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The two-component Sakata-Taketani (ST) spin-0 theory and the single-component Klein-Gordon theory are
obtained from the five-component Du¹Kemmer-Petiau (DKP) theory with six types of external field

interactions by means of a Peirce decomposition. Whereas the DKP equation manifests the covariance, the ST
equation manifests the causal properties. In particular, the presence of noncausal wave propagation when there

is coupling to a second-rank tensor field is apparent from the form of the ST equation, in which the
coefncients of all the space derivatives depend on the external field. Our results indicate that the causal

properties of higher-spin equations should also be obvious when they are expressed in 2(2J+ 1)-component

SchrMinger form.

I. INTRODUCTION

Since the work of Telo and Zwanziger, ' a great
deal of attention has been given to the fa,ct that
manifestly covariant wave equations with certain
types of external field interactions can possess
noncausal solutions propagating with a, speed ex
ceeding that of light in a vacuum, a property that
is by no means obvious from the form of the equa-
tions. Inparticular, when Wightman' studied the
first- order five- component Duf fin- Kemmer-
Petiau (DKP) spin-0 equation, ' he concluded tha, t
coupling to either an antisymmetric or a traceless
symmetric second- rank tensor field admits non-
causal wave propagation. Recently when the pres-
ent authors employed a I,agragian formalism to
introduce interactions into the two-component
Sakata- Taketani (ST) spin-0 theory, "which al-
though relativistic is not manifestly covariant,
they found that the causal or noncausal nature is
apparent from the manner in which the coefficients
of the space derivatives depend on the external
field. In the present paper we demonstrate the
equivalence of the interacting ST and DKP equa-
tions for the six types of external-field couplings
that have previously been considered, obtain the
corresponding one-component Klein-Gordon (KG)
equation, and call attention to the evidence that
the causal properties of higher-spin equations will
also be manifest if they are rewritten in 2(2Z+ 1)
component Schrodinger form.

If an equation for a field (or wave function) 4
describing free massive particles with a definite
spin yields, in addition, the Klein-Gordon rela-
tion

(U+ m') 4 = 0,

then the particles have mass m and the theory
has 2(2Z+ 1) degrees of freedom, corresponding
to the 2J+ 1 spin states and the two degrees of
freedom in the "charge space. "' The maximum
number of independent components that such an
equation can have is therefore 2(2J+ 1) if it is of
first order in the time derivative and 2J+1 if it
is of second order in this operator. Thus, in the
spin-0 ST equation, which is of the Schrodinger
form

(1 2)

(in~8 —m+$)4 =0, (1.3)

where 8 =0 for free particles. Except for the
Dirac equation, the dimension of (1.3) is greater
than 2(2Z+ 1) and the o. matrices are singular. In
the presence of interactions, (9 is formed by con-
tracting the tensor indices of external fields with
those of the linearly independent matrices one
can form from products of the cy ma, trices'; in
this way one obtains all possible nonderivative
couplings. However, again with the exception of
the Dirac equation, the interacting-field equation

the dimensionality accounts for the two degrees
of freedom, whereas in the one-component Klein-
Gordon equation this freedom ls accounted for
by the second-order time derivative. A similar
situation exists with regard to the description of
spin-~ particles by either the four-component
first-order Dirac equation or the two-component
second-order Kramers equation. "

A manifestly covariant equation describing
pa.rticles with a unique nonzero mass m and spin
J can always be written in the linear form' '2
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may turn out to be noncausal, ""'4and, even
when it is causal, it may be unstable. " For
J»

& no theory free of such difficulties is known.
The DKP spin-0 and spin-1 equations, both of

which have the form (1.2), are known to be non-
causal for particular external- field interactions
of the type just discussed. '" Qf the six kinds of
nonderivative couplings that are possible for the
spin-0 equation, the two scalar and two vector
ones are causal, but noncausal wave propagation
occurs when the interaction is with either a sym-
metric or an antisymmetric second-rank tensor
fieM. The present authors' considered six ex-
ternal field interactions of the same types when
discussing a Lagrangian formalism for the spin-0
ST equation (in this case, spatial derivatives, but
not time derivatives, of the ST field were required
in the interaction Lagrangian), and when they ap-
plied certain standard tests" to their results,
they found that only the two second-rank tensor
couplings were noncausal. In this paper we obtain
our earlier results for the interacting ST spin-0
field directly from the corresponding DKP theory
by employing the same procedure followed by
Taketani and Sakata'" for the DKP equation with
minimal electromagnetic coupling; that is to say,
we perform a Peirce decomposition" of the DKP
equation and show that three of the components
can be eliminated from the field equation and
from all observables, yielding a theory involving
only the two physically essential components. It
is also easily demonstrated that the DKP equation
ean be recovered from the ST equation provided
that one of the two scalar fields is sufficiently
well-behaved. gath this provision, the two the-
ories are equivalent for the six types of external-
field interactions considered.

We remind the reader that in a manifestly co-
variant theory the space and time derivatives ap-
pear in a symmetrical manner, as in (1.3),
whereas in the ST theory, H in (1.2) is of second
order in the space derivatives. Furthermore, in
a manifestly covariant theory, the relationship
between the wave function 4(x) in one reference
frame and the wave function C '(x') in another
frame, where x' = Ax and A is a proper ortho-
chronous Lorentz transformation, has the form

4'(x') =S~C (x),

where the transformation matrix S~ depends only
on A; this relation is the same for both the free
and interacting fieMs. In theories that do not
manifest the eovariance, even though they are
relativistic, S~ may, in addition, depend on the
spatial derivatives and upon the particular exter-
nal fieMs with which 4 is interacting. Just how

complicated S~ can be for an infinitesimal trans-

formation was demonstrated in Ref. 4 for the ST
spin-0 equation, which results are rederived in
this paper via the Peirce decomposition proce-
dure. We thus see that, whereas the ST theory
has the advantage of working with only two com-
ponents corresponding to the number of degrees
of freedom, one sacrifices the simplicity of the
Lorentz- transformation properties that occurs in
the DKP theory with its three extra components.

If the free-particle equation satisfies the Klein-
Gordon relation (1.1), then, according to one of
the accepted tests, "'6 the interacting field propa-
gates causally if it satisfies an equation of the
form

(CI + 9)4 = 0, (1.5)

where 8 contains derivatives of order one at the
most; however, causal propagation al.so occurs
if 9 contains a term 8' with second-order deriva-
tives satisfying 8"=0. It is therefore interesting
to note that for those cases in which the spin-0
ST equation is noncausal. , al/ the coefficients of
the space derivatives in the operator H in (1.2)
depend on the external field, so (1.5) cannot be
satisfied. Qf particular interest is the fact that
in the noncausal case these coefficients contain a
noncovariant denominator that can vanish for cer-
tain strengths of the external fieM. Thus, the ST
spin-0 equation manifests the causal properties,
in contrast to the corresponding DKP equation, in
which the terms containing the space-time deriva-
tives are identical to those occurring in the free-
particle equation.

By expressing the four-components of the DKP
spin-0 equation that transform under the D"~'*'~"
representation of the proper orthochronous
Lorentz group in terms of the single component
that transforms under the D' '" representation,
we obtain the Klein-Gordon equation. This equa-
tion, for the reasons discussed in the preceding
paragraph, also manifests the causal properties.

When one eliminates the four extra components
from the DKP spin-1 equation, one obtains the
six-component ST spin-1 equation. ' It is natural
to ask whether the latter is changed in as notice-
able'a manner as the ST spin-0 equation when non-
causal external- field couplings are introduced. As
we shall report elsewhere, "the answer is positive
for those interactions that we have investigated.
Similar results should be expected when higher-
spin equations describing particles with a unique
mass and spin are likewise written in 2(22+ 1)-
component Schrodinger form; free-particle equa-
tions of this type have already been studied exten-
sively by a number of authors, " "and the impli-
cations of their results are discussed in Sec. V.
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II. DUFFIN-KEMMER-PETIAU THEORY

The p matrices that appear in the Duffin-
Kemmer- Petiau equation satisfy the relations'7

as four-vectors under proper orthochronous
I.orentz transformation, in which case the four-
coordinates x go into

P.IS,P~+ P~P, P. =g. .P~+g~.P. . (2.1)
(2.6)

The algebra generated by the four P„'s has three
irreducible representations, one of which is a
trivial one-dimensional representation of all ma-
trices by the number 0. Of the two physically in-
teresting representations, the first consists of
ten-by-ten matrices and the second of five-by-
five matrices, the former case leading to a de-
scription of spin-1 particles and the latter to a
theory of spin-0 particles.

In this paper we shall work only with the five-
dimensional irreducible representation of the al-
gebra, for which a more convenient set of gen-
erating elements than the P matrices has been
developed. " Following Fischbach, Nieto, and
Scott, ' we label the 25 elements of the spin-0
subalgebra, each of which 1s a five-by-five matrix~
as P, „P, P„, and „P„, and we also require that

there must exist a matrix S~ such that

S~ '(P, )S~ = A,"(P„),
S~ '(„P)S~= A "(„P).

(2.7a)

(2.7b)

For an infinitesimal transformation of the type
(2.6),

(2.8)

where ~„„= &u„„, the properties (2.7) are satisfied
by

S~=I + ru„„(~P"), (2.9)

where I is the five-by-five unit matrix. Further-
more, P and P transform as scalars and „P„asa
second- rank tensor.

The five-by-five P matrices, which are defined
by

P(P,) =P. ,

(,P)P=.P,
(P„)P= P(,P) = 0,
(„P)(P.) = „P. ,

(P,)(.P) =g„.P

(2.2a)

(2.2b)

(2.2c)

(2.2d)

(2.2e)

P„ff.=g„,(P) +,P. ~

%e introduce the matrix g, with the property

(2.11)

(2. 10)

are easily seen to be consistent with (2.1). They
transform as four-vectors, and one has

From the above, one finds that (r),)'=i, (2.12)

(P,)(P.) = (,P)(.P) = o

(P)(+.) = (.P.)P= o

(P„)(„P~) g~„(P„),

(iP.)(.P) =g: (iP)

(„P.)(Pg) =(iP)(,P.)=o,

(.P.) (g P.) =a~(.P,)
%e also define

and it follows that

(P)'= P,
PP=PP=O,

(P„)P=P„,
P(,P) =.P,

(2.3a)

(2.3b)

(2.3c)

(2.3d)

(2.3e)

(2.3f)

(2 3g)

(2.4)

(2.5a)

(2.5b)

(2.5c)

(2.5d)

where I is the five-by-five unit matrix, by means
of the usual definition

= 2(P+,Po) —I .

(2.13a)

(2.13b)

(P.)' = 0.(,P)7).=g', .(.P), (2.15a)

(.P)' = n, (P„)7). =g.„(P„) (2. 15b)

It follows that P and P are Hermitian with respect
to q, and that

In order to be able to construct Hermitian ob-
servables, it is necessary to have an Hermitiauizing
matrix for the theory. %e therefore make the
usual requirement that the P matrices be Hermitian
with respect to g„ that is, '

(2.14)

where the second eqnahty follows from (2.1). To
satisfy (2.14) we impose the following property on
the P matrices:

(„P)P=5(P„)=0,

( P„)P= P( „P„)= „P„.
(2.5e)

(2.5f)

In order for the P„'s and the „P's to transform

(,P.)'= n. (.P.)n.=r„r.,(.P,). (2.15c)

lt is clear from (2.3a), (2.3c), and (2.3g) that
the five idempotent operators P and
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„P.=8„„(„P.)

are projection operators for orthogonal subspaces
of the five-dimensional. space. W'e may therefore
write for the five-by-five unit matrix

P„=i(P„-„P)
= [P, P. ]

=3 [(P„P" I)-, P„] .

(2.22a)

(2.22b)

(2.22c)

I= P+g'"(„P„) (2.16a)

(2. 16b)

p=-'(p. p"-~),
P= k (4I —P, P")

(2.16a)

(2.16b)

Since (2.1) requires the five-dimensional Her-
mitian matrix P, to satisfy

(p.)'= p. ,

it can have the eigenvalues + 1, -1, or 0.
fact, we can easily find how many eigenvalues
are zero by introducing

8s = p+ o po = (po)'

8s=I —8~= —Q (~Py).

From the properties

(2.19a)

(2.19b)

According to (2.3a), (2.5a), and (2.5b), P and p
are projection operators onto subspaces that are
irreducible under proper orthoehronous Lorentz
transformations. The subspace belonging to P is
one-dimensional and that belonging to P is four-
dimensional; these transform, respectively, under
the D' ' ' and D" "" representations of the
proper orthochronous I orentz group. We note
that, because of (2.11),

P'P„= 4P+ P = 3P+I,
and with the aid of (2.16b) we find that

The remaining linearly independent matrices that
are Hermitian with respect to qo are the second-
rank tensors

g
&r„„=—( „P„-„P„)

Z

=-, [p. , p,],
(2.23a)

(2.23b)

P» =-, („P„+„P,) —4 g» P
=-' [P., P.],—-'8..P,P" .

(2.24a)

(2.24b)

(iP„B —rn)4'= 0. (2.25)

Note that 0„„is antisymmetrie in the tensor in-
dices p, and v, whereas P~ is symmetric and
traceless in these indices. We have thus found
six subsets of linearly independent and Hermitian
(with respect to q,) matrices that are irreducible
under proper orthochronous I orentz transforma-
tions and that serve as a basis in terms of which
to express any five-by-five matrix: two scalars,
I and P (or alternatively, I and P), two vectors,
P„and P„, an antisymmetric second- rank tensor,
o„„, and a traceless symmetric second-rank ten-
sor, P„„. Our results agree with those obtainedby
Glass, "but our use of the P matrices rather than
the P matrices greatly simpMies the calculations
in the next two sections of this paper.

The free DKP spin-0 equation may be written

(8~)' = 8~,
(8s)' = 8s,
Hsez= alas =0

(2.20a)

(2.20b)

(2.20c)

As is customary, we define

which, in the free-particle theory, satisfies

(2.26)

it follows that 8s and 8~ are projection operators
for orthogonal subspaees that have two and three
dimensions, respectively. From the definition
(2.10) of P, and the relations satisfied by the P
matrices, we find that

~s~o= ~o~s = ~0

as~0= ]808m = 0

(2.21a)

(2.21b)

which shows that three of the eigenvalues of p,
are zero. It is easy to verify from (2.2) that the
matrices P, and, P are traeeless, "whereby P,
also shaxes this property and must have one eigen-
val.ue equal to + 1 and one equa. l to -&.

A second four-vector that is Hermitian with
respect to go and linearly independent of P„ is

se„+P"+ m+= 0. (2.27)

e'(x') = S,e(x),
4"(x') =4(x)S~ '.

(2.28a)

(2.26b)

In particular, for an infinitesimal Lorentz trans-
formation the above reads, because of (2.9),

e'(x') = [I + ~,„("P")]e(x),
e'(x') = e(x)[I- ~ ("P")].

It follows that

(2.29a)

(2.29b)

(2.30)

The invariance of (2.25) and of (2.27) under proper
orthochronous I,orentz transformations requires,
because of (2.7), that
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is a conserved four-current and that

d'xC P oC = d'x@~P,4 (2.31)

is independent of the time and may be interpreted
as the charge of the particles described by the
field 4 [in the single-particle (first quantized)
theory, (2.31) gives the normalization of the wave
function )1]. As is well known, (2.31) is positive
for positive-energy states and negative for nega-
tive- energy ones.

When interactions are introduced, the I orentz-
transformation relations (2.28) remain the same,
and (2.25) becomes

%+=0,
where

X= iP„&"—m+ B,

(2.32a)

(2.32b)

and where the most general form B can have
s2'x2'xs

B=PS '+IS' '+13"J "+p "J' '+0""r + p"" TflV $LV

(2.33a)
PS(1)+ fs(2) + P u [J(() y gJ.(2)

]

+ ("P)[J„"'—iJ ~( ']+ ("P"){iP„+T „). (2.33b)

where S"'=m are also required to avoid problems
with causality. As pointed out in the Introduction,
Wightman showed that (2.32) also admits non-
causal propagation unless the two second-rank
tensor fields in (2.33) vanish identically. 2

III. SAKATA-TAKETANI THEORY

The DKP spin- 0 equation involves five compo-
nents, whereas, as discussed in the Introduction,
only two of the components are physically in-
dependent. In this section we shall eliminate the
three components that are not needed to describe
the physics in the DKP theory, and arrive at the
two-component Sakata-Taketani equation in the
Schrodinger form (1.2). We first perform a
Peirce decomposition" of the operator 3C in

(2.32) into the four pieces projected by the oper-
ators 8, and Hs in (2.19), the former of which
belongs to the subspace of nonzero eigenvalues
of Po. This is the same procedure that was orig-
inally employed to obtain the ST equation from
the DKP equation with minimal electromagnetic
coupling. '"

Suppose one is given two projection operators
8j and 8, with the prope rties

(3.la)

I =8,+8, . (3.1b)

real external fields, the first two being four-
scalars, the second two four-vectors, and the last
two second- rank four-tensors that are, respective-
ly, antisymmetric and traceless symmetric in the
indices p, and v. The coupling constants have been
included in the external fields; e.g. , one has
minimal electromagnetic coupling when one puts
J„"'=—eA„, where e is the charge of the particles
described by the field and A„ is the electromag-
netic four-potential, while allowing the other fields
to vanish identically. It is easily verified that

g„, defined in (2.30), is still a conserved four-
current and that Q in (2.31) retains its earlier sig-
nificance.

When only the second type of scalar coupling in

(2.33) is present, one in effect has a mass m'
= m(1- S(2)/m). We shall assume that there is no

open set of space-time points at which S"'=m,
since otherwise one would have a region in which
(2.32) becomes

m=p, (3.2)

where 6 is any five-by-five operator, involves a
decomposition into the two sets of equations

(3.3)

where

(3.4a)

(3.4b)

From (2.19) and the relations satisfied by the P
matrices, it is easily verified that

8
s+s L~o m+sBs (3.5a)

SXE ——iP ~ ++ sBE ~
(3.5b)

(3.5c)

Then a Peirce decomposition of an equation of the
type

iP„B"+=0,
and does not describe massive spin-0 particles.
Wightman's proof of causality for the second type
of scalar coupling would certaintly fail in such
a region, "and it is possible that even more
stringent requirements concerning the behavior
of S"' in small neighborhoods of space-time points

EKE = —m+ EBE,

EXS ——i P ' &+ EBS,

where the notation

Pa, =Pa, ,

P a=,-P a&,

(3.5d}

(3.6a)

(3.6b)
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is adopted for any three-vector a. To find the
various projections of B that occur in (3.5), it is
convenient first to relabel the time components of
the external four-vector fields as

fkf k1

to describe space rotations and

(S.1Sa)

@&a) g (o)
0 (3.7)

4) f (df (3.131}

and the components of the antisymmetric second-
rank tensor field as

(3.8a)

x'=x+ Bx x+Zt,
t'=t+X x.

(3.14a)

(S.141)

to describe boosts, so that (2.8) can be rewritten

&f=-~ ~ &fk~ki. (3.81)

Furthermore, we relabel the components of the
traceless symmetric tensor field as follows:

Zl= T00 ~

Of f0

tfk tkf Tfk 3 ~fk Too ~

(3.9a)

(3.91)

(3.9c)

qBq = (OP) V + (Po) V + PS + (0 Po)R r

sBs= —p' J —L (OP1)cl

(3.10a)

(3.101)

where tfk has been defined so as to be traceless in
'the llldlces J slid k. Fl'olxl (2.33) we liow fllld 'tllRt

a result which emphasizes the fact that the de-
composition (3.12) is not manifestly covariant,
since 4s and C~ mix under I.orentz boosts. It is
easy to verify that Q in (2.31) may be written

q= d +&pe (3.16)

Upon performing a Peirce decomposition of
(2.29R) we fllld thR't

4z(x', f') =4~(x, f)+ P X&(,P&)grs(x, t ), (3.15a)
f

e ( r ',r '(, r'+ =P „,e,. r,r, l) @,r„-, rr
fvkv l

-Q Xl(1 P)4'~(x, f),

,B,=- p.J- (IP,)c, ,

zBx= Q V'ddll

where

v= v") iv")
g&l) + S(R)

~=S&') u,
J= J~-i J2,

(3.10c)

(S.10d)

(3.11a)

(3.111)

(S.llc)

(3.11d)

so 4'~ does not contribute to the charge of the field
(to the scalar product of the wave function in the
first quantized theory), but it may appear in the
expressions for other observables.

In the free-particle theory 8 vanishes iden-
tically, and one may use (3.121) to express Cs
in terms of 4s and its space derivatives. %hen
the second type of scalar coupling or either of
the two second-rank tensor couplings is present,
it follows from (3.10d) and (3.11f) that the ma-
trix [m —(RBs)] may be singular for particular
strengths of the external field. Let us write

c= s+ie,

d1, -—(Pu —3 ) 5~1-i Qtl, P, +f1, .{2)

(S.lie)

(3.1U)

z(m-B)s™Z (1Pa)yea (3.17a)

Because of (3.4), we may now rewrite (2.32) as

8
rr, +p. ( rr ))rr

fk fk dfk '

%e furthermore let

(3.171}

(3.18a)

+ i .&f ~f+~0S&Z +S=o
f

and assume F tobe the three-by-three matrix
such that

(3.12a)

[m (,B,)]e,+[fp V+(,B,)]e,=o. (3.121}
Z V» 1Vrl = Z 1V11 1'ra = ~51&

Then

(3.181)

A similar procedure enables one to decompose the
relation (2.29a) governing the behavior of the DKP
field under infinitesimal Lorentz transformations.
%e introduce

~fk '= & '~fk (3.18c)

m ' Q (1')F1„=—6( ~[(m —B) ']s), (3.18d)
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S")/m,

Yjk= ~jk.

(3.20a)

(3.20b)

(c) Antisymmetric second-rank tensor coupling:

a = a„=1 m-'b',

Y~„= Y~~ 6,~
=m 25, b)~+i m '.Qg p, . (3.21b)

j

(3.21a)

(d) Traceless symmetric second- rank tensor
coupling:

1+ 1+ m-2 tjk
2

(3.22a)

1 I

3m 2 l r

1- u

m
1+ --- t. —m ' t.it)k3m 'k 'l lk

L

(3.22b)

We see that 6 cannot vanish in case (a) above,
but it can vanish for the others.

When we multiply (3.12b) from the left by (3.18d),
we obtain the relation

and the inverse of [m —(zBz)) exists unless n =0.
If only one of the six types of coupling in (2.33)

is present we obta'in, with the aid of (3.1lf), the
following results for 4 and Y.

(a) First type of scalar coupling or either type
of vector coupling:

(3.19a)

(3.19b)

(b) Second type of scalar coupling:

6«l)'z= —m Q (,P~)Y,~[ip '(7+ (zBz)) «ivz.

(3.23)

Provided 4 4 0, one therefore has

«lvz= —(m6) i Q (~Pq)Y q[i.P ~ V+(zBz))«Ivz

(3.24a)

=iz[(m —B) ')zj [iP ~ &+ (zBz)] @z . (3.24b)

When either of the two second- rank tensor coup-
lings is present 4 is not a Lorentz scalar, so even
if [m —(zBz)] is singular at all space-time points
in one reference frame, it is not singular in other
frames reached by means of a Lorentz boost;
with the aid of (3.15) one can easily see that the
limit of (3.24) will exist as one approaches the
original frame through a set of frames in which
4 10 by letting the boost parameter X- 0. If
the second type of scalar coupling is present, the
inverse does not exist when S"'= m, but, ac-
cording to an assumption in the last paragraph
of Sec. II, there is no open set of space-time
points at which this equality holds; any such point
is therefore a limit point of points at which S"'
B-'m, and by taking this limit in (3.24) one should
be able to define 4~ at such a point. Of course,
the existence of this limit may require certain as-
sumptions concernjng the behavior of S"' in
small neighborhoods of space-time points at which
S"'=m; it would be interesting to see if these
conditions are precisely those needed to guarantee
the causality of the original DKP equation, as men-
tioned at the end of Sec. II.

When (3.24b) is substituted into (3.12a), one ob-
tains an equation for 4'~ alone" in the Schrodinger
form (1.2):

)

( Q (, P, )v,. B,( B ))( (( —B).-'), f('P' 7 l B )1 ~ B, —B,(,B,) V, .
j

(3.25a)

The same substitution in (3.15a) tell us that under an infinitesimal l,orentz transformation «I'z goes into

V,'("', «') =(«+ Y, «;(P;)( (( —B)') )('P'v ( B )) V (" «).
j

(3.25b)

Similarly, one can eliminate C~ from all observables formed from the DKP field and its adjoint to obtain
expressions involving only «ivz and its adjoint. We refer to (3.25a) as the Sakata-Taketani equation and
to the resulting theory, which involves only the field «lpz [or the two-component field (j) to be introduced in

(3.32)] and which is covariant (but not manifestly covariant) under the transformation (3.25b), as the
Sakata- Taketani theory.

To proceed, we use (3.10) and (3.18) to rewrite (3.25) in the form

(,P) Q ('V; —Z; )(W,,')('V, —J,) —B —P Q,. («V;, ')('V —Z„) V)
jyk jzk

—(,P,) Y I' v; —J; )(w;, '), —v* ~ (P ) Y,"(w,, '), -««) B, v
jy k jzk

(3.26a)



NONCAUSAL PROPAGATION IN SPIN-0 THEORIES WITH. . . 1525

W(x', t )='I —F»,. ((P)g(W, , ')(itt, I,) (, P) P (W„')c„) W (x, t). (3.26b)

We now note that P, and P„definedby (2.10) and

(2.22a), respectively, and
s Xs~ ——I, (3.30b)

P+ oI o (3.27)
where I represents the two-by-two unit matrix,
such that

satisfy the algebraic relations

Po 6' = —Po ——ip(),

(PP, = p, (P= ip, ,

IeoPo ———PoPo
——i (P,

(3.28a)

(3.28b)

(3.28c)

spo s pl &

$+Xs p2 &

s~oxs —p3 ~

(3.3 la.)

(3.31b)

(3.31c)

as well as

(p,)' = s"= (p,)' = 8, (3.29)

Note that the relations (3.28) and (3.29} are, within
the two-dimensional subspace belonging to 8$, the
same as the relations satisfied by the three Pauli
matrices. There exists a two (row) by- five
(column) matrix xz with the properties

Xsxs =as (3.30a)

Here the two-by-two p&'s are equal to the Pauli
matrices, but are associated with the charge-
space freedom rather than with spin. '" %e may
thus define the (two-component) Sakata- Taketani
field

/=X + (3.32)

As a result, (3.26) yields the two-component ST
equation for g and its Lorentz-transformation pro-
perties;

)

-', (p, +ip, ) g ('xi — I)(iwp)(ic, —I,) —x ——,'(I —p, ) I'c,'. (Ic,, ')('c, —I,) P)

flak

)ok

(I~ p) I-, ('c;-Il)(wi, ')c, -p*+-(p. -'p) I'c;(wt, ')c, xt}~ p. P(» ')-
Irk jyk

(3.33a)

P ( )= I- I,'', ~'(P. +'P ) I, ( ')(' — ,) ~ ( + P ) F, ( ;, '),) P(" ). , (3.33b)

It is easy to verify that Q in (3.16) may be written which is the same result given in (4.11) of Ref. 4.
(iii) First type of vector coupling in (2.33):

' 0'p, 4 (3.34)
p + p zV'+J(i) 2+p m —V

We now evaluate (3.33) explicitly, using (3.11)
and (3.18)-(3.22) for those cases in which only one
of the six external fields is present. The results
are given below.

(i) First type of scalar coupling in (2.33):

t—'„= --*'(p. ~ *p,)(—'C*~ W'i) p. P, (X»x)

(3.37a,)

P'( ', t )= I~ (p, i'p )» (- 'c+'I)) (x,Pt),

(3.37b)

as given in (4.13}of Ref. 4.
(iv) Second type of vector coupling in (2.33):

(t'(x', t') = I — (P, + ip, )X ~ '7 g(x, t), (3.35b)
2m

in agreement with (4.10) of Ref. 4.
(ii) Second type of scalar coupling in (2.33):

z p + Zp + g e J(2) J(2)2

—ip2 V' + p3m (3.38a)

(p, +tp, )& (n&) '&+p.m&. (),

(3.36a)

P (', t )= (I—
x (,~ p, )('t'» ) 'i ~ c)P(x, t), '

(3.36b)

P (" t)=(I- (P +'P)»'(»+I'*') P(x. t)

(3.38b)

as given in (4.14) of Ref. 4.
(v) Antisymmetric second-rank tensor coupling

in (2.33)":
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+&~ g g 1yAg + y ~ g "i yAg
jvk

(3.39a)

(3.39b)

the result found in (4.17) of Ref. 4.
(vi) Traceless symmetric second-rank tensor coupling in (2.33):

g.—= — P3+sPi ~j ~~ P~~qVq+s J- P2 4~ isj F -~Vq

'(( p)&~{&„)'r~s, —(p, —'p, )(& ) 's,. );*.,s, ) ——,'(p, —(p) p, )It,

()"(x') f') = I (p3yfpi)(hr) ' g X& F&„( )+ip~s)) g(x, t),
jy0

(3.40a)

(3.40b)

in agreement with (4.20b) of Ref. 4.
It is easy to specialize (3.37) and (3.39) to ac-

count for the simultaneous presence of minimal
electromagnetic coupling and direct coupling to
the electromagnetic four-tensor E„„. Since these
results have been stated elsewhere4'26 we shall
not give them here.

%e have shown that there exists a mapping from
the DKP spin-0 theory to the ST theory developed
in Ref. 4. To verify that the two theories are
physically equivalent, it is necessary to show
that the inverse mapping from the ST to the DKP
theory exists, but this is simple to do. Given the
theory involving only the ST field, one may define
)1(s using (3.24), keeping in mind the remarks fol-
lowing that equation concerning the possible need
for certain additional assumptions regarding the
behavior of 8"', and then make the appropriate
substitutions into the right-hand sides of (3.25) to
arrive at (3.12a) and (3.15a). The relations (3.12b)
and (3.15b) are easily seen to follow from (3.15a)
and (3.24). From the known causaUty of the DKP
theory, except when either of the two second-rank
tensor couplings is present, ' and from the equiva-
lence of the two theories, it follows that the ST
theory has the same causal properties.

In our earlier paper" we discussed in consider-
able detail the significance of the fact that ~, in

(3.20a) is a I.orentz scalar, whereas n„and Ar
in (3.21a) and (3.22a), respectively, are not. At
the same time we verified that the two scalar and
two vector couplings are causal in the ST theory
and that the two second-rank tensor couplings ad-
mit noncausal propagation. As we pointed out ln
the Introduction, one advantage of the ST theory
is that the causal properties are apparent from
the manner in which the coefficients of the space
derivatives depend on the external field.

IV. KLE1N-GORDON THEORY

In the Introduction we called attention to the dif-
ferent ways in which the single-component KG
equation and the two-component ST equation ex-
hibit the two degrees of freedom in the "charge
space, " the former doing so by "doubling" the
time derivative and the latter by "doubling" the
single component corresponding to a spin-0 parti-
cle', thus either theory ean be said to possess the
minimum number of components required to de-
scribe spin-0 particles and their antiparticles.
It is interesting to see how the KQ theory may be
obta. ined from the DKP theory with externa. l fields
by means of a Peirce decomposition, "as we shall
do in this section.

Subsequent to Eqs. (2.16) we called attention to
the fact that

(4.la)

e~(x') = 4 ~(x), (4.3a)

(4.1b)

are, respectively, the projection operators for
one-dimensional and four-dimensional subspaees
of 4, the DKP field, and that these subspaces are
invariant under proper orthoehronous Lorentz
transform ations. Thus,

(4.2a)

transforms under the D'+ ' representation of the
proper orthochronous I.orentz group and

(4.2b)

transforms under the D"~ '~2' representation.
In fact, as is easily verified using (2.29) and the
algebraic relations in Sec. II,
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4 '»(x') = [I + &u„„('P")]4'»(x), (4.3b)

z&z=- ~+ ~&x

,X,= f(P„)s'+,B„
vXv= —~+ v&v

3C =i(„P)s

In the above

(4.4a)

(4.4b)

(4.4c)

(4.4d)

so 4'~ transforms like the Klein-Gordon field.
To obtain the Klein-Gordon equation from (2.32)

for the interacting DKP spin-0 field, we once
more perform a Peirce decomposition of the op-
er3tor X, but now consider the four pieces pro-
jected by 8~ and 8v. The various steps folio~
closely those employed in the preceding section.
From (3.4a) and the algebra of the P matrices we
find that

and assume p to be the four-by-four matrix such
that

(g.")(~i")= (~.')(g."}= ~6."

Consequently,

»{g 1 P j™~Kg P
IJ )

m-'(. p")~g„"= a{,[(m —B) '],).

(4.10b)

(4.10c)

(4.10d)

When only one of the six types of coupling in (2.33)
is present we obtain the following results with the
aid of (4.6).

(a} First type of scalar coupling or either type
of vector couplings:

(4.11a}

(4.11b)

(b) Second type of scalar coupling:

x&z= &S

,B,= (P')Z.*,
,B,= ("P)Z. ,

,B„=("P")D„„,
where

S(1)+ S{2)

g (1) &g (2)
4

(4.5a)

{4.5b)

(4.5c)

(4.5d)

(4.6a)

(4.6b)

(4.6c)

& = 4» = 1 —S"'/m,
P g P

(4.12a)

(4. 12b)

(c) Antisymmetric second-rank tensor coupling:

6= E„=1——,'m '5: 5""—m ~(5:""6'~ ) (4 13a)

'JJ "='JJ~= 6 "(1—~m '6:„p6' ')+im 'P "

—m '7 6.""+-,im '(5"6:~)6:g»,

(4.13b)
with

As a result of (3.3), and (4.4), we may rewrite
(2.32) in the form

[i(P,)s" +(»B)»] '4» [m —(»B»-)]4'»=0, (4.7a)

—[m —(»B»)]4'»+ [f(„P)s"+ {»B»))4»=0. (4.7b)

The charge Q in (2.31) may be written

pD v & exp'
A,p '

(d) Traceless symmetric second-rank tensor
coupling;

——,
' T„"T„'7'„'T,'+ —,'(T„"T„')', (4.14a)

~g„"= y r„"= 6,"(I .' T„'T,"+ 3T,'T;—r.') + T,—"r„"

0+v-+vo&+g . (4.8)
(4.14b)

(m —B)„=m("P„)W„", (4.9a)

We want to use (4.7b) to express 4'» in terms of
4'», substituting the result into (4.7a) to obtain an
equation for 4» alone. We see from (4.5d) and
(4.6c) that the matrix [m {»B»)] in (4.7b) may be
singular when the second type of scalar coupling
or either of the two second-rank tensor couplings
is present. In analogy with (3.17) we write

A4»= m '(„P")'y„"[f(„P)s"+ «B»]4»,

and when 4 W 0 it follows that

e„=(mE)-'(. p")g„'[f(,p)s'+,B,]e„
= {,[(m —B)-'],)[f(,p)e" + „B,]e,.

(4.15)

(4.16a)

(4.16b)

After operating on (4.7b) from the left with (4.10d)
we have

where

——D
m

We also let

4= det~,

(4.9b)

{4.10a)

For the reasons mentioned following (3.24), there
are no problems presented by the vanishing of 4
in the presence of the second type of scalar cou-
pling, which is causal. However, the arguments
used there for the two second-rank tensor cou-
plings are not valid now because ~ is a four-
scalar, as (4.13a) and (4.14a) demonstrate. Thus,
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if the external second-rank tensor field is such
that 4 vanishes over some spa, ce-time region„
[m —(sBz)] does not possess an inverse, and it, is
not possible to eliminate 4 ~ in this region to ob-
tain an equation for 4 ~ alone; we must then con-

fine our derivation of the KQ equation to space-
time regions where there is no open set of points
at which 4=0.

When (4.16b) is substituted into (4.Va) and (4.8)
we obtain, respectively,

{[i(P„)S"+ 8 ]( [(m —f))) '] )[f{„P)S"+ B„]—(m — & ))0„=0, (4.17a)

In analogy with the procedure followed coID-
mencing with (3.30), we can introduce a one-
(row) by-five (column) matrix Xx with the proper-
ties

[s"(b, q) '9„+m nq]$ = 0,

Q = j dsx A~
"~ Q+ 80$ — 80/+ Q

(4.23a)

(4.23b)

(4.18a)

(4.18b)

and we may define the (one-component) Klein-
Qordon %'ave function

(4.19)

From (4.5), (4.10), and (4. 1V) we obtain the
Klein- Gordon equation

(ili) F11's't type of vector coupling in (2.33):

(4.24a)

(iv} Second type of vector coupling in (2.33);

[( Ps+ J'(2)ll)(s g(2))+)))2]y 0 (4.25a)

Q j dsx

Q= dxQ ~ 0" i8 +Z„Q

(4.20a) (v) Antisymmetric second-rank tensor coupling
in (2.33)"

(4.26a)

Finally, because of (4.3a), we have under
I.orentz transformations

(4.21)

(vi) Symmetric second-rank tensor coupling in
(2.33):

(4.27a)

We now evaluate (4.20}, using (4.6) and (4.10)-
(4.14) for ail cases in which only one of the four
external fields is present, as was done for the
Sakata- Taketani theory in (3.35) through {3.40).
Note, however, that mhereas we evaluated the
Lorentz- transformation properties for the ST
field, we are instead going to express the cha, rge
Q in terms of the KQ field. The reason, of course,
ls tllR't Q RlwRys llRS 'tile form (3.34) when ex-
pressed in terms of the ST field and the KQ field
always transforms as in (4.21).

(i) First type of scalar coupling in (2.33):

(4.22a)

(4.22b)

(ii) Second type of scalar coupling in (2.33):

@=i d3x 4~ ~ (I5~ y~" 9„$ 8"Q~

(4.27b)

The two scalar and two vector couplings in
(4.22) through (4.25) are equivalent to the corre-
sponding DKP results provided 8'~' is sufficiently
mell-behaved, since it is easy to see, just as me
did for the ST equation, that we can always find
a mapping from the KQ theory to the DKP theory;
owing to the causality of the DKP theory in these
cases we know that the KG theory is also causal.
But if the I.orentz scalars 4~ and 4~, which are
defined in (4.13a) and (4.14a), respectively, and
which appear in the equations (4.26) and (4.27) for
the two second-rank tensor couplings, vanish on
some open set of space-time points, the KQ equa-
tion is not defined at these points even though the
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corresponding DKP equation exists; thus the DKP
and KG theories are not necessarily equivalent
when noncausal effects are present. Qn the other
hand, as we saw in the preceding section, the ST
and DKP theories should always be equivalent for
the six types of external-field couplings we have
considered. It is interesting to note that Fisch-
bach, Nieto, and Scott" have previously com-
mented, in discussing symmetry-breaking inter-
actions, that it should always be possible to as-
sociate the ST equation with the DKP equation,
but not necessarily with the KQ equation.

The causality of (4.22a), (4.24a), and (4.25a)
can also be verified directly from the test men-
tioned in connection with (1.5). By multiplying
(4.23a) from the left by n~, it is evident that this
case also passes the test, except when S"'=m.
Both (4.26a) and (4.27a) fail the test, and the ex-
istence of noncausal effects can be proved by
examining the nature of the normals to their char-
acteristic surfaces. '"

V. SUMMARY AND DISCUSSION

Starting from the (five-component) Duffin-
Kemmer-Petiau spin-0 equation with six types of
external field interactions, two scalar, two vec-
tor, an antisymmetric second-rank tensor, and a
traceless symmetric second- rank tensor, we
have obta, ined the corresponding (two- component)
Sakata- Taketani equation by means of a Peirce
decomposition and have also found its I.orentz-
transformation properties. The results agree
with those found elsewhere by means of a I.agran-
gian formalism. We have also obtained the (one-
component) Klein-Gordon equation for each type
of coupling.

The DKP field 4 was written as the sum of the
ST field 4~ and the field 4~. To arrive at the ST
theory one completely eliminates C~ from all
equations and all expressions for physical observ-
ables, obtaining expressions involving 4~ alone,
but this is done at the expense of manifest covari-
ance. If one insists on maintaining manifest co-
variance, it is necessary to retain 4~ along with
4 ~; following Krajcik and Nieto, "one may refer
to 4 ~ as the "particle components" and to 4~ as
the "subsidiary components. " Since, however,
the former are all that is needed to represent the
physics involved, we are also justified in following
Heitler' by referring to the latter components of
the DKP field as being "redundant. "

An advantage of the ST theory is that it enables
one to express the field equation in the Schrodinger
form (1.2) without the need for any subsidiary con-
ditions on the field. ' When an equation has the
Schrodinger form, H does not involve any time

derivatives acting on the field and plays the role
of the Hamiltonian in the first quantized theory.
A knowledge of the Hamiltonian permits the use
of the Heisenberg picture, which, as has been
emphasized by Dirac, " is important in obtaining
a physical understanding of any quantum theory.
If one seeks an equation of the form (1.2) for 4z
alone, as Krajcik and Nieto" did for the case of
minimal electromagnetic coupling, it is found that
II involves time derivatives operating on 4~ in a
nonlocal manner and is not a Hamiltonian in the
first-quantized theory; furthermore, a one- to-one
relation between the number of components and the
number of physical degrees of freedom does not
exist.

An important result of this paper is the fact that
the noncausal nature of the two second- rank ten-
sor couplings is at once evident from inspection
of the coefficients of the derivatives in the ST or
KG equation, but not from the form of the DKP
equation. A similar conclusion can be reached
when one investigates various types of coupling
for the DKP and ST spin-1 equations. The rea-
son that the ST equations manifest the causal pro-
perties is that both have 2(2Z+ 1) components, the
minimum number required to describe a massive
spin-J particle by an equation in the Schrodinger
form (1.2).

It is evident that, in order to manifest the causal
properties of higher-spin theories, one should ex-
press them in 2(2J+ 1)-component Schrodinger
form. If the metric is required to commute with
x and if the discrete symmetry operators are re-
quired to be such that x transforms as a three-
vector, conditions whose importance has been
stressed elsewhere, "then it follows" that 0 in
(1.2) is a nonlocal operator in the free-particle
theory for J» -', ; that is to say, it cannot be ex-
pressed as a polynomial in the space derivatives.
Reference 22 stated the significance of this re-
sult: When a free manifestly covariant theory of
the form (1.3) possesses a constant Hermitianizing
matrix" it should not be possible to eliminate the
extra components in a local manner, in contrast
to the situation that exists for the DKP spin-0 and
spin-1 equations, and we thus obtain an explana-
tion of why even minimal electromagnetic cou-
pling is noncausal for J ~ —,. [By avoiding the use
of such an Hermitianizing matrix one can obtain
causal equations of the form (1.3), but they are
unstable. "] This conclusion is consistent with
the results of Moldauer and Case,"who obtained
nonlocal operators B when they reduced the mani-
festly covariant free Rarita-Schwinger spin-2 and
spin--, equations" to the form (1.2) with 2(2J+ 1)
components. A similar conclusion has recently
been reached independently by Capri and
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Shamaly, '~ who performed a Peirce decomposi-
tion of the manifestly covariant Gupta form" of
the Rarita-Schwinger spin--, equation with mini-
mal electromagnetic coupling.

The simplest form" that a 2(2Z+ 1)-component
Schrodinger-like equation can have appears to be

the linear form proposed by Guth. " The resulting
equations are either the arbitrary-spin general-
izations of the Dirac equation found earlier by
several authors' '" or the arbitrary-spin general-
izations of the Sakata- Taketani spin-0 and spin-1
equations. ""
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