exist;
since it does not exist, I'„ is irreducible.

(2')

(2')

(1 —a)c=0,

(1 —a)j —ihfj +(1 a)ifg=O,
APPENDIX B

(4') (1 —b)a+ifja=O,

(5') (1 —b)d = 0,
(6') (1 —b)h+ i jfh —(1 —b)i fe = 0,

(1 —c)a= 0,
(1-c)h=O,

(9') (1 —d)b = 0,
(I&) (l-d)j=o,
(11') (1 —e)b = 0,
(12') (1 —e)j= 0,
(12') (I-r)a=O,
(14') (1 —g)h = 0.

Since I' is idemyotent, e is either 0 or 1 because

Consider ing the yossible Lorentz-invariant inter-
actions of the Dirac equation, X„l'„must be a
multiple of a"" since it couples to &""(x). To de-
duce the yroyortionality constant, the following
explicit calculation is carried out;

We want to show that (e/2m)X' Y"=C,a'"" with
(e/2m) 4f-'-

To check the relationship we can consider the
four cases (i) X'Fo, (ii) X'Y'0, (iii) XOY', (iv)
x~v~.

j=o

q=o

o=o h= j=o
'(Io)

(5)
bO do - g=o

(~)
e=o p=o

(2)' „
c=o

h=O

FIG. 8. Case (b): c=0 and q=0. FIG. 10. Case (11): e=0.
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e=l
by(i4)'

e=l, g=l

dy (8)'

h=o g=l case(d5) c=l

(2)'
1F

a=I
by (3)'

h=O (case d4)

a=I

c=l

(4)'
„(6)'
b=l

j=O

(4)'
(i}'

b=l h=o

j=0
P=I

a=I

P=I
a=I

P=I

FIG. 11. Case (d2): e =1. FIG. 12. Case (d3).

(i) X Y = 0 ,

Now,

(I) +00 0 +I'D &(yllyv y Pyle)

(ii) o"= 2
~ (1 0

g) $ (1/2)

(0 -I

(iii) X'Y&= —,'f' -SS' '
0 -1

(iv) X'I'& = —4f2
CS& (X'.~/2'lf'~/2'1 0

9
0 1

8 S &1/ 2)S && / 2)
)j

Ig. the gase of $i $j( it (:an be qhe(:ked that

(iii) o"=-2 (1 0 g$ (1/2)

(0 -1

(iv) g '/ = —2 8 is, S "/".1 0
i jk

0 1

So X"Y"= --', f 'o'". In the basis chosen for this
equation z, are given as follows:

$ (1/ 2)$ (1/2) 2f ~ $ (1 / 2) + ~ gj 2 ijk k 4 ij t

then since [N&, N/]= i&,.»J, this implies

K(3/2)K(3/2) 0 +$ (1/2)$ (1/2) —
Zg $ (1/2) + 9

II)

KiK j = —2if,.jk Sk" '+ 25 ij .
= 2 (3$(1/2)

f

1 0

Therefore e=l, g=l, h=O

(if&3/»/f&3/»& 8S&»»S «/») — 6ffi j ijk k
(6)'

(9)'
b=l ~d=l

Xiyj 8f 2 (3 i& $(1/2)1 0
ijk k

0 1

(7)'
a=I c=l

Clearly

X~ Yv HvJ

P= I

FIG. 13. Case (d4).
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