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Feynman propagator in curved space-time
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The %'ick rotation is generalized in a covariant manner so as to apply to curved manifolds in a way that is

independent of the analytic properties of the manifold. This enables us to show that various methods for

defining a Feynman propagator to be found in the literature are equivalent where they are applicable. %e are

also able to discuss the relation between certain regularization methods that have been employed.

I. INTRODUCTION

A central question in the construction of a quan-
tum field theory in curved space-time is the de-
finition of the Feynman propagator. Once this is
known, much of the information required from
such a theory becomes readily available. The
propagator is a Green's function for the hyper-
bolic equation

I.G(x, x') = -g-"'n(x, x'),

but unlike the advanced or retarded Green's func-
tions, which can be defined locally, the Feynman
propagator is a solution defined globally through
certain boundary or positive-frequency conditions.
In the case of, say, a Dirac field interacting with
a classical external electromagnetic field, the
positive-frequency conditions imposed on the Feyn-
man function G(x, x') are the same as those for a
free Dirac field; thus, although the electromagnetic
potentials enter the operator I. explicitly, and may
make (I) difficult to solve, they do not enter into
the positive-frequency conditions. However, for
an external gravitational field, the background
metric enters the problem twice: once through
the operator L,, which contains the metric expli-
citly, and again through the global structure of
the manifold, and, consequently, the boundary
conditions.

Suppose G(x, x') to be the propagator for a mas-
sive Klein-Gordon field:

(o- m')G(x, x ) = -g-'"~(x, x'). (2)

In Minkonrski space G(x, x') exhibits a number of
properties which one might attempt to generalize
to curved space-time. In particular, (i) G is the
(ullique) analytic colltllllla'tloll to M11lkowskl space
of the preferred fundamental solution to the ellip-
tic equation obtained from (2) by the replacement

gfof tile MlIlkowski coordln, ate tlllle f; (ll) G
is the unique solution to (2) which is analytic in
the upper half cr=-,'(x-x')' plane, and such that
6 -0 as o -~ along any ray in the upper half-plane

(i.e., as Imo and Iteo tend to infinity together);
(iii) G is the unique solution to (2) which is analytic
in the lower half m2 plane and such that G 0 as
m'- ~ along any ray in the lower half-plane.

In Minkowski space these properties are equiva-
lent since they each define the same propagator G.
However, it is not clear a priori that unique co-
variant generalizations of these properties to
curved space are possible, or that any such gen-
eralizations would be equivalent.

De%itt' has studied the Feynman propagator in
curved space-time by an extension of the proper-
time formalism of Feynman and Schwinger. Re-
writing (2) as a matrix equation

with E a matrix with space-time components
(2- m')g 'I'5(x, x'), DeWitt obtains a represen-
tation for G of the form

e ds

which incorporates the usual "i& prescription. "
In terms of space-time components (4) corre-
sponds to

G(x, x')=i dse' 'f(x, x';s),

where f satisfies a "Schrodinger equation"

subject to initial conditions

J (x, x'; O) = -g-"'| (x, x').
A virtue of this approach is that it gives rise to

an interpretation in which f(x, x; s) is the ampli-
tude for a particle to propagate from a point x to
a point x' in a proper time s. The representation
(5) then exhibits G(x, x') as the amplitude for the
particle to propagate from g to x' in some proper
tj.me.

Sufficient conditions for a given Green's function
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to admit a representation of the form (5) are that,
regarded as a function of yn', G admits a Fourier
transform, is analytic in the lower half m' plane,
and tends to zero as m'-~ along any ray in the
lower half-plane. On the other hand, the above
construction of the proper-time representation is
entirely heuristic and any attempt at a more rigor-
ous derivation will clearly require careful con-
sideration of the boundary conditions to be imposed
on C and of the global properties of the space-time
manifold. A partial statement of our main result
is that for a complete, nonsingular, manifold we
can construct a propagator which exhibits covari-
ant generalizations of properties (i)-(iii) and ad-
mits a proper-time representation of the form (5).
Moreover, it is symmetric, and satisfies De%itt's
variational law for the change in t resulting from
a small variation in the geometry,

Under a restrictive set of assumptions we are
able to show that this propagator is unqiue, and
we indicate why we expect that the restrictions
can be weakened. The construction of the Feyn-
man propagator on singular manifolds is discussed
brieQy in See. V. %'e emphasize that we are con-
cerned here with the question of whether, from
the assumed existence of many solutions to (1), it
is possible to pick one, to be called the Feynman
propagator, in a reasonable way. %e are not here
concerned with the more subtle question of the
global existence of solutions to (1). Thus we shall
not proceed with total rigor in that we shall need
to assume that certain quantities are reasonably
well behaved; we shaH. , for example, assume it
to be permissible to neglect surface terms when
using the divergence theorem.

Finally, we should note that a unique Feynman
propagator does not per se supply a unique physi-
cal interpretation, since the regularization scheme
is not sacrosanct, and is to be invoked with re-
gard to the physical considerations pertinent to a
particular problem. '

II. A GENERALIZED VfKK ROTATION

The replacement t- jt is clearly beset with am-
biguities if the metric is not analytic, and even in
the analytic case there may well be ambiguities
through choice of t, or the replacement may be
ineffective if the coefficients in I. involve functions
of t. %e have shown elsewhere' how the Nick ro-
tation may be written in a manifestly covariant
form on a static manifold. %e now generalize this
to a (C") manifold (K,g) which admits an every-
where timelike smooth vector field V, the integral
curves of which have infinite proper length in the
metric g. (This is a restriction both on the mani-

fold and the vector field. ) Then for A. —1 real and
positive

g(X, Y') =g(X, Y)+ Xg(X, V)g(F, V),

with V normalized such that g(V, V) = -1 is a posi-
tive-definite metric on a manifold%. For the
theorems that follow we require 3K to be topologi-
cally R & Z, where Z is a manifold without bound-
ary. Thus, a necessary condition is that% be
globally hyperbolic.

%e have

g 1/2 ~(l 1)l/2g1/2

and we take A. to be a complex parameter. %e de-
fine G„(x,x'

~
V) as the solution of the inhomoge-

neous Klein-Gordon equation relative to the
metric g:

f G„(x,x
~
V) = [g-"'S.(g "2g"S,) -m']G„(x, x'

~
V)

f.(z- 1)'"g-'"0(x x') (7)

with the boundary condition that t „-0as x-~.
The amplitude f„(x,x', s

~
V) is defined relative to

g by analogy with (7) as the solution of

g -1/2s (g1/2gals )f (y 1 ) I/2 f8
CC 8+

subject to

f&, (x, x', 0~V)=g '/'5(x, x'), f„-0 as x-
Since L~ is an elliptic operator in the cut plane

arg(X-1)
I
+w, it is reasonable to assume, for

each V, the existence of solutions to (7) and (8).
Our strategy will be to define a Feynman propa-
gator as the limit as X-0' (i.e., from above the
cut) of G„[V]. For the consistency of this approach
it is necessary to establish that, for a given mani-
fold, the solutions to (7) and (8) with the stated
boundary conditions are unique and analytic in X

and that the limits as X-0' of G,[V] and f„[V] exist
[if these limits exist in the sense of distributions,
then they certainly satisfy (2) and (6)]. Theunique-
ness of G follows if we can show that

lim G~[ V]
)t~ 0

is independent of V.
The uniqueness and analyticity of G„[V] and f,[V]

might be expected from the corresponding results
in the static ease. %e consider this in Sec. GI.
In Sees. IV and V we consider the existence of the
limit as X -0+ and its invarianee under change of
V. To see that it is not unreasonable to expect
this construction to yield a unique propagator,
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even for a nonstatic manifold where there is no
privileged choice for V, suppose that

limG (x, x' ~V)
)t~ 0+

exists for arbitrary V. Then we have

f.„[w](c„[w]-G„[v])= (f,,[v] -L,„[w])c„[v],
where

f„[v] -f,„[w]=x(l(.-1)-'g-'"6 (v"v' w w' )6,
= x(l(.-1)-'x.

Thlls (all Rs'tel'Isk deIlotes R convolution)

c„[w] -G,[v] = ~(~- 1)-'c,[w]*xc,[v],
and in the limit A, -O' we see that C is independent
of V provided the convolution integral exists. A
similar result holds for f„[V] if we start from the
identity

I.,f)r) -(r.-(l"*—„)(fIrrr( -f I)'I)

= (~,[v] -L,[wl)f.[v),
Rnd note that f„[W] is the appropriate inverse for
the operator on the left-hand side. The existence
of the convolution is difficult to prove since to
estimate the integrals when V and W differ on a
noncompact set requires a detailed knowledge of

the behavior of G„[V] or f),[V]. Thus we do not
achieve this proof in the general case.

For a given vector field V, we can see how our
prescription establishes or generalizes the prop-
erties of the Feynman propagator discussed in
Sec. I. Our prescription for the construction of
G[V] may itself be regarded as a, generalization
of pI'operiy (i). To g61161'Rlize pI'opexty (tl) co11-
sider the "geodetic interval" (I(x, x') relative to
g which is related to the geodetic interval xx(x, x )
in (SR,g) by'

o(x, x') = —,'(r'- r dx dh'
d7' P'

~+OBd7 rr

G„(o(x,x'), S,
~
V)-C(o(x, x')+ i&, Z,

~
V)

wlllcll expx'esses pI'opelty (ij).
To derive the relation between f„and G, we note

that

dx
=cr(x, x')+-,'~(v'-r) dr" V.

x
o err»

where 7' denotes proper time. The expression
multiplying X is positive-definite. Consider then
G, (x, x') as a function of o(x, x') and any seven
other variables which are functions of the eight
coordinates, Z~ (8= 1, . . . , 7) say. Then in the
limit A. -O' we obtain

(Cl m)i -dec '" " 'f (x x';s
~
V) —I ds e '" ') ~ 'Clf +((( —1) '~If —e (X"

0 0 Bs

i(l( 1) 1/2(f e-(1-1) ))) S)ro

=i(x —1) "'g '"O(x x')

where we neglect a possible contribution from the
upper limit of the integrated term in (9) since the
vanishing of this contribution is a weaker condi-
tion than the existence of the integral of f. Thus,
provided the integral exists, it will follow from
the uniqueness of the solution to (7) that

6 („„. )();f r), 8 r. )"*"f(„„.. ~()')
0

(10)

Continuing to X-0' we see that G,[V] is analytic
in the lower half m. ' plane. This establishes pxo-
p81'ty (111) Rlld g1ves tile pl'opel -'tl1118 x'eples811'tR-
tion of G,[V].

The symmetry of G„(x,x'~ V) is a standard prop-
erty of Green's functions for elliptic operators
(provided we are allowed to discard surface terms

on integrating by parts) and will be preserved in
the limit. The same remark applies, muggtis
mutandis, to the De%itt variational law.

III. UNIQUENESS AND ANALYTICITY OF Gq f V]

The uniqueness theorems for elliptic equations
can be adapted to (f) for a fixed vector field V.
Consider the homogeneous equation corresponding
to (7),

I,„u=0 (11)

for
~
arg(X —1)

~
&)I, and assume u to vanish suf-

ficiently rapidly as x -~ to permit integration by
parts as required in the following. Clearly

g LyQ=O»

and, using the divergence theorem, this becomes
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~ ~

~

~ ~ ~

(g'su~, u, s+ m, 'u*u) = 0. (12)

If X —1 is real and positive then g is positive-de-
finite and trivially u=0. If A, + A,

* then subtracting
(12) from its complex conjugate yields

((z —() ' —(1*—() ']J ()"4,, ('=0.

Thus u is a constant along the integral curves of
V and since g -0 as x-~, g must vanish every-
where. This establishes the uniqueness of G,[V]
on the cut X plane since any two solutions of (7)
differ by a solution of (11).

From this result we can deduce also the analy-
ticity of G„, for, differentiating (7) with respect
to A.*, we obtain

I), — =0,

which has the unique solution [ ~arg(X —1)
~

& x]
~G)

and these are the Cauchy-Riemann relations.
The uniqueness of the amplitude f, (again for

fixed V) may be developed in close analogy. Sup-
pose that v(x, x', s) satisfies

subject to v(x, x'; s) -0 as x-~ sufficiently rapidly
to allow surface terms to be discarded, and that
v (x, x', 0) = 0. Clearly

J
8 8ds' v* (X —I)'~'E3 — v=0

0 OR 88

The divergence theoxem yields

8
ds' (& —1)'"g"v,* v, , + v'—= 0.

0 OK

Adding this to its complex conjugate and writing
1=1+R'e"~ with ~8~ &x/2, we obtain

8
2Rcos8(g +V V )v*. v. ()+2R 'cos8(V v, ( +, )v( =0.

Assuming that we can interchange the order of integration, we find that

J
S

ds'[2Rcos8(g +V V )v,* v;()+2R 'cos8IV v; I']+ Iv(s)~'[=0.

Each term is non-negative, hence v(x, x'; s) =0 as
before. The uniqueness and analyticity of f„ fol-
low from this result in precise analogy with the
prev1ous case.

IV. EXISTENCE OF Gt VJ

There are two reasons why the limit X -0' may
give trouble. It could happen that the regular
part of G,[V] may not have a limit. For example,
it could be of the form V'x (C" function regular
at a=0). Such a situation is conceivable since the
method need not yield a Green's function for the
hyperbolic equation at all. The alternative pos-
sibility is that the singular part of G„[V] does not
have a limit (as a distribution). In certain cases
we can show that neither problem arises by means
of an explicit construction of the Green's function,
as the sum of an infinite series, which we carry
out in this section (subject to questions of con-
vergence which we do not discuss). In this way
we see that there is definitely a (nonempty) class
of manifolds for which the method is valid. In
other cases we shall see that the second possibility
does not occur and we shall simply disregard the
first pqssibility; this is equivalent to our assump-

tion that the procedure yields a Feynman propaga
tor and that the problem is one of uniqueness only.

We have previously noted the interpretation of
(6) as a SchrMinger equation. We assume, in the
first instance, that the corresponding dynamical
system does not contain caustics for initial data
representing a point source at x=x'. Since the
classical action for this dynamical system is the
geodetic interval o, the required condition is that

(K,g) can be covered by a normal coordinate
system, the regularity of normal coordinates
andof the second vaxiation of the action being here
one and the same. Thus (I(t,g) is a geodesically
convex manifold. Note that we require this condi-
tion even though we work with a, for complex X,
not o itself.

The method we useis an adaption of the Hiesz
method of fractional potentials, ' the modification
consisting in the choice of certain Bessel functions
as kernels rather than powex's of the geodesic dis-
tance. This allows us to control the behavior at
infinity, and so to construct a Gx'een's function
rather than a pax ametrix. ' It is closely related to
DeWitt's method.

For reasons which will become apparent later
we shall work with n-dimensional manifolds. I et
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G. ..(x, x') =g(o'~ 2&)&(n-e-2a&/2(2'"n&o' ')
(e ff-2k)/4

2

where
1

2t2 I fl 2P) /2~k&(ff & 2k) /2~1 ft/2
gh&~ e &l I ( /2)

and assume that we can write the fractional poten-
tial Q' '(x, x') as a series in G»(x, x'):

OO

Q"'(x, x') = Q G,„(x,«')n, (x, x')
1

(12)

For &x(0, Q' ' is a regular function at a = 0 [as-
suming the series (13) to converge] and an analy-
tic function of z. We shall show that analytic con-
tinuation to ~ = 2 then defines the distribution Q"'
as a Green's "function" for all X in the cut A. plane.

By direct calculation, using the recurrence re-
lations for the Macdonald functions

Jf„,(e) -Z„„(e)= ——Z„(e),
2v

If'„,(x)+If„.,(e) = -2K„'(x)

and the defining equation for o,

The coefficients A~ are to be chosen so that

I,n&-'&(x, x )=n"&(x,x ). we find that

4
I

I.n't '2&(x, x')= p —G, (x, x') an~(x, x')+ (2A,' n+ -&)Qy(x x ) 4o'd=ny(x x )++Q»-l(xix )n, 20 y do'

Thus, setting

4(r ~'+ Q, (2k —n+ o)+ ~~, = 0,
do

we have

I,n'-"(x x') = n" (x x')

as required.
The coefficients have been chosen so that as

0-0 we regain the usual series in powers of cr

by taking the asymptotic form of the Macdonald
functions

aP

Z„(z)-~I'(v) — (Rev&0).

plex o plane); hence the Q~'s are not uniquely de-
termined. Since (13) is always locally a &" pa-
rametrix, this must correspond to the possible
addition of a C" function. We shall return to this
point.

If the series converges uniformly with respect
to A. , then continuing to A, =O we see that the re-
sulting Green's function is independent of V. Thus
we have constructed the Feynman propagator G.

If the series does not converge (which is the

general case if the manifold is not analytic) then

this construction provides a C" parametrix, and

we can write G,[V] in the form

Hence the analytic continuation of Q' ' to ~=0
gives -i(X- I) '5(x, x') [the factor of I'(&x/2) re-
moves the apparently regular terms], and it fol-
lows that the analytic continuation of Q' "' is a
Green's function G,[V] which vanishes at infinity.

The recurrence relations (14) for Q„are the
usual ones; we have"

n (x x')= n"'(x x')

= [g '/'(x)det(o )g '/'(x')]'/'

and provided 4 g 0, i.e., provided there are no
caustics, we find that

-&.'/2 s g
&,'/2-1/2[n (g)]-1

Q, (x, x')= ——,'Q, —
0

x Q, , (I')dl' .

Note that with the existence of caustics, the inte-
gral in (15) is not independent of path (in the com-

+II„"&(x,x' ~).

In order to continue to X= 0 we have to assume that
the remainder R„' ' does not have a singularity at
X= 0. Furthermore, we do not at this stage obtain
a uniqueness theorem for G. Note that we can
continue to A, = 0 before or after taking a. -2 since
analytic continuation in a defines the distributions
K„((C+ie)'/')(t + ic) ".'

It is of interest to note that the construction
yields a natural method of regularization: We
choose Rem sufficiently large that the coincident
limit x-x' exists, and then analytically continue
quantities such as G' '(x, x) to a = 2. The infini-
ties of the theory appear as poles in the complex
z plane. This is essentially the method of Salam
and Strathdee. ' To make the connection, observe
that
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ePT g

G'"'(x x')= dss" 'e ' 'f(x x's)
Zl (p)

where v= u j2. Since tr and n occur explicitly in
the combination ~ -n one might attempt to make
the analytic continuation in n, rather than in ~,
as in the method of dimensional regularization.
However, the dimension of the space occurs also
in o, and it is not clear whether the extension of
o to n dimensions can be made arbitrarily. Thus
dimensional regularization is not a natural pro-
cedure in curved space, although in situations of
obvious symmetry one might expect it to yield the
same result as the method outlined above.

In the general case thex'e mill be eaustics and
we cannot construct a Green's function (in any
region of the complex X plane) by the above meth-
od. However, locally, fox' x, z' sufficiently close,
the above construction yields a C" parametrix. If
we now assume the existence of a Green's function
G,[V], this will differ from II"' locally by a C"
function. This C" function may contribute to
ReG(x, x) and hence give rise to pair production. '

Vfe have already shown in Sec. II that the unique-
ness problem for G now amounts to an examina-
tion of the convolution of distributions

G„[W]*XG„[V]

as X O'. These distributions are defined by

(A(x), G&(x, y))

= analytic continuation p(x)G,' '(x, y)dx

for Q(x), a C" test function with compact support.
C'~~' differs from Q' ' of Sec. IV by a C" function
which me assume to be mell behaved in the limit
X-O'. Thus, writing G„(g,y) for (P(x), G„(x,y))
and Gr(g, g) for

(e(y), (4(x), Gx(y, x)))

Gi(4 4~W)-G~(4 4~V)

IG.(A, y ~IV)*X„G.(y, 4~ V).

(i) If V and W differ only on a compact, set, then
the x'ight-hand side of this expression is an integral
of continuous functions over a compact set, and
hence exists as X approaches the real axis for aB
Xw I. In the limit X -0' we find that G(@,g ~

W)
=G(g, g V) for arbitrary P, P, and hence G(x,x'~ W)
=G(x,x' V).

(ii) If the manifold is analytic, and if x is such

that there is a tube of rays through x' which ean
be continued to infinite length without passing
through a caustic, then in this domain, the expli-
cit expression for G„ in Sec. IV is valid. Thus,
by inspection, G,[V] -G,[W] as X -0' in this re-
gion, and hence, by analytic continuation, through-
out 5tt, . The restriction to analytic manifolds clear-
ly cannot be removed from the proof. Even in the
analytic case this does not in fact complete the
theory, since the tmo&imensional Einstein uni-
verse provides an example in which for all x' there
are caustics in all (timelike) directions.

%e have not been able to specify sufficient con-
ditions which are less restrictive. The pxoblem
is not the singular part of the Gx'een's function
(we have shown that the parametrix is independent
of V) but the fact that we do not know enough about
the regular part to bound integrals over noncom-
pact sets in the way that would be possible if the
metric were positive-definite. It is clear that
some xestrietion of V and W is necessary to en-
sure convergence of the convolution integral, and
it is possible that in certain cases V and 5' may
differ on a noncompact set and yet the integral
can still exist.

VI. DISCUSSION

%e have shown that the methods for the construc-
tion of a Feynman propagator in the literature
agree where they are applicable, and me have indi-
cated the extent to which the construction ean be
extended. It is physically desirable that the con-
ditions on % be relaxed, in particular to include
manifolds with boundary. To do this we obviously
need to add further boundary conditions for G„. In
the theory of the Wiener process, ' G = 0 or 8G/Sn
= 0 have natural interpretations as absorption and
reflection boundary conditions, respectively. In-
sofar as solutions of the Schrodinger equation (6)
can be constructed from path integrals' (which
appear to be given meaning through analytic con-
tinuation), we might feel that these boundary con-
ditions can be carried over in the same spirit as
absorption and reflection conditions. Further-
more, if a singularity of % corresponds to a
boundary, in the manner of Schmidt's construc-
tion for examples one might anticipate the same
boundary conditions to be natural and possible on
a singulax' manifold.

It is interesting that in their treatment of black-
hole radiance, Hartle a d Hawking" present a der-
ivation that depends essentially only on the analytic
properties of the Kruskal manifold. It seems that
almost any Green's function obtained by analytic
continuation of an elliptic equation would manifest
the same analyticity properties and hence give the
same answer. This follows because any Green's
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function analytic in Kruskal time is, by the nature
of the coordinate transformation, periodic in
Schwarzschild time, and hence a finite-tempera-
ture Green's function in Schwarzschild coordinates.
In this case, Hartle and Hawking fix the indeter-
mination in G by requiring it to correspond to a
Fock space associated with excitations of the field
on the horizon; this is the same condition as re-
quiring the propagator to vanish as Kruskal time

gQO ~

In the Robertson-Walker solutions it is possible
to construct a unique Green's function with the

property G, (x, x'}-0 (or 8G/BN -0}as t - 0 and as
t-~, such that G(x, x'} tends to the usual Feynman
function when both t and g' are large. An interest-
ing property of this Green's function is that it does
not give rise to, and cannot be constructed from,
a rock space at t=0.
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