
PHYSICAL REVIE% D VOLUME 15, NUMBER 6 15 MARCH 1977

Vacuum stress tensor in an Einstein universe: Finite-temperature effects
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The vacuum average of the stress-energy tensor for a massive scalar field in an Einstein universe is calculated.
The renormalization adopted depends on the special circumstance that the WKB approximation is exact on
the three-dimensional sphere. The finite results are purely nonperturbative and a renormalization of only the
cosmological constant is called for. The finite-temperature corrections have also been considered with the aid
of a theory of relativistic time-temperature Green's functions in static space-times. It is shown explicitly that
the massless scalar gas is an ideal one satisfying P V = E/3.

I. INTRODUCTION

In this paper an exact calculation is presented of
the vacuum stress tensor and effective Lagrangian
of a massive quantized scalar field in a background
Einstein-universe geometry. The same situation
has been discussed by Streeruwitz, ' but our results
differ from his. The reason is probably the differ-
ent regularization methods used. The Streeruwitz
method is based on the Euler-Maclaurin formula
applied to an eigenvalue summation together with
a continuous Pauli-pillars regularization. Our
method is somewhat simpler and we would like to
argue in its favor at this point.

The Einstein universe is just about the simplest
way of altering the metric properties of the world
from the Minkowski form. It corresponds to re-
p1acing Euclidean 3-space by a 3-sphere, S', to
give the space-time 8 x S'. Now the essential point
is that not only is the harmonic analysis on spheres
as well known as that on flat space, but also for
the special case of S' the quantum-mechanical
WKB approximation is exact, for free particles
at least, just as for E'. This immediately sug-
gests that scalar quantum field theory on A x S'
should be very similar to that on Minkowski space-
time since the quantum field theory Green's func-
tions, etc. , can be expressed as proper-time

integrals over quantum-mechanical propagators
on A ~ S'. We would expect the Qreen's functions to
be, more or less, just the standard Minkowski

ones; any differences are due solely to the differ-
ent topology. (The Einstein universe is closed and

compact. ) This being so, the renormalization pro-
cedure will be essentially the same as in flat
space. W'e thus anticipate that a renormalization
of only the cosmological constant will be necessary
and this is borne out by the detailed calculations.
The Streeruwitz method leads in addition to a re-
normalization of the gravitational constant and of
the coefficients of the quadratic parts of the ac-
tion, which seems to be necessary for a general
space-time.

In the next section we give the details of the cal-
culation. In Sec. IV we extend the method to field
theory at a finite temperature and discuss the
thermodynamics of the system. The averages are
evaluated using finite-temperature Green's func-
tions, a subject of topical interest.

II. STRESS-ENERGY TENSOR AND GREEN'S FUNCTION

The quantity we wish to calculate is the average
of the improved stress-energy tensor of the neu-
tral scalar field. This is given by the averaged
coincidence limit,

(T»(x)) = ,'i j&m [-4v-„v~ —g„„~~v„v., v,v' v, ,v' i-,'R)

—g„;v' v„.—g„,,v'v„2(R~, „,+g„,,R„".')]G(x-, x'),

where G(x, x') is the Feynman Green's function on
A x S' satisfying the covariant equation

(CP+v'+-,'R)G(x, x') = &(x,x'), CP=-V„V".

If taken directly the coincidence limit diverges,
and so a systematic method of investigating this
divergence is required. For example, we could
see how the limit depends on the difference between
x and x' as this becomes small This is the point-
separation technique. Alternatively, we could use

dimensional regularization perhaps turning S' into
S'" or maybe R into R~ (or possibly both at once).
However, we do not need to be so sophisticated.
In order to see what to do we require the form
of the Green's function, G, and so we make a slight
detour to arrive at this quantity. There are in fact
quite a few ways of deriving G. We take the follow-

ing route in order to introduce some useful facts.
In the Schwinger-De%itt approach, C is written

as a proper-time integral,
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G(x, x') =i dv's '" '{x,v'ix, 0), (2) K(q, q', w) =(4wiv) '~'(s/a)[sin(s/a)] 'exp —s

where the "quantum-mechanical" propagator
(x, r [x', 0) satisfies a "Schrodinger equation"

D'-,'R {x,r [x', 0) =f6(i}6(x,x').

For the Einstein universe, a static space-time,
we have the factored form

(x, r[x', 0)=(-4wir) '~'e px[='i r'(t —t')']

x K(q, q', 7},
where K is the propagator on S' satisfying

(3)

62= [sin(s/a)] ', sin(s/a)+ —,'R

(a=radius of S') .

With this, it can easily be shown' that K is given
by

K(q, q', v) = (4wi r)' '[a sin(s/a)] '

~0

x g (s+ 2wna) exp —(s+ 2wna)',
n=-~

which exhibits the basic structure of a WEB ap-
proximation, as mentioned in Sec. I. The factor
s/[a sin(s/a)] is just the square root of the Van
Vleck determinant and s'/47' is the classical ac-
tion The sum over n produces the required peri-
odicity on the sphere S', since it is a sum over
the geodesics connecting q and q'.

To separate the direct geodesic contribution
(n=0} rewrite K,

K(q, q', 7)

= (4wir) '~'(s/a) [sin(s/a)] '

novas 222x 1+4wia g ns ' sin exp —7f n a
T T

x exp —s' (4)

Compare this with the standard expansion in pow-
ers of T,

q, q' ES'.
b,, is the Laplace-Beltrami operator on 8' and K
is a function of q and q' through the geodesic dis-
tance between the points q and q', s(q, q'). Then
6, can be replaced by its radial part b, ", ,

a iT
m=0

+ (terms exponentially small), (5)

and see that all the a (m&0} are zero. The sec-
ond term in (4} is due to the indirect pa.ths from
q to q' (i.e. , those geodesics that encircle S' at
least once) and appears in the expansion (5) as the
additional "terms exponentially small. "

The Green's function G can now be constructed
from (2), (3), and (4). We find a sum of standard
Feynman Green's functions,

g2 H" '(xo„)
G(x, x', x') =—,, p (s+2wna)

a@a sinjs/aj ~~a

(6)

with o„'=(t —t')' —(s+ 2wna)' —i& and the usual
choice of square root branches for o„.

We now return to the vacuum stress-energy
density, (1), and examine the nature of the coin-
cidence limit, f- t' and s(q, q') - 0, bearing in
mind the structure of G, Eq. (6).

It is easy to see that only the n = 0 term in (6}
will lead to divergences in the evaluation of (1).
Furthermore, it is the only term that remains in
the flat-space limit, a- ~, to give the ordinary
Minkowski Green's function, and in the coinci-
dence limit it diverges with the same singularity
as in flat space. Thus a natural procedure to re-
move the infinities in (T„„),and other expressions
involving G, would be simply to drop the n = 0
term in G. This is the prescription adopted in the
present work. We define a "renormalized" Green's
function, G, , as the series (6) omitting the n = 0
term. Then the renormalized (T„„)is given by (1)
with G replaced by G, . Before actually calcu-
lating (T,„), we wish to make a few remarks on
this subtraction method.

Firstly we should say that there is no reason to
endow the renormalized Green's function with any
propagating properties. In fact, the subtraction of
the n= 0 term violates the periodicity condition.
This is not serious. A similar situation occurs
in the theory of the Casimir effect."

It is also necessary to remark that each term of
the series (6) satisfies the homogeneous wave
equation (if tv t'). Thus so does G„, as well as G.
This is important because we want the subtraction
procedure to preserve those properties of (f„„)
that depend on G satisfying the wave equation. For
example, in the massless case' (f„„), should be
traceless. If a term were subtracted that did not
satisfy the wave equation this would not be true.

Of course this condition alone is not sufficient to
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say exactly how the subtraction of terms from G

should be done. The n= 0 term has to go, but ap-
parently we could also remove any amount of the
other terms. Such a possibility can be eliminated
by the requirement that the subtraction be equiva-
lent to a conventional renormalization of Einstein's
equations. In a general space-time this latter is
usually discussed in terms of the expansion (5),"'
and it is shown, one way or another, that only the

a, , a„and a, terms are involved. In our case a,
and a, are zero and therefore a renormalization
of only the cosmological constant is called for,
from the a, term, i.e. , from just the n=0 term in
(6). A similar conclusion also follows from the
dimensional regularization methods where the di-
mension-4 pole corresponds exactly to the n = 0
term.

%'e now proceed to evaluate the renormalized
{T,„). From (1) we have

{T )„„=is,V,G„,(x, x') i„. (7)

where K=a '. For 2,"' we use expression (9}and
we further note that because G, (x,x, p'} is p'
times a function of p,K '~' the derivative with re-
spect to K can be turned into one with respect to

This allows a partial integration and a simple
calculation produces Eq. (8}with (TM)„, equal to
-~,"', as promised. It is then straightforward to
derive the expressions

g2
(T,g, = »g n 'K,(2vnm)

3K
+ ~ ~ g n 'K~(2wnax)8m'a'

~4
{T;)„,= —,g [Ko(2vnax}+K,(2vnac)]

The K(z} are modified Bessel functions.

(T;,)„,= Bg;~[{T„)„—,+ix'G„,(x, x)] . III. SELF-CONSISTENT EINSTEIN EQUATIONS

Equations (10) and (11) constitute one of the basic
results of the present paper, but if the situation is
taken seriously one should consider the effective
Einstein equations,

R,„-ag,++Xg„„= 8vG{T,„)„- (12)

However, instead of using (7) directly to determine
(f'00), we introduce at this point the expression
for the renormalized effective Lagrangian Z,"'(x),

&V(*)=-l $ &~*G. (*,x. w*). (9)
K2

It is easy to relate Z„"„' and (T„„)„„byvarying

2,"„'with respect to a. This produces (see below)
the trace of the spatial part of (T,„), and gives
Eq. (8) with (T„)„,= -2„'"', a result which can be
checked by direct evaluation of (7) and (9).

The reason for using (9) to find {Too), is purely
one of convenience in that all we then need for
(T„„)„,is the coincidence limit of G, (x, x ) and not
of any of its derivatives.

For the limit in question we have

to see if they are self-consistent with the choice of
an Einstein-universe geometry.

%hen the quantities for an Einstein universe are
substituted into the left-hand side of (12) we find
the single self-consistency condition,

Substitution of the results (10) and (11) yields an
equation the solutions of which, in terms of a and

w, do not seem particularly relevant physically.
However, self-consistent solutions are possible
and this is, perhaps, the only useful conclusion we
can draw. If rc is zero the self-consistent solution
is a-10 '~ cm.In order to obtain the (T „)„,in terms of the

Z,"„'we firstly note that because of the symmetries
of the space, and of the dynamics, {T,o), will be
zero and {To)„,will be proportional to g, , . Equa-
tions (7) and (8} say this explicitly and so all we
need to find (T„„)„„is the trace of the spatial part,
T=g"(T,&), . In generai5 (T„„)is given by varying
the effective action with respect to the metric g"".
In our case this variation reduces to one of only
the radius a. Thus we have

IV. FINITE-TEMPERATURE CORRECTIONS

Instead of taking the average over the vacuum
it is of interest to use a state describing the ther-
mal equilibrium of the q field at temperature T.
The vacuum case is regained at T=O.

Since there is no self-interaction of the y quanta
in the system as we have described it, we have to
assume that thermal equilibrium has been achieved
by some unspecified process. The case which in-
terests us ultimately in this section is that which

T = 2K'"—(K "'2"')
dK X' eii

2

G„„(x,x, p, ') = i"8, Q-n ' H,"'( i2vnap, ). —
n=l
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has the closest analogy with ordinary blackbody
radiation. Then we allow an arbitrary number of

y quanta and the chemical potential vanishes.
For simplicity we are also going to take the

massless limit, ~ = 0. Thus we shall be evaluating
the temperature correction to the vacuum calcula-
tion of our earlier work. ' However, for a little
while we wish to consider the more general case.

The relevant averages are obtained by replacing
the Feynman Green's function G in the preceding
sections by the finite-temperature Green's func-
tion, |",~ „&, defined by the statistical average

G, „,(x, x') =i tr()}(P„p')T(P(x) P~(x'})}

-=i(T(C'(x) Cs~(x'))) (12)

The symbol T( ) indicates the usual time-ordered
product.

The quantum density operator P is that for a
grand canonical ensemble. Generally, and this is
our definition of equilibrium,

5~o = $~~o — Nl ~P'

6II
+ „„6g~"x d'x. (16)

Here d'x is dx'dx'dx'. The invariant volume ele-
ment on the hypersurface, t= constant, is dZ

( g}1/2(g ) 1/2d3x

We now rewrite (16) as

SO, = SST, —QS-SS'—-', f,.A, ,.Sg'~g„'i', AS

where

tiated with respect to the temperature, chemical
potentials, and the metric "parameters" g, „(x).
After (15) has been used, slight manipulation yields
the thermodynamic identity for the grand canonical
potential,

P(P„P');-exp p, Ao+ g i|oN; H-
L

(14) A,./
=—-2(-g) '/'

5g

where H is the second-quantized Hamiltonian and
the N, are conserved operators. The p. ', are the
corresponding chemical potentials and Ao is the
thermodynamic potential. The zero subscript or
superscript indicates that the relevant quantity is
a constant and distinguishes it from the corre-
sponding "local" quantity.

What the N,. are depends on the system under
investigation. ' If there are no conserved objects,
apart from mechanical ones, then effectively all
the p. ',. are zero and we have, for example, a black-
body radiation situation. This would be the case if
y were a real field. For a complex field an 8,
would be the "charge, "or the number of particles
minus the number of antiparticles, N, -N .

Let us now specifically work with a static space-
tiine. Without loss of generality we write its met-
ric in the form

ds =goodt —g ~ dx dx

where the g„„are independent of the time t, =x'.
The total entropy S is defined by S= -k(lnp)r and

(14}produces the standard thermostatic identity

&o= ToS+Ao+ Q P, )N(

and we have restricted the variation to that of the
g~~ only. For the special variation

5g "(x)= --'(-Z) '"g"5f(x}

(a conformal scaling), we find that

~n,
5f(x) r „o

P(x), -
where the "pressure" P is defined by

P= -3g'~A,
~
.

This equation is the analog of the conventional

thermodynamic relation

which is appreciated if we note that

gy g g

Instead of the total quantities E„N,, $, etc. ,
it is useful in the inhomogeneous situation to use
specific quantities, or densities. Thus we write

E,= r,', "'dZ =- gg„"'dZ

or (15) j & mdiv
—= n.dZ

F= Ao+ Q PAN), ,

with Eo=(H)r and N, =(N,)r. The following analysis
is more or less standard. "'

The normalization condition (1)r= 1 is differen-

(where f~ is the density of the ith conserved quanti-
ty). In equilibrium

$= st
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[cf. Ref. 10, Eqs. (157) and (176)] and

Ao = P goo dZ

The thermodynamic identity (15) then reads

f/ = Ts P-+ g p;s;,

where T= r,(g«) '~' and p,. = p',.(g«) '~' are the
loca, l (invariant) temperature and chemical poten-
tials, respectively. '"

The identity (17) in terms of densities is

6P'=s6T+ Q n, 6p, +g(A, , +P'g, q)6g". , (20)

and we can also find the local relation

6'g = T68 + Q p, Ps ( —p (A qy
+ P g»g) 6g (21)

corresponding to the total expression

M, = T,6S+ Q pod, —2 A, ,6g"g«'~'dZ.

H p cop Qp y 0 + 5p

= Q (u, [(N;+fV,)+ 6(k, k)], (23)

where the (d„' are the eigenvalues of the elliptic
equation,

subject to the vanishing of p, say, on 8%, the

Perhaps we should now interject some remarks
on the nature of the thermodynamical system we
are considering.

Classical thermodynamics mainly confines itself
to homogeneous systems (within one phase), and it
is then usual to choose the volume of the system
as one of the state variables (or "deformation co-
ordinates" in Buchdahl's terminology" ). This is
not possible for inhomogeneous systems (e.g. Ref.
12, p. 146) and the choice of coordinates then de-
pends strongly on the particular system.

The system can be defined by the quantum Hamil-
tonian (see the standard discussion in Ref. 9, p.
108, and Ref. 13, Sec. 2.6) which in turn, for us,
depends on the metric, g„„, and the region, 5R,
of three-dimensional space occupied, by definition,
by the system. (We do not delimit the range of t.)

For the sake of having something specific in mind
it is helpful to consider the perfect-gas (i.e. , free-
field) case. Then H is given by"

boundary of K. If K is closed, SK= jj and the
boundary condition becomes a periodicity require-
ment.

Note that the co~ incorporate the red-shift factor,"
(g«)'~'. All the mode energies M, are greater than
some non-negative minimum, min(&o~).

In general the v~ will depend ong, „and on 8%
(we can consider K to be known when g,,- and SK
are given), and the system can be varied by chang-
ing either g,.z or 8% or both. Vfe have so far con-
sidered only the former variation since we are
later interested in the Einstein universe, which
has no spatial boundary, SS'=fj. However, it is
the variation of &K that corresponds most closely
to the classical situation where the extension of the
system is varied by altering its boundaries, and
one equates the w'ork done to the sum of the prod-
ucts of the pressure at 85lt with the small changes
in volume over SK (e.g. Ref. 13, p. 77). K would
be specified by saying that, for example, the co-
ordinates in some particular system run over in-
variantly specified ranges. Thus one might think
of an angular parameter going from 0 to v/2.
Varying 8K corresponds to varying these ranges.

The inva, riant volume of K is given (including the
g«'~' term) by

and, in general, does not specify K completely (as
it effectively would in the classical homogeneous
case). IKI will change owing to changes in either
8% or g„„. These will be independent changes, the
former being given, roughly speaking, by changes
in the integration limits and the 1.atter by changes
in ( —g)'~'. There will be concomitant concepts of
pressure for these distinct variations, for homo-
geneous systems. In the inhomogeneous case it
is not enough to consider changes in just IKI. A
more detailed local description must be used. %'e

will not enter into exactly what restrictions must
be placed on M and g„„so that the system is ther-
modynamically homogeneous. Certainly a sufficient
condition is that SR should be a homogeneous space
(G/Jf)/I', e.g. , S'/I'. In fact, let us discuss the
case K=8' a little more closely since it is for this
we explicitly calculate later.

Since SS' = fj we cannot think of the change in in
ternal energy as being equal to the work done by
an external system at a varying boundary. Rather,
the change must be considered as spread out over
all of K much as the change in surface energy of
a soap bubble.

Because of the properties of 8', A, , must be
proportional to g, , and so the final term of (22) is
(for simplicity we set g«equal to unity)
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where P is the constant pressure, A,.&
= -Pg, ,.

This shows that the change in total internal energy
Ep due to the def ormation of 8' depends on only
the change in invariant volume and not on exactly
how the deformation is made. In fact, we might
take this property as the definition of a homoge-
neous system.

It is also worth pointing out that even for homo-
geneous sytems the final term in the local equation
(21) does not appear to vanish. In ordinary ther-
modynamics the extensive nature of the total en-
ergy implies that the energy density is explicitly
independent of the volume. This gives the Gibbs-
Duhem relation and Q = -PV. As will turn out in
the actual calculation E, is not extensive here,
even for a homogeneous static situation. Thus
P' &P.

Our discussion is incomplete until we have given
the relation between the A,.& and the averages
&T„gr. In particular, is P equal to the field pres-
sure -ig"&I&i&r'? For the Einstein case it is equal
and we shall not investigate this, admittedly vital,
matter further for the general situation.

V. FINITE-TEMPERATURE GREEN'S FUNCTIONS IN

STATIC GEOMETRIES

After this slight digression on thermodynamic
matters we return to an analysis of the Green's
function G&a,), Eq. (15).

The theory of finite-temperature Green's func-
tions is well developed for the nonrelativistic situ-
ation" and an important feature is the quasiperiod-
icity in imaginary time. If this property is to be

&v (f)P'(f')&, = —g"(~)e '""",. 2m

«('(f')&3(f)&r = —g& )((d)e '"" '",dM. 2m
(25}

&[p(f) s)&'(ff)]) c( &0}
e&tu&t & i

2g

we find the relation (cf. Ref. 16)

g&k)(&d) gc(~)(I A%80(al )( )) 1 (26)

Thus the averaged time-ordered product is de-
termined by the commutator average. This has
the advantage that in the free-field case, since
the commutator is a c number, its statistical
average is the same as its vacuum expectation
value. The following analysis is based on the work
of Brown and Maclay in their elegant paper4 on
temperature corrections to the Casimir effect.

It is easy to show from (25) and (26) that, in
general,

carried over directly into the relativistic regime
the conserved operators N& must have certain com-
mutation relations with the field operator q, be-
cause these relations play a vital role in the non-
relativistic proof of quasiperiodicity.

Charge would be one typical operator with the
required properties

exp[- P,p. '(??.- ?(?)]P exp [P,p'(N, -?({.)] = exp(P, )i'}&&) .

The nonrelativistic proof of the quasiperiodicity of
G&z „& can now be paralleled exactly, leading firstly
to the boundary condition

g(f) &? '(I'}),= exp( P.q-')«'&( 'f) P(f+ iP,)&,

Thus, if we write the finite-temperature Wightman
and Pauli-Jordan functions as Fourler lntegrals

&Tfg(f)&&'(I'))& = —[ — ~ c(~)e ' ""
„2x [1—exp[-P, (&u —p.')] 1 —exp[P, (&d —p. '}]]

If the vacuum average (T,= 0, p, '= 0) is extracted we then find, for free fields,

(1'{ ( )() (()('l()) =( {)( \ ( ))))(+(((— { — {$q ~ q. f t - ) (27)
2x [ 1 —exp[-Po(v —)i') ] 1 exp[p, (&0 i&')]

and the idea now is to expand the denominators in
powers of exp[+P,((d —p, ')]. To do this we need
some restriction on the relative sizes of co and po.
This comes about as follows.

The spectral density c((d) is zero if I+ I
is less

than the minimum single-particle excitation energy
in the system. Further, p, 'I is also smaller than
this minimum. That is to say, p, lies in the ener-
gy gap.

We can see this most easily in the free-field
case for which the lowest excitation energy is the
lowest eigenvalue of (24), min(rai}. The expression
for c(&()) in terms of the mode functions &&)&, of (24)
ls

c((d, x, x'}= 2' g (d, '[y,(x)y~~(x') 5(&d —a&,)
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The thermodynamic grand potential Ao is given by

g, = P, ' g ln P g exp[n'„P,(g' —u&,)]
k ffI =0 nI =0

x exp[ II~-Po( p+,~~)j,

which is, of course, just the sum of the particle
and antiparticle potentials. The geometric series
converge only if [)I'[&min(Id, ) (cf. Ref. 9, Sec,
53). In Minkowski space-time min(&u, ) = x and this
result generalizes the usual relativistic restric-
tion on Bose-Einstein chemical potentials. " [We
conjecture that the same result is true in the in-
teracting case (although this may be obvious). ]

If now the denominators in (27) are expanded
we obtain the finite-temperature Green's function

G&@ &
as an image sum of vacuum Green functions,

lated before. ' This is the "Casimir term. " The
second contribution corresponds to blackbody ra-
diation in infinite space as we shall see, and the
final double sum is the correction term. Corre-
spondingly we thus write' for the renormalized
average of the stress-energy tensor

&f'„.&r = &T„.),+ &T„.&r+ &T„.)r. (29

We can restrict ourselves to (T~&r because
&T,,&r is given by &T,,&r

—— 3g,,&T—o—gr just as in Eq.
(8) for II=0. &Togr can be easily found from

&f„(x)&,=fr,V,G„,(x,x') i„, „

GIgI(x&x ) g G(x&X fIIIpX)

-mg p. o
G(q „)(X,X') = Q e "~'" G(x, x'-imP, X), (28)

where X is the timelike unit vector (1,0, 0, 0).
This result shows, amongst other things, that

the finite-temperature Feynman Green's function
is quasiperiodic in imaginary time with period Po
and real "phase factor" exp(-p, il'). It generalizes
Eq. (80) of Ref. 4 to a noninteracting Bose system
with nonzero charge chemical potential in a static
space-time. Gibbons and Perry" have also shown
this periodicity in static spaces but our result,
(28), goes a little further. More comments on this
expression will be found in the final section.

At this point we cease discussion of the general
case and specialize to a neutral, massless field in
the static space A x S'. This system can be thought
of as a scalar photon gas in an Einstein universe
and we seek its internal energy density &T,gr.
Since g«= I we do not have to distinguish between

P„p,' and P, p, and in addition p, is assumed zero
[even though min(Id, }x 0].

Fl'oIII expl'essloII (6) foI' G lt ls seeII tllRt the
averages we need, say Eq. (1) with G replaced by

G&z o&, will appear as double sums over m and n
of certain coincidence limits, Z" „„C„. The re-
normalization ansatz is to drop the n=0= m term,
leaving the contributions

i 1 ~ s+ 2m'na

4II'a sin(s/a) ~„o„'

(T„),= 3(16II'a') It(4)

= (480II'a') ' (30)

first given by Ford. " The blackbody term is one
half of the standard Planck expression,

72
(T,gr =—(IIT}',

as expected.
The correction to the energy density can be

written as the sum of two terms corresponding to
(15) (cf. Ref. 4)

where V=2m'a' is the volume of S'. E' and S' are
the corrections to the total free energy and entro-
py, respectively, of the field at temperature T in
the Einstein universe and are given by

18 (6} for /I= 0. Tile renormallzatlon Rnsatz ls
understood.

The three terms in (29) are readily evaluated
and we find for the Casimir contribution the value'

g' c.,

The first of these contributions is temperature
independent and is just the vacuum average calcu-

where ) is the dimensionless parameter kTma.
Equation (34) agrees with (16).

In this way we can establish the thermodynamical
properties of the gas of y quanta since the corn-
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piete energy density (T,gr, obtained by adding

(30), (31), and (32), can obviously be written as
V 'E = V '(E+ TS), where F and S will be the total
free energy and entropy. The Casimir entropy is
of course zero.

As a simple example it is straightforward to
check that the gas satisfies the relation PV= 3E,
where the pressure P is (dE-/dV)r in accordance
with the considerations in Sec. IV. This result also
follows from the tracelessness of (T„„)r, or from
noting that u~- a '- V '~'.

We can also note that the energy density depends
on the volume via $. Hence the energy is not ex-
tensive in this sense and so the P' of (18) is not
equal to P.

From (33) it is possible to find the behavior of
(T,gr for large and small $. For large ], corre-
sponding to a high temperatux e or to a big radius
a, we find that the correction term tends to minus
the Casimir energy, up to exponentially small a,d-
ditions, while for small ( it approaches minus the
Planck density, again up to exponential correc-
tions. Thus in the two limits (Tour is the Casimir
term for low temperatures and the Planck term
for high ones.

Bxown and Maclay' found that for small $ there
was an extra term that went like 7 . This is due
to the different geometry. In the situation there
considered (the standard slab configuration of the
Casimir effect) space is infinitely extended paral-
lel to tile plates. Fox' us space is compact.

In accordance with our discussion in Sec. III we
might think of using (T„„)ron the right-hand side
of Einstein's equations and demanding self-con-
sistency. This would yield the radius as a. func-
tion of the temperature. The results will be given
at another time if deemed to be of sufficient physi-
cal interest.

Our results, (10) and (11), for the vacuum aver-
aged stress-energy tensor differ from the expres-
sion derived by Streeruwitz. ' In particular they
cannot be expanded in inverse powers of (sa)'. Our
values come entirely from the nonperturbative, in-
direct-path contribution in (4), or (5) or (6). We
do not claim that this will be a feature of the theo-
ry in a general space-time.

Incidentally it might be thought that if we had
chosen the open space section H' instead of the
compact one, 8', our renormalization ansatz would
have given zero since there is only one geodesic
on H' connecting two given points. However, the
quantum-mechanical propagator on H' is still of
the form (4), with a-fa, and there is again a non-

pexturbative contribution coming from the "imag-
inary geodesics" n ~ 1. This suggests that even in
a simple convex space-time (i.e. , one with at most
one real geodesic connecting any two points) a per-
turbation expansion should not be relied upon. In
other words, there might be additional terms aris-
ing from multiple imaginary geodesics.

%'e have discussed the effect of averaging over
a state in thermal equilibrium and have shown, as
expected, that for the massless case the scalar
gas is an ideal quantum gas" satisfying PV= 3E.
An explicit expression for the free energy has been
fouIld.

%e would now like to make some further com-
ments on the theory of finite-temperature Green's
functions and in particular on Eq. (28).

This equation bears more than a formal similari-
ty to the expression for the Green's function on a
multiply-connected space. As shown by Laidlaw
and De%itt" and Schulman" and more formally by
Dowker" the quantum-mechanical propagator Z
on a multiply-connected configuration space %
= Ott/I' is given by the sum

K(q"
i q', r) = Q a(y)ff'(qo i qoy; r), (35)

where K is the propagator on the simply connected
universal covering space It, , and the multipliers
a(y) comprise a unitary, one-dimensional (for sca,-
lar quantum mechanics) representation of the fun-
damental group of K, v,(K) =I".

Pictorially hatt can be thought of as made up of

I
F

I
copies of K ( I

I'I is the o~der of the discrete
symmetry group I'). Each point q of K then cor-
responds to

~

I' points ("pre-images") in 9R which
can be represented by qpy, for aQ y belonging to
1. q, is one, arbitrarily selected, but then fixed
pre-image of q and we have assumed the group
action of F Qn It to be on the right. This last is
only a notational yoint.

The equation K= 5(t/I' simply means that all the
points qpp or K are identif ied as the single point

q of K. Equation (35) says that the propagator on
K to go from q' to q" is obta, ined from that on K
by adding the paxtial amplitudes to go from each
of the pre-images of the initial point to one se-
lected pre-image of the final point. (It should be
said here that we are assuming that the dynamics
as well as the manifold 5/, is invariant under I'.)

The continuous paths from qpy to qp for the dif-
ferent y belong to distinct homotopy classes and
the Feynman path-integral formulation is a natural
one to use in this situation. References 20 and 21
use such an approach to show that the phase factors
a(y) form a unitary representation of the first
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homotopy group of Nl, , v, (311), which is here iso-
morphic to I'. A different attitude is taken in Ref.
22 in that no use is made of path summation, and

a(y) is simply a multiplier which comes in quite
naturally when quantum mechanics on K is pro-
jected down to give II'I copies on the II'I "fibers"
hali. In this way we can make contact with an im-
portant body of mathematical lore associated with

the Selberg trace formula. Since this is not di-
rectly relevant to our present rather discursive
preliminary discussion we shall not consider the
deeper theory of Eq. (35) further here.

Usually K is a positive-definite Riemannian
space but in certain circumstances one can use
a continuation procedure, like Hadamard, "to take
us to a space with an indefinite, e.g. Minkowskian,
metric. We have used this idea earlier" in con-
junction with Eq. (2) to derive a Feynman Green's
function on de Sitter space.

The method clearly works for any reasonable
static space-time, as indicated in Ref. 24. Basi-
cally the only difference between the theory in such
a static space and that in flat space is the change
in the spatial modes. For this reason the details
of the continuation process for this case were not

given in Ref. 24 as being obvious and are not given
here either for the same reason.

Thus, given a suitable static space-time, we

can construct the propagator on the corresponding
Euclidean-signatured space, using (35) if this
happens to be multiply-connected, and then substi-
tute this K~. into Eq. (2) for the Euclidean Green's
function GE which can finally be continued to the
physical signature. '4

It is within this scheme that we should like to in-
terpret Eq. (28). The correspondence is immedi-
ate. Equation (28) says that if the "time" axis T~
in the Euclidean-signatured space KE has the fun-
damental group v, (Tz) = Z„ then the Green's func-
tion in the Minkowski-signatured space 9R is just
a finite-temperature Green's function on JIt. Z „
is the infinite cyclic group and the action of y on

q,
' in (35) corresponds to the addition of mP to it'

in Eq. (28).
It should be emphasized that this result is a

purely mathematical one. There is no obligation
to give physical significance to the Fock space in
which the thermal averages are taken. Other ar-
guments will be needed for this.

Why v, (Tz) should be Z„ is another question. A
very interesting example is given by Gibbons and
Perry" in connection with the blackhole Schwarz-
schild geometry. The corresponding Euclidean-
signatured space has a singularity at ~= 2M (M
=source mass) which can be removed if the simply
connected time axis T~ is turned into T~ = Tx/Z„,
a one-torus with period 8aM. This is seen if the

Kruskal coordinates U and V are used in place of
f, and r, for then U and V are seen to be periodic
functions of ts (= —it), as emphasized in Ref. 18.

A slightly different way of saying this is to write
the metric in terms of tz and

I VI which play, re-
spectively, the roles of an angle and of a cylindri-
cal coordinate,

32M 2

-ds '= e "t' dI vI'+ IvI'd
y 4'

+ r'(d8'+ sin'Hdy'),

j. /2

IvI e/h1
2M

It is apparent from this form that unless we iden-
tify the points t~ and t~+ 8' there will be a true
singularity (i.e. , an infinite curvature) of the coni-
cal type" at the "origin"

I VI = 0, i.e. , at the hori-
zon x= 2M. According to Gibbons this is the rea-
son why the black hole seems endowed with a tem-
perature T, given by P, = 1/kT, = 8vM.

When the central source is charged the situation
is akin to that of the Aharonov-Bohm effect or to
that of the magnetic monopole since there is a
singularity axis carrying a flux of electromagnetic
(here electric) field. In the usual theory the phase
factors a(y) in (35) are just exp(imC), where 4 is
the flux through the axis and m is the winding num-

ber that labels the elements of I'=Z„ in the stan-
dard way. (We have assumed the test particle to
have unit cha, rge. ) A nice discussion of this situa
tion is given by Schulman in Ref. 21.

In the black-hole case 4 is imaginary, due to the
continuation, and equals iQ(kT) '/[M+(M'+Q')'t'],
where Q is the central charge and T is the black-
hole temperature now given by

21rkT = ( vI' —Q')' ''/[M+(M' Q')' ']'

In this way Eq. (35) becomes identical to (28),
with the chemical potential p,

' equaling

Q/[M —(M' —Q')'t']. This value is due to Gibbons
and Perry. "

If these ideas are taken seriously one might
think of writing down conditions for the chemical
equilibrium of a system of black holes. For ex-
ample, if we equate the chemical potentials for
several black holes we find the known equilibrium
condition IQ,. I

=M, "
Similar considerations involving a singularity

axis having a flux of angular momentum hold for
the Kerr metric. The details will be elaborated
elsewhere.

Strictly speaking, the situation for the Reissner-
Nordstrom and Kerr metrics is stationary rather
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than static and more care is needed when setting
up Pock space." The appearance of a chemical
potential is symptomatic of the possibility of para-
doxes of the Klein type.
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