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Stress-tensor trace anomaly in a gravitational metric: Scalar fields*
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We compute the stress-tensor vacuum expectation value of a massive, scalar quantum 6eld that is coupled to
the metric of an arbitrary classical gravitational 6eld. The renormalized tensor is de6ned by a dimensionally
continued, proper-time representation. The stress tensor is calculated for arbitrary dimension in a potentially
conformal-invariant manner so that its trace is formally proportional ta the square of the scalar-field mass
with this trace vanishing as the scalar 6eld becomes massless. However, the renormalized stress tensor violates
this formal identity with its trace containing additional, anomalous terms. These finite-trace anomahes are
intimately related to the infinite counterterms that must be put into the action to make the stress tensor finite.

The study of the stress-energy tensox' of quan-
tized matter fields coupled to the metric of a
classical gravitational field is interesting for
sevex'al reasons. Hawking' discovered that col-
lapsing stars alter the metric in such a way as
to make quantum-mechanical particle production
take place in a thermal distribution. The flow
of energy and momentum of these particles is
described by a vacuum expectation value of the
matter-field stress tensor. This quantity is need-
ed, in a more accurate approximation, for the
calculation of the reaction back on the metric,
since it will appear as a source driving the Ein-
stein field equation. A similar reaction on the
metxic by quantized matter fieMs may be sig-
nificant in producing isotropy in the early uni-
verse. ' In addition to such specific processes,
a clear understanding of the stress produced in
a quantized field by a classical gravitational
field' is, of course, necessary for the ultimate
construction of a consistent quantum gravitational
theory. The vacuum expectation value of the
stress tensor is infinite; it must be regulated
and xenormalized. Recently, Deser, Duff, and
Isha, m' showed that, in general, the trace of the
renormalized tensor involves anomalous terms. '
Hexe we shall examine the simplest situation in
detail, that of a scalar field coupled to the metric
of an arbitrary gravitational field.

%'e shall define the theory by a method of di-
mensional continuation. A Lagrange function for
space-time of an arbitrary dimension will be
chosen such that the trace of the stress tensor
formally vanishes as the scalar-field mass van-
ishes. Ne shall compute the vacuum expectation
value of the stress tensor and the corresponding
one-loop effective-action functional by a dimen-
sional continuation of the proper-time represen-
tation which was introduced by Schwingex'6 and
which has been developed further by DeWitt."

This proper-time method gives a specific solution
to the scalar-field Green's function equation, that
solution corresponding to the vacuum state when
the metric is asymptotoeally flat. In more gen-
eral circumstances, the possibility exists of
adding homogeneous solutions to the Green's func-
tion. However, this possibility should not alter
our results on the counterterms that are necessary
to renormalize the stress tensor or on the an-
omalous terms in its trace, since these are re-
lated to short-distance limits. '

Our new method is well defined and free of
ambiguity. The infinite counterterm needed to
renormalize the stress tensor is the metric vari-
ational derivative of the scalar counterterm which
renormalized the one-loop action. This is a con-
dition that must be met if the stress tensor is
to be renormalized consistently. It guarantees
that the stress-tensor counterterm is conserved.
This counterterm has a vanishing trace mhen the
scalar fieM mass vanishes. The renormalized
stress tensor is defined without ambiguity. It
is conserved and has well-defined trace anomalies.
The stress tensor of a scalar field in a gravita-
tiona, l metric has also been computed by other
authors using a point-separation technique for
two-9 and four'0-dimensional space-time. This
technique yields ambiguous terms involving
t" t "/t t, where t" is the tangent vector to the
geodesic used in the point-separation. This tech-
nique also produces"0 a stress tensor which is
not conserved. If the ambiguous terms involving
t" t "/t t are discarded, a conserved stress
tensor is obtained which has trace anomalies.
These trace anomalies ' agree precisely with
those found in our work, including the values
of their numerical coefficients. "

In basic outline, our method proceeds essentially
as follows. Ne have dimensionally continued,
proper-time integrals of the general form

I = i ds(is "~'E isn,



where E(xs; n) ls analytic but nonvanlshlng a't
s =0. This integral diverges in the limit g-2,
and it must be renormalized. (The limit in four-
dimensional space-time involves n-4 and dif-
ferent explicit powers of s in the integrand. We
use the limit gg-2 here and below in order to

simplify the notation. ) We do this renormaliza-
tion by first introducing an arbitrary, auxiliary
scale mass g so that the integrand E(is; n) has
a fixed scale dimension appropriate to m=2. Thus,
on introducing a temporary, intermediate, proper-
time cutoff s0, and integrating by parts, we have

ids(~'is) "~'F(is; n

s0
i ds(x'i s) "~' F(is; n) +

0

80=s' ids(a'is) "~'E(is; n)—

l ids(is) 'E(is;2)
s0

8
(luis, )F(is,; 2) — i ds(lnis) . E(is; 2).

B'$8
(1.2)

1
n 2: f = E(0;2)-2 —E(0;n)

1 -n/2 sn
QOO

i ds(lns 'i s) . E(i s; 2). (1.3)
"0 Bis

The renorma. lized integral is defined by deleting
the pole at n=2:

I „„=—2 —F(0;n)
B

ff 2

ids(in~'is) . E(is; 2).
Bt 8

(1.4)

We can now see how the anomaly arises in the
trace of the stress-tensor vacuum expectation
value. This tensor has a dimensionally continued,
proper-time representation of the sort that we
have just discussed with F(is;n) replaced by a
weight T""(x;is;n). Thus the renormalized tensor
is given by

(T""& =(T~') — T& "(x O 2}
1

The weight may be written in the form

We expand E(is;n) in the first integral above in
a power series in s and integrate term by term
under the assumption that n & 2 so that the lower
limit of the integration does not contribute. In
the limit n -2, the dependence on the intermediate
cutoff s0 in this series must cancel the s0 de-
pendence which occurs in the lower limit of the
remaining integral in Eq. (1.2). We can dispense
with this temporary cutoff by setting s0= 0 and
secure the dimensional continuation limit

With n & 2, the unrenormalized tensor has a van-
ishing trace. Hence taking the trace of Eq. (1.5)
and then taking the limit n -2 yields

g„,(T" ') „=0— ] g„„T""(x;0;n=2)

1
(na -2W)1-n 2

This trace anomaly is directly related to the
infinite scalar counterterm that is needed in the
action to make the stress-tensor finite. This
can be seen as follows. The vacuum expectation
value of the stress tensor can be expressed as
the metric variation of an effective-action func-
tional,

—.'[-g(x)]"(T""(x)& =, W,[g.s], (1.9)5g„„x
where g is the determinant of the metric g ~.
The effective action TV, corresponds to a single
closed-loop vacuum graph with the scalar field
propagating in the background metric g„„. It
has a proper-time representation of the form

1
W,[g„s]=

1 &2
W[O; 2;g., ] W, [g., ]

(1.10)

W, „„[g., ] =-2 W[O;n—;g„,]
B

Bs 8-2

T""(x;is;n)=g""A.+I3"", (1.5)
ids(lnx'is) . W[is; 2;g s].Bis

where the quantity B""does not contain an explicit
factor of g" ". Let us work in the eonformally
invariant theory where the scalar-field mass
vanishes, and where

o=g T" "(x;is;n) =nA+g„„B"".

We should first note a general feature of the di-
mensional regularization method: The value of
the auxiliary scale mass ~ is quite arbitrary, but
a change in it is precisely compensated by a finite
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change in the renormalization counterterm. Thus,
a change x- x' in Eq. (1.11}gives the integral
of a total derivative which is precisely compen-
sated by a change

-24, qQ'" -2$&4'- a~'Q',

where 8 is the curvature scalar and where

(2.4)

(2.5}
1

~2
W[0; 2;g„s] - 1 ~2

—ln—
&& w[o;2;g„,] (1.12)

with n the dimensionality of the space-time. The
stress tensor derived from the corresponding
action obeys the formal trace identity

in the counterterm in Eg. (1.10). We now assume
that the scalar field is massless so that we have
the conformal invariance

W[is;2;&2g„,] =W[X 'is;2;g, ] (1.13)

= 2W[ 0; 2;g~s ] . (1.15)

Since the scalar field was assumed to be mass-
less, this trace vanishes when computed in a
formal way. %e find that there is a trace an-
omaly, and that the space-time integral of this
finite anomaly is proportional to the scalar count-
erterm which is needed to renormalize the stress
tensor.

%e review the techniques that are needed in
Sec. II. First we explain how a Lagrange function
for a scalar field Q can be constructed which
preserves conformal invariance in a space-time
of arbitrary dimensionality. On adding a mass
term to this Lagrange function we have

under eonsfant scale transformations ~. Qn
changing the integration variable in Eq. (1.11}to
s'= ~ 's, we see that this scale transformation
is equivalent to an alteration of the auxQiary mass
~ - ~I(., an alteration which is equivalent to a finite
change in the counterterm. Hence

W,[ &'g, ] = W,[g„,]+ (In~')W[0; 2;g„].
(1.14)

It follows from Eg. (1.9) that this implies the trace
identity

Commas denote an ordinary derivative; semi-
colons denote a covarlallt derivative. ] In the
remainder of Sec. II we discuss the proper-time
representation of the scalar-field Green's func-
tion.

In Sec. III we derive the dimensionally regular-
ized, proper-time representation of the one-loop
action functional W, [g s]. It is expressed as
the space-time integral of an effective Lagrange
function,

(3 6)W,[g.a] = (d "x)q-g g,[x'g.s].
In space-time of two dimensions, the effective
Lagrangian is renormalized on writing

g(n=2) I g + g(n=2)1
1 2 + 2 2 1rcn&

where

8, = —. [e "I"(x x is 2)]'
1 8

4m Biz

= —(+It -m'),1
(1.18)

and where Z', "„=„' is a finite quantity with a proper-
time representation

(2.9)

for arbitrary dimensionality s [,T. o be precise
about the notation, we use a metric g„„with sig-
nature (-+++ ), and a curvature tensor defined
by

d";,„'=la, —, !a- d (h s )( '. )*[ -""z(.. . 2q
"0

(1.19)

The biscalar E(x,x'; is;n) is a weight in the prop-
er-time representation of the Green's function.
The constant I., in the infinite counterterm in
Eq. (1.17) arises from the derivative with respect
to n, of dimensional-dependent factors such as
(4s) "~'. Note that the Einstein tensor

G~ =A~ — g~ A (1.20)

vanishes in two dimensions. Hence, the quantity

S,= (d'x}V-g It (1.21)

is a topological invariant in the sense that its
metric variation vanishes identically. According-
ly, the scalar curvature contribution to the in-
finite counterterm in E|I. (1.17) can be omitted
from the infinite renormalization to the action.
The action can be rendered finite by writing



g (n=2) 1 1 +I., m'
( (d2»)&-g

4m 2-n
(1.22)~{n=2)

1 rcn

where lV{,"„=„' is the space-time integral of the
renormalized effective Lagrangian g', ";„'. This
e o ali atio co espo dstoa e al a-

tion of the cosmological term in the Einstein

Lagrange function. No renormalization is neces-
sary for the massless theory in two dimensions.

In space-time of four dimensions, the effective
Lagrangian is renormalized on writing

(1.23)

1 1 8

—
( ), [„0(R„,) „R -ft„„R +fr „2)+2m ], (1.24)

Kl",=.„'l —,'2, I(I ). i(I )I- —,'„ll,.'" ~ l Jl lls()na*(s)( . - [e ""V(x,x;';I)]
0

(1.25)

The nature of the renormalization term 8~ is
clarified if we consider its response to a con-
formal transformation,

g„.(») -~(x)'g„.(x).

The Acyl tensor
X
PK& +P K&

X X X . X2( K ~)I ll ~l)~2K g2K ~ll 8)l V+K)

(l.27)

is not altered by this transformation. We note
that in four dimensions the integral

The massless theory is renormalized with the
square of the Weyl tensor, a quantity which is
invariant under conformal transformation. The
massive theory has an additional infinite counter-
term that corresponds to a renormalization of
the cosmological term in the Einstein Lagrange
function. Although the combination m28 is of the
proper scale dimension, it does not appear in
the renormalization. The renormalization re-
lation can be written in a simpler, equivalent
form by again using the definitions of the Acyl
tensor and the topologically invariant character
of 6,

8, = j (d'x)v'-g 6,

with

(1.23)

(1.29)

{n q} 1 1
(42()2 4 -n

(1.31b)

(d'x) v' g[ ,'„(M„„ft2 " -ft-2)+ ——,'m']

+ g {n=c)
1 ren

in a topological invariant. Expressing 8 in terms
of these quantities yields

1 ]f &/K 1
~2 (4g)2 [ 120 ( )I v)(K ~

In Sec. III we also derive the dimensionally con-
tinued, proper-time representation for the vacuum
expectation value of the stress-energy tensor.
In two dimensions we find that

+ —'B '"+-'m'] (1.3o)

A total divergence as weQ as a topologically in-
variant quantity can be omitted in renormalizing
the action. Hence

x d gg-g —C C" + —yg

+gf {n 4) (1.31a)

where 5,";,„ is the space-time integral of g{,";,„' .

where
r""(x;0; 2) = ——,'m'g "",

and where

(y)l V)(II=2) lg2 Vg

8
ids(in» 'i 2),

848

x[e III (SZrp v(». 22. 2)]

(1.32)

(1.33)

(1.34)
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Note that the infinite counterterm which appears
in the stress-tensor renormalization in E(I. (1.32)
is precisely twice the metric variational derivative
of the action counterterm in E(I. (1.22). This

relationship must, of course, hold in a consistent
scheme of renormalization. It ensures that the
covariant divergence of the counterterm vanishes.
In four dimensions we find that

(Tn n)(n=n) 1. 8 T)' "(x is 4) -m'T""(x 0 4) +(T"')("=')
4 n -4 (4s)' Bis rcn (1.35)

T('"(x is 4) = —'(R'"' " —3R"" "+-'g""R "+4R"'R"—2R"0 0 XK Xo
8=0

+-'g""R"'&'R 2R-"")R' )2 a8y 6 f)(8 y (1.36)

m'T" "(x;0; 4) =-,'m'g" ", (1.37)

(T& )("= = —'g""ft + G"" ids(lnx is) [e "T""(x'ss'4)].m ~ 8 2»

ren & 4 (4e)& 16 (4s)2 8$s

The expression in E(I. (1.36) is manifestly traceless. It is simplified by the use of the identity

C p cx8 y C P 1 ~ ]I Pc f)tS y hCa8y &Fs ct8y 6&

and we find that

(1.38)

(1.39)

8
"T"( x»' )4=R'"'" —3R"'. '+-g""R '+-,g""R "R), —6R" "Rq +2R""R-ng""R'

s=O

(d'x)l-g(3R„, R""-R').
&g]i V

This establishes that the stress-tensor counterterm is indeed the correct metric variational derivative
of the action counterterm as exhibited in Eel. (1.31b).

The weight T(' "(x;is;n) is related to the biscalar I (x, x';is;n) weight thatappear, s in the proper-time
representation of the Green's function. %e prove in Sec. III that

T""(x;is;n) „= —(i.s)"/'e " . [(is) "/'e ~ "E(x,x; is;n)'"], (3.29)

with (is)' "/'E(x, x;is;n)'(' vanishing at s = 0. This establishes that the renormalized stress tensor is con-
served atn=2 and atn=4. Since at@=2 or 4

2 1 8 ~2~~

n 4m "~' 8is

we can integrate by parts to prove this conservation law,

1 j. . 2. 8
(Tp n)(n) (Z, p

ron i n n n n (4s)n/n i(dsIni(s() . (is)"/' . [(is) "/'e-~ «y'(» i& n) «][
8$ S 8SS »»»

(1.41)

(1.42)

Note that the term I/ng " 'Q„must appear in the renormalized stress tensor if this conservation law is
to be obeyed.

The renormalized vacuum expectation value of the square of the scalar fieM is easily obtained by the
dimensionally continued, proper-time technique. %e find that in two dimensions

(y2)(n=n) 2 +f +(yn)(n=n)1
4m 2-n ren (1.43)
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(4)'}(„"„=')= —— ids(ln«'is) . [e "E(x,x; is; 2)j,2 (~=2) ~ - 2. ~ -m23S

while 1Q foul d1IQenslons

( ~2)((i= 4) + I + ( y
2 )( (i = 4)

(4[1)' 4 -n ren (1.45)

—,', (( —J ids(ln~'is)( . ) [e *"l (x(, x;is;41 .

Now we show in Sec. III that the trace of the
weight appearing in the proper-time representa-
tions of the renormalized stress tensox', Eqs.
(1.34) and (1.38), is given by

g„,T""(x;is; n) = —III'F(x, x; is; II). (3.33)

Accordingly, for both n = 2 and n = 4, we find that

A ox its metric derivative, the Einstein tensox
6"". In two dimensions, the only effect of hoMing
f, = 0 fixed is to delete the term (1/161()R in the
renormalized effective Lagrangian g~, ",=,„'~ dis-
played ill E(l. (1.19). 111 foul' dllllellslolls, the
effect of holding $ = —, fixed is to delete the term

(T[(((}(ii) ft ~2(~ 2)(n) (1.47)

This is the stress-tensor trace anomaly: The
naive identity (2.9) is violated by the occurrence
of the anomalous term 5„.

It is easy to verify, using the specific forms
(1.36) and (1.37) of the stress-tansor counter-
term, that the anomaly in four dimensions, 8~,
is precisely that given by the mechanism described
in Ec{. (1.8) above. The two-dimensional anomaly,
8„cannot be derived by this mechanism because
a potential counterterm that produces part of
this anomaly, the Einstein tensor 6"'=R""
—pg Q y van1shes 1dentlcally 1Q two dlmenslons.

In the development that we have described, we
have cllosell the fRctol' of AQ ill tile scRlRI'-flel(i
Lagrange function

(2.5)

to be a continuous parameter. This is the con-
ceptually clearest choice, for it ensuxes that
the fol Dial ldent1ty

(2 9)

18 ob6yed fox' albltlary N. The funct10nal de-
pendence of $ on n gives a contribution to the
dimensionally continued, proper-time x"epx esenta-
tlon because the counterterm pole px'oduces tex'IQ8

lllvolvillg 8$/8)I. 0116 could, llowevel, fix ( =0
ox k = —,

' appropriate to the dimensions ~ =2 ox
n = 4, and then perform the dimensional continua-
tlon 1Q the px'opex' tlD16 representation to the dl
mension n= 2 or n=4. This latter choice is, in
fact, the technically simpler one. The only change
resulting from hoMing E fixed is a change in a
finite counterterm involving the scalar curvature

in 2,"„=„"[E(l. (1.25)j, the term

I fPl
p p

(4[1)' 18

in (T"")(„'„="[E(l. (1.38)j, and the term

1

(4v)2 18

ill ( (t) ),„[Ec{.(1.46)j. These flllite collII'ter-
term changes do not alter the stress-tensor trace
anomaly, E(l. (1.47). Some of the technical de-
tails involved in the proper-time descxiption axe
collected in the Appendix.

II. REVIEW

%6 turn now to review the techniques which we
shall employ. First, we dexive a Lagrange func-
tion for a scalar field in a space-time of ax'bitrax'y
dimension which, in the absence of a mass, form-
ally produces a stress tensor with a vanishing
tx'ace. Th18 18 achieved 1f the co11espondlng ac-
tion is invariant under a conformal tx'ansformation
of the metric tensor. The invariance will be en-
sured if 4-g il(Q;g ) is left algebraical/y invariant
by the substitutions

g„„(x)—z(x)'g„„(x), 4 (x)- )((x)'y(x), (2.1)
for, by virtue of a field equation obeyed by Q,
the action is not altered by a fieM variation
(([[(x)5)((x). (This theorem is completely analogous
to that which states that a Lagrange function which
is algebraically invariant under a general co-
ordinate transformation yields a conserved stress-
energy tensor. ) Such an algebraically invariant
Lagrange function can be constructed from the
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quantity Q
"/

v —gR(g sQ 2/'), where R is the
curvature scalar. This quantity is obviously left
invariant by the substitutions (2.1). If P were
constant, it would contain Q to the power (2- n) /p
since

proper-time representation for the Green's func-
tion, following the work of Schwinger' as extended
by DeWitt. " It is convenient to define

G(x, x') = [ —g(x)] '/'G(x, x')[ —g(x')] '/', (2.12)

R(X'g„s) =X 'R(g„s) (2.2) and to consider this function as the coordinate
matrix element of an operator,

if ~ is constant. The scalar-field Lagrange func-
tion is quadratic in Q. Hence, we must have
(2 —s)/P = 2. With this choice one finds, after
some calculation, that

(2.13)

Then, on introducing an operator with the co-
ordinate representation

( g)-1/48 ( g)1/2g ((((6 ( g)-1/4+ (R +m2

(2.14)

(2.3)

On discarding the total. divergence, normalizing
the kinetic energy term in the conventional man-
ner, and adding a mass term, we secure

HQ =1. (2.15)

On writing

the Green's function differential equation (2.11)
appears in the operator form

where

Q'" ——ERQ —m Q (2.4)

ipse "", (2.16)

n-2' —
4(n 1). (2.5) we obtain the proper-time representation'

The scalar-field I agrange function (2.4) yields
the field equation (2.17)

—y „'" + (gR + m') y = 0,

and the stress-energy tensor

(2.6) where

(x, s( x', 0) = (x~ e ""[x'). (2.18)

2

v-g 6gpv
(d "x)v'-g 2

Since the conformal transformations (2.1) change
the Lagrange function into

v'- g 2 —4-g i:—(A.
' —1) v'- g-,'m'(p',

we conclude that

g„„T""= —m'y',

(2.8)

(2.9)

which can also be directly verified from Eq. (2.7)
by using the field equation (2.6).

We need the Green's function'

In writing this representation we are tacitly as-
suming that it is taken as the limit of a complex
continuation of the mass, m' -m'(1 —ie), e- 0'.
If the metric tensor can be expanded about the
Minkowski metric with space-time asymptotically
flat, this will yield the time-ordered, vacuum-
state Green's function characterized by positive-
frequeney boundary conditions at large times.
Although the proper-time representation may not
give the correct boundary conditions for all. geo-
metrical configurations, it should give the correct
counterterms and trace anomalies since these
are quantities that involve only short-distance
l.imits.

The transformation function (2.18) is defined
by the "Schrodinger equation"

G(x, x') = (iT((P(x)(f((x'))& (2.10)

to compute the one-loop action and the stress-
tensor expectation value. It obeys

8
( x, s( x', 0) = H( x, s( x', 0),

with the boundary condition

(2.19)

S 4- g g""S,+ (R+m' G(x, x')
g

1
6(x —x'). (2 11)

We shall construct a dimensionally continued,

s- 0: ( x, s( x', 0) -(x~ x') = 6(x —x'). (2.2O)

Since we need only the short-distance limit of
this transformation function, we shal. l. write it
in a "WEB" form, "
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I"' 0) = 4„; )./ [-g( }]'i'&~'(, ')[-g( '}]'i' we infer that

F(x, x'; 0; n) = 1. (2.31}

o(x, x') =o(x', x), (2.22)

which satisfies an equation of the Hamilton-Jacobi
form

o(x, x')
xF(x x' is n) exp — '. —m'is .

2$$

(2.21)

Here the biscalar o(x, x'), the "world function, ""
is equal to one-haU of the square of the distance
along the geodesic between x' and x. It is a sym-
metrical. function,

F(x', x; is; n) =F(x, x'; is; n) (2.32)

In the work that follows we shall make use of
the power-series development

F =1+isf, + (is}2f,+

Inserting this series into Eq. (2.29) yields

-f =~ft+o «f

—2f =(Rf +c «f -r '~'(r"oaf )

Note that F(x, x'; is; n) is a symmetrical function

o o'" =2o, |l (2.23) (2.34b)

x =x': o=o=o
~

=o p&, (2.24)

and it, along with its first derivative, vanishes
with coincident coordinates,

and so forth. Various short-distance limits of
the biscalars o, b, f„and f, are needed for our
work. The derivation of these limits is reviewed
in the Appendix.

6'i'(x, x') = 6'i'(x', x), (2.26)

X=X; O ~. If =gPIf =-O P. P& ~ (2.25)

Here we use a suffix to denote a derivative with
respect to the variable x, and a primed suffix
to denote a derivative with respect to x'. The
biscalar a'~'(x, x') is a symmetrical function,

W, = &i ln Detg ', (3.1)

where t" ' is the inverse of the operator corre-
sponding to the Green's function (2.10}. Since

III. ACTION, STRESS TENSOR

The one-loop action functional W, [g z] has the
formal (divergent) definition

defined by ' (d"x)&-g &= '(0, G -'0-), (3.2)
pggl/2 gl/2o tP + 2gl/3

oem'

sP oP

and the coincident limit

(2.27)
the metric variation of the one-loop action func-
tional produces the vacuum expectation value of
the stress-energy tensor,

Substituting the WEB structure (2.21} into the
SchrMinger equation (2.19), and using the dif-
ferential equations (2.23) and (2.27) obeyed by
o and 4'/' gives the weight function equation

8F 1= tftF+ —. o «F —~-'i2(d. 'i2F)
Bis zs eP

(2.29)

5R', =-,'iTrcda '

=(-«(4, ~G '4})

d"x 6 4-g g

(d"x) v'- g( T«")-,'5g„„ (3 3)

The weight function F is regular at s =0. Hence,
the differential equation (2.29) implies that
O'"F

&
must vanish at s=o, which requires that

F(x, x'; 0;N) be a constant. The overall normal-
ization is determined by the boundary condition
(2.20) or, equivalently, by the short-distance
limit in a locally flat frame

Recalling the definitions (2.12) and (2.15) of G
and its inverse H, we have

58", =-'i Trc™OH. (3.4)

[Here a partial renormaltzation has been per-
formed by deleting a term involving Trig '5g
-5 "(0)f5lng. ] We now follow Schwinger' and
De%'itt3'7 and introduce the proper-time represen-
tation to write

(2.30)

Since o(x, x')- &(x-x')' in the locally flat frame,

DW, =- D-,iTr e "~zds
$5

Thus

(3 5)
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W, = Jt(d" x) v'-g I',„ (3.6)

where the one-loop effective Lagrangian is given
by

1 1 " ids
(4 )ii/2 (

' }1+ii/2 ( i e t )'

(3 7)

This effective Lagrangian is divergent, and it
must be renormalized. We shall perform this
renormalization by the method of dimensional
continuation discussed in the Introduction. The

continuation is effected through sufficiently small
values of n so that integration by parts with no
end-point contributions can be performed until
potential logarithms of the proper time appear.
Accordingly,

1 1 "" ids 8
2, =

( )„/,
— (. )„/, . [e "F(x,x;is;n)].

(3.8)

Let us consider first the limit in two-dimension-
al. space-time. As discussed in the Introduction,
we introduce an auxiliary scale mass K to keep
the integrand at a fixed scale dimension. Then
we have an integral identical in form to that eval-
uated in Eqs. (1.2) and (1.3):

1 1 1 8 a 1 1 8«"="= —— . [e ""F[e,e;ie;«)[ —?—,— . [ ""«[*,* i «)]I —n/2 4w 2 &is ' ' ',
o Bn (4w)"/' n sis

ids(Lnw'is) . [e " "F(x,x; is; 2)].
8m ais (3.9)

Here

F(x, x; 0;n) =1

and

(3.10)

8
F(x, x; is; n) =f, (x, x; n),ats (3.11}

and we define

8f., = —Ln(4w}"/'
2 8n tl=2

Thus

(3.12)

+I, —[f,(x, x; 2) —m'] + ——[f,(x, x; 2) —m']1 1, 1 1

1 8 ~ 2 -m 2&a2 f (x x n) —+ ids(Ln[['is) . [e "F(x x is 2)]
8m an 8is (3.13)

We have separately displayed the term w(1/4w)(f, —m') which arises from the dimensional derivative of
1/n in Eq. (3.9). We do not incorporate this into the infinite counterterm because we want the counterterm
to correspond precisely to that appearing in the stress-energy tensor. Now, using the result of the Ap-
pendix,

f,(x, x;n) =(—', —()R,

and remembering that

n ~
4(n-1)'

(A 20)

(2.5)

we obtain the results [Eqs. (1.17)-(1.19)] quoted in the Introduction. (Note that if $ is held fixed at $ =0,
then the quantity sf, /Bn is deleted from ZI" '[.) To perform the dimensionaL continuation for four-di-
mensional space-time, we first integrate by parts in Eq. (3.8),

1 1 1 " ids 8
(4w)" ' n/2-1, ('s)" ' ' s's (3.14)
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Then, using the process which must now be familiar, we get

g(+ 4) +L ~4 2~2 g g, 4 +2

+ ——,[m' —2m'f, (x, x; 4) +2f, (x, x; 4}]
11 1

—[ —2m'f, (x, x; n)+2f, (x, x; n)] + & i i ds(ln»''is) . [e "F(x,x; is; 4)]
2(4w)2 sn 8$8

where

I., = —,
' + —In(4»)" i'

S'il

N- Q

(3.16)

Again we have displayed separately a piece that could have been incorporated into the counterterm so as
to make the counterterm correspond precisely to that appearing in the stress tensor. Using Eqs. (A20),
(2.5), and

(A24)

We use Eqs. (2.10), (2.12), (2.17), and (2.21) to express

f,(x, x;n)=2[(-, —$)R)'+-, (—,
' —$)R ' ++(R„sqsR s&s —R„sR s),

gives the results [Eqs. (1.23)-(1.25)] quoted in the Introduction. [Note that if t is held fixed at $ =-, ,
then the quantity (8/sn)(-2m'f, +2f2) is deleted from ZI" '~. ]

%e turn now to derive the dimensionally continued, proper-time representation for the vacuum expecta-
tion value of the stress-energy tensor (2.V),

( T"")=( 0'"0" 'g"'0—.0"
'.

g"'m-'-0'+ &[G""0'+g""(0'), ' —(4')'""1) (3.1 I)

( I"(@(x)p(x'))}= „i, &' '(x, x') . „&, F(x, x'; is; n) exp — '. —m'is .

The coincident limits

0'=0=0' =0' ]f~~P q|f )

O'
P V

— O P-V' —A@V)

g 1/2
)

gj/2 gj/2 0eP eP

(3.13)

(2.24)

(2.25)

(2.28}

,P;V, P «V 6~@V
l/2 a/2

are needed for this evaluation of the stress tensor Eq. (3.17). Moreover, we integrate by parts in that
contribution which arises when the derivatives act upon the world function 0,

WtS -m2~sF( px u~ & pv k~) s si -a/Bid ~ 0& (
-~ &8F) (3.19)

Thus we obtain the proper-time representation

p oo ~

(&""(x))=
(4 )„g, (. )„g, e "T""(x;is;n),

with

(0 2o)

n v 9
(x; is; n) = —m —g""E(x,x; is; n)+ g "" . F(x, x; is; n)n 2 Bss

+(g"~g"" --'g"'g'")F. ~,. (», x'; is; n)~„„,

—(6 —$)G""E(x,x;is; n) + 5(g""g " —g g"")[F(x x is n)] (3.21)
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The proper-time representation (3.20} yields a formally conserved stress tensor. To establish this,
we first note that F(x, x;is; n) is a symmetrical function of x and x' [Eq. (2.32)]. Hence

and

F ), „(x,x'; is; n) =F „), (x', x; is; n),

[F g' (x, x';is; n)~„„.] "=2F ~
~ '" (x, x';is;n)[, „,

[(g"'g""-4 g""g"")F,),.„(x,x'; zs; n)[„=, ),„=F„:""'(x, x'; z's;n)[„,.

(3.22)

(3.23)

(3.24)

The divergence of the last term in Eq. (3.21) is of the form

f;v l)) f, )) iP R)(vf
, V ;V ~

V'

These results, together with the conservation of the Einstein tensor G"", imply that

m' 2-n BT""(x is n). = ——+, F(x x. is n)'"
n 2n Bis )

+F „'" "'(x, x';is; n)(„„.—[(-,
' —$)G""+JR""]F(x,x;is; n) „.

To put this expression in a useful form, we differentiate

(3.25)

(3.26)

(2.29)
BF 1, 1= $RF + —. o'"F — (c 'i' F)
BZS ZS, V gl/2, V

with respect to x' and then set x' =x. Using the coincident limits Eqs. (2.24), (2.25}, (2.28), (All), and

(A13) listed in the previous paragraph and

x =x' ~'~' I' =0
gV

we get

(A16)

F'" (x, x'; is; n) = (g ——,) RF'" (x, x'; is; n)(, ,

—. g~"--,'A~' F „x,x';is;n -F „:":~x, x';is;n, „,,
X=X

and, taking account of the symmetrical nature of F(x, x'; is; n),

F „'"' (xx'; 's; ll, =, , —(-', R""~ t(--', )-', g R) (x*;)i"s"; ), =,-', . ——.
) ( )*;isn) *".,

Hence

(3.27)

(3.28}

m j. BT"'(x is n). „= ——+ — . — . F(x x is n)'"
BZS 2iS

=(is)"i'e "— . [(is) "i'e " "F(x x. is n) "].
n Bis (3.29)

This formula establishes that the stress tensor is formally conserved, for we now have

(T""). = „i, ids — . [(is) "i'e "F(x,x;is;n) )'] =0.
0

(3.30)

The proper-time representation (3.20) also obeys the formal trace identity (2.9). To establish this, we
use the coincident limit of Eq. (2.29),

) BFx=x': . =(- —])RF+F
Bis , p (3.31)

to write the trace of Eq. (3.21) in the form

g» T""(x; is; n) = —m'F(x, x; is; n)

+ [F „'"(x,x';is;n)+F „"(x, x'; is;n)] +$( n-1)F( ,xxis;n) „'".
x=x'

Thus, on taking account of the symmetry of F(x, x';is;n) in x and x',

(3.32)
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g„„T "(x;is; n) = —m'F(x, x; is; n)+ (n —1) $ —
}

F(x, x; i&; n), „'. (3.33)

The second expression on the right-hand side of this equation vanishes with ]= [n —2/4(n —1}] [Eq. (2.5)].
RecaHing now the proper-time representation (3.18) of the vacuum expectation value of two field operators,
we have

1
"

id@(P') =
( )„~, (. )„~, e "F(x,x;is; n),

and we see that Eq. (3.33) does imply the formal trace identity

g„,( T"")= — m'(4'}.

(3.34)

(3.35)

We turn at last to the renormalization of the proper-time stress-tensor representation (3.20). In a two-
dlmensional. Space-tllTle

(T~")l"=»=2 +I, T~"—(x 0 2) —2 ——T&"(x 0. n)
1 1 „18

2-n 2 4m ' '
4m 8n

i ds(inc 'is) . [e "T""(x,is; 2)],
4m 8$s

where, according to Eq. (3.21),

(3.36)

T""(x 0 n)=g"' ——+ f, (x, x;n) —(—, -$)G&'. (3.37)

Remembering that the Einstein tensor G"" vanishes in two dimensions, we obtain the results [Eqs. (1.33)
and (1.34)] quoted in the Introduction.

In a four-dimensional space-time, me first integrate by parts,

2 1 SAS 8(T"")=
( )„~, J . )„(, , [e "T""(x;is;n)],

and then take the l.imit +-4,

&T~")l"- &=2 +L,. . T"(x;i.;4) mv'"-(x;0;4)1
4 n' -(4x)' ' ais

—2 —,. T""(x;is;n) —m'T"'(x; 0;n)
Bn (4x)' sis

2. 8 -mais v

(4x)', sisi de(lnz'is) . [e "T""(x;is; 4)].~ ~

~

~ (3.39}

The weight T""(x;is;n) depends upon n in two ways: There is the explicit n dependence displayed in Eq.
(3.21) and the implicit n dependence that arises from $(n). The explicit n dependence gives

8 Ij . 1 P 2 8T""(x;is; n) = —,g"" m' — . F(x, x; is; n)
exp

(3.40)

8 1 1 „ 8 2, ,—2 —,. T""(x;is;n) m'T""(x;0;n-) = ——g"' . [e " "F(x,x;is;4)]

(3.41}

This is the anomaly contribution to the stress tensor displayed in Eq. (1.38) of the Introduction. We men-
tioned toward the end of the Introduction that we could fix $ =-, appropriate to n = 4. %e see now' that this
is the simplest procedure, and that with this prescription Eq. (3.41) would give the only dimensional
derivative contribution to the stress tensor. We have, however, for conceptual clarity, considered E to
be a function of n so that the formal. txace identity g»T"' =-m'Q is maintained for al. l. n values. I et us
observe that

f, i „,(x, x';n)i, „,=~f,(x, x;n) ~.„-f,„.„(x,x';n)[, -„. (3.42)



15 STRESS-TENSOR TRACE ANOMALY IN A GRAVITATIONAL. . . 14S1

and define

f, , ~;.(»x'; n)l. =. = i(-.' —$)R,x;.+f) '
Then, using Eq. (2.34b) in Eq. (3.21), and recalling that

f, (x, x; n) =(-,' —$)R,

(3.43)

(A20)

T"'(x; is;n) = —g"'[-m'+-,'(2-n)(-,' —~)R](-,
' —t)R

Is= ()

Using the result (A22) of the Appendix, the decomposition (3.43) gives

f q, =+0(-R q. „+3Rq,.,"—4Rq, R;+2R„g„„R "
+2'~ ysR, „~s),

which is independent of the ( parameter. Kith

(3.44)

(3.45)

(3.46)

we ean now compute the implicit dependence

T""(x;is; n)
imp

The remaining implicit dimensional derivative term involves

(3.47)

T"'(x; 0; n) = —g"'[ —m'+-,'(2-n)(-', —()R] —(-', —$)G"", (3.48)

with

m'T"'(x 0 n) =-'g"'m' —'R+m' —'G""
36

IIIIP
' f1=4

a 1 a 1—2 —. —,T""(x is n) —m'T""(x 0 n) —m G"
sn ""(' (4w)' sis ' ', , ' ' „, (4w)' " (3.50)

which is the other dimensional derivative con-
tribution to the stress tensor displayed in Eq.
(1.38) of the Introduction. It could be omitted
from the stress tensor if the corresponding quan-
tities are also omitted from the effective I a-
grangian and from the Q' vacuum expectation
value. The counterterms displayed in Eqs. (1.36)
and (1.37) in the Introduction follow immediately
from Eqs. (3.44), (3.45} and (3.48).

The dimensional continuation renormalization
of the vacuum expectation value of the square of
the scalar field displayed in Eqs. (1.43)-(1.46) in
the Introduction follows rather directly from Eq.
(3.34).
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o cr "=2v,

with the boundary condition

0 P ~ If gPP ~

(2.23)

(2.24}

(2.25)

The third derivative of Eq. (2.23) gives the co-
incident limit

The coincident coordinate l.imits of various
derivatives of the world function o(x, x') are needed
for our work. Most of these appear in the books

by Synge" and De%itt. ' %e present here an out-
1.ine of the derivation of these quantities for the
convenience of the reader. The world function
is defined as the symmetrical solution of

I have enjoyed very fruitful conversations with
David G. Boulware.

I 0', a:s;y +O.y;a;s =O. (A1)

Now v a.s.&
is symmetrical in the indices o. , P.
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Hence, Eq. (Ai) implies that

I ~Xg~g7aao807eBoa+8~7+a

Note, for example, that

;n 2
;a qp;v 3 pv' (A5)

,.„=O. (A2)

Using these results, we can take four derivatives
of Eq. (2.23) to get

I ~ on8y 6+cab 8y+ouy 8 Ei

The derivatives can now be put in the same order
by commuting them with the use of the curvature
tensor. This gives

fx —x, o ~, 8 y, $ 3(RQ~sy +Ay~8$)

I ~ a 8X=X: O „'
Finally, we take six derivatives of Eq. (2.23)
to get

(A7)

ext, we take five derivatives of Eq. (2.23) to get

;a;8 ;a;8 ;n;8X=X: 6 n' 8' ~+0' lf ~ a' .8' +20 8 ~a, p
=O

(A6)

Placing the indices in the same order with the
aid of the curvature tensor gives

;a;8 :a;8 ; a;8 ~,8;a& a*,B* p;v+O p n';8' -v+O u a' 8' -p+«' -a' 8 p u

;a,X;8 ~;n, X;8 ~;B,X:a , &;a;8+20'PenBQopov+ lfJI(FgenepQBeu+c40$aeBVspau+~fenoBopo'vo+

putting the terms with six derivatives of o in the same index order and using Eq. (A4) gives
(y 2;~ 6 8 aB n87

45 R~ aBV

(A8)

From this follows

o '" ' '"=-—8 ' + —8 8"'
I a ~ 8,7 5,a I 5 p u

(A10)

and, remembering Eq. (A5),

Three derivatives of Eq. (2.27) give

(A13)

(2.27)

(2.28)

The first derivative of Eq. (2.27) gives the co-
incident limit

The coincident coordinate limits of various
derivatives of the symmetrical function n, '/'(x, x')
are also needed for our work. Most of these ap-
pear in the book by De%itt, ' but we again outline
their derivation for the convenience of the reader.
This function is defined by

ns'/' =~'/'o "+2~'/' o'"
sP , p

and the boundary condition :a
on sp 6 sp

This, together with Eq. (A13), implies that

Al/2; u (g x/)~ [gl/2; n(x xl)~ ]

(A15)

0 g in yB +4~1/2;n +2~1/2;a
,a, 8 pa Iif gp;n

(A14)

Since the coincident coordinate limit of 4'/' „
vanishes, the derivatives of 4'/' in Eq. (A14) can
be freely commuted. Hence, using Eq (A7), w. e
have

Two derivatives of Eq. (2.27) give

,p;v+4~, p;vy

(A11)

(A12)

(A16)

Finally, we take four derivatives of Eq. (2.27)
to get the coincident limit

O gl/2 l ag, 8 + gl/2 + ~l/2
sa e8 sp:v , jl; V , p;v, n, 8

+ 2gl/2 &,B,n + 2~1/2 &,B,a &,a;8 4 &y/2, a; 8
en; p e8;v Inev, 8 l p oa eB sp sv ~ a;8;p;v

gi/2 2,n; 8 ~i/2 4~&/2; n 2g j./&; n 2g~/2
&p , n;v l8 , a;p span , v;a;p' (A17)
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Placing the derivative indices of 4'/' in the same
order with the curvature tensor and using Eqs.
(A4) and (A13) gives

~ + eP s~ 20 oP t& 20 "P& tO.

Using Eq. (A13), we get the coincident limit

f, (x, x;n) =(-', —$)R.

We take two derivatives of Eq. (2.34a) to find

1 1 lX+ 3 RRP„—„R„„R„
1 a8 0:8y+30RP8R+3QRP0(8yJg

(A18)

g& gl/2, ; 0(;8 1R, ct+ 1 R2
g 0! g8 5,cx 36

fl PiP ~it Piv + 2f l, fliP +A jl;v~
AL/2;e

e& sP:~&

or, using Eqs. (A13) and (A18),

fi, , ,.(x, x'-;&)I.=. =( —,.—3()&,„.
1 .a CC+ 60R p „.~' —45R p ~Rp

(A21)

a8 0(8yb—3QR~8R + 3QR~8~gR

(A19)
The proper-time representation of the Green's

function involves the weight function
Hence

1 n8 ct8g+ 90RP av 8R + 9QRP a8y&.

(A22)

with

I' = 1+isf, + (is)'f, + ~ ~ ~,

1f = )—8+o''"f
1 gl/2, p

(2.33}

(2.34a)

f, „:«(x,x; n)~„, . =-', (-', —~)a „~
1 pp 1 Ot8yb—QQRPvR" + 90&asysR

(A23)

Finally, we compute the coincident limit of Eq.
(2.34b) using Eqs. (A20), (A11), (A13), and (A23):

f.(» x;&) =~a[(-', —t')&j'+ —'. (s —()&. '

(2.34b} 1so (x8 180 018"/h R (A24)
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