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We consider the possibility that particle rest masses may vary in spacetime. According to arguments
originated by Dicke, if this is the case various null experiments indicate that all masses vary in the same way.
Their variation relative to the Planck-Wheeler mass defines a universal scalar rest-mass field. We construct
the relativistic dynamics for this field based on very general assumptions. In addition, we assume Einstein’s
equations to be valid in Planck-Wheeler units. A special case of the theory coincides with Dicke’s
reformulation of Brans-Dicke theory as general relativity with variable rest masses. In the general case the rest-
mass field is some power r of a scalar field which obeys an ordinary scalar equation with coupling to the
curvature of strength gq. The r and q are the only parameters of the theory. Comparison with experiment is
facilitated by recasting the theory into units in which rest masses are constant, the Planck-Wheeler mass
varies, and the metric satisfies the equations of a small subset of the scalar-tensor theories of gravitation. The
results of solar system experiments, usually used to test general relativity, are here used to delimit the
acceptable values of r and q. We conclude that if cosmological considerations are not invoked, then the solar-
system experiments do not rule out the possibility of rest-mass variability. That is, there are theories which
agree with all null and solar-system experiments, and yet contradict the strong equivalence principle by
allowing rest masses to vary relative to the Planck-Wheeler mass. We show that the field theory of the rest-
mass field can be quantized and interpreted in terms of massless scalar quanta which interact very weakly
with matter. This explains why they have not turned up in high-energy experiments. In future reports we shall
investigate the implications of various cosmological and astrophysical data for the theory of variable rest

masses. The ultimate goal is a firm decision on whether rest masses vary or not.

I. INTRODUCTION

The rest mass of a particle is customarily de-
fined in terms of the square of its four-momentum.
It is well known that Poincaré invariance guaran-
tees that the rest mass so defined is strictly con-
stant. However, in the presence of gravitation
Poincaré invariance is inapplicable, and it is no
longer clear that the rest mass cannot vary under
such circumstances. Nevertheless, it is generally
assumed that elementary-particle rest masses
are constant in spacetime. This assumption is
part and parcel of the strong equivalence principle
which, as stressed by Dicke,! is only very partial-
ly supported by experiment. Certainly the assump-
tion of the constancy of rest masses has never
been tested in strong gravitational fields, or over
cosmological time scales. One need only imagine
the repercussions that variability of rest masses
would have in elementary-particle physics, astro-
physics, and cosmology to realize the importance
of obtaining a firm answer to the question: “Are
elementary-particle rest masses constant in space-
time or not?”

The concept of variable rest masses is not new.
It appears, for example, in Dicke’s reformulation?
of Brans-Dicke theory® as a theory in which the
metric obeys Einstein’s equations, but in which
rest masses vary in a particular way, in Hoyle
and Narlikar’s conformally invariant theory of

gravitation,* and in Malin’s cosmological theory of
variable rest masses,® to mention just a few.

Each such theory is based on specific assumptions,
and thus cannot provide a general framework for
evaluating the hypothesis of the variability of rest
masses. What is needed is a general theory of
variable rest masses based only on very general
assumptions. To construct such a theory and to
test it against solar-system experiments are the
aims of the present paper.

The outline of this paper is as follows. In Sec.
II we follow closely the pioneering analysis of
Dicke!*®'7 to show that the null experiments of
Eotvos et al.,® Dicke et ul.,® Braginsky and Panov,*°
Hughes et al.,'* Sherwin et al.,'? and Drever'?
strongly suggest that rest masses of particles are
all proportional to a universal scalar field which
we call the rest-mass field. In Sec. III we formu-
late the dynamics of this field assuming only co-
variance, that the corresponding field equation is
of no higher order than the second, and that the
equation includes no constant scale of length. Of
the resulting general theory a special case coin-
cides with the reformulation of Brans-Dicke
theory® mentioned earlier. In the general case the
rest-mass field is found to be some power r of a
scalar field which obeys a scalar field equation
with coupling to the curvature of strength ¢. In
Sec. IV we write down the Einstein gravitational
field equations with the rest-mass field contribut-
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FIG. 1. The theory of variable rest masses is com-
patible with solar system experiments only for values
of v and q in the hatched areas of the g plane.

ing to the stress-energy tensor. The equations
are regarded as valid in Planck-Wheeler units.
From Einstein’s equations we obtain the equations
of motion of matter with variable rest masses.

As first noted by Dicke,? the transformation to
units determined by rods, clocks, and material
masses is accomplished by a conformal trans-
formation; in the new units rest masses are con-
stant, but the gravitational “constant”’ varies. In
Sec. V we show that in the new units the gravita-
tional field equations are those of a subset of mea-
sure zero of the scalar-tensor theories.'*'' This
representation of the theory is particularly well
suited for comparison with experiment. In Sec.

VI we compare the theory with the results of mea-
surements of the deflection of electromagnetic
waves by the sun, the radar time delay, the Mer-
cury perihelion precession, and the Nordtvedt
effect for the moon. We find the acceptable values
of » and g to be restricted as shown in Fig. 1.
However, without appeal to cosmological consider -
ations one cannot rule out the variability of rest
mass from null and solar-system experiments
alone. In Sec. VII we show that on the quantum
level the theory allows interpretation in terms of
positive-energy massless scalar quanta which in-
teract very weakly with matter. This explains
why they have not been seen in high energy experi-
ments. In future reports we shall consider the im-
plications for the theory of astrophysical and
cosmological data, and of limits on the time de-
pendence of solar-system parameters which might
be due to the expansion of the universe. QOur ulti-
mate goal is a definite decision on whether rest
masses vary or not.

II. THE REST-MASS FIELD

We take as our basic units the Planck-Wheeler
mass, length, and time:

-1
Lyyc™ .

(1)
In these Planck-Wheeler units the speed of light
¢, the quantum -of action #, and the gravitational
coupling constant G are all constant (in fact unity)
by definition. By contrast the rest mass m of a
particle may not be constant, i.e., the ratio m/Mpy
may vary in spacetime.® It is precisely such an
eventuality, a violation of the strong equivalence
principle, which is of interest here.

In considering the way in which rest masses may
vary we follow closely the pioneering analysis of
Dicke.!'5'" Since we are questioning the constancy
of rest mass we may as well go all the way and
question also its isotropy. That is, we assume
the most general covariant linear relation between
the four-momentum of a particle (assumed struc-
tureless) and its four-velocity:

Po =fqpdx®/dT, (2)

where m is a constant with dimensions of mass,
and f,4 is a dimensionless “mass tensor” which
may vary along the particle’s world line. As seen
by an observer with four-velocity U%, the energy
of the particle is —p,U*. Clearly, as seen by the
particle itself, this energy must be non-negative.
Thus, for any possible particle motion dx*,

— fagdx® dx® must be non-negative. The parameter
and coordinate invariant action which yields the
relation (2) by the usual prescription is’

- dx® dxB /2
Sz‘””f(‘“ﬁﬁ) a,

where A is an arbitrary parameter along the world
line, and one defines
At =c=Y (= fypdx™dxB)/? . (4)

Variation of S with respect to the world line and
use of (2) and (4) give

d . dx® dx?
ar =2 oy G g7 - ®)

Mpw:(hC/G)l/z’ Lpy=hMpy~'c™, Ty, =

3)

This is just the sort of equation we should have
expected. It says that the momentum of the parti-
cle changes because of a “force” which derives
from the variation of f,g; thus the mass tensor
is the “potential” in which the motion takes place.
Substituting (2) into (5) and differentiating gives
d?x8 dx® dx?
faad_,rz +%(faﬂ,y +f7a,s ‘fﬂy .a)TiT d—T= ’
(6)

which is just the equation for geodesic motion in
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the metric f,g. The relation (4) is also the usual
one between coordinate and proper-time intervals
for the metric f,g5. Thus the particle with variable
anisotropic mass behaves as a free particle in a
geometry with metric f,g.” The quantum equations
for the particle (Dirac equation, for instance) will
have to be written in the geometry with metric f,g
so as to yield (6) as a classical limit. We conclude
that all physics of the particle takes place in the
geometry represented by fog.’

A priori there could be a different f, for each
type of particle. However, the null experiments of
Hughes et al.,'! Sherwin et al.,”? and Drever!?
severely restrict the possibilities. These experi-
ments employing magnetic resonance!!’® and
M ssbauer spectroscopy™ showed that the behavior
of nuclei such as Li’ and Fe" is unaffected by
spatial rotation of the system to high accuracy.!!"13
Likewise, the behavior of orbital electrons, such
as those of chlorine, is unaffected by spatial ro-
tation.!! Rotational effects might have been ex-
pected, owing to the anisotropic mass distribution
of the earth’s galactic environment, if particle
rest masses were tensorial. There has been some
discussion as to the precise implications of the
null results. The best view seems to be that of
Dicke’ that the experiments show any spatial mass
anisotropy to be universal, the same for all par-
ticles. This means that the spatial parts of the
f«p for various types of particles can differ at
most by rotationally invariant conformal factors.
If this property is to be unaffected by a Lorentz
boost, then clearly the full f,4 for different parti-
cles must be identical up to scalar conformal
factors. The experiments are so accurate that
this conclusion may be regarded as rather firm
for particles such as the electron, nucleons,
pions, and the photon!® which occur either actually,
or virtually, in the atoms and nuclei used, but not
for neutrinos,!® the muon, and hyperons which do
not.

Further information is provided by the very pre-
cise null experiments of E6tvSset al.,® Dickeetal.,®
and Braginsky and Panov,'® which established that
the world line of a freely falling composite body is
universal: It is independent of composition
(gold or aluminum, for example®) to great accura-
cy. This implies that the different kinds of parti-
cles involved must follow universal world lines
when free.! But according to (6) the world line of
a particle depends on the gradient of f,g so that
world lines can be universal only if the conformal
factors connecting the different f,5 are constant.
In view of the great accuracy of the experiments
this conclusion may be regarded as firm. By
absorbing the constant factors into the #’s [see
(2)] one can make all the f,, identical. We must

here stress again that this conclusion is established
only for particles occurring actually, or virtually,
in ordinary matter (electron, nucleons, pions,
photon), but not for those which do not occur (neu-
trinos, muon, hyperons). Nevertheless, we shall
assume, in the absence of evidence to the con-
trary, that the f,5 is the same for all types of
particles.

The universal f,g may now be regarded as de-
fining the geometry in which all particles and fields
evolve. The f,p is the metric with respect to
which all classical and quantum equations of matter
take their standard forms. Any other metric de-
fined a priori is disconnected from physics®'? and
will be ignored henceforth. If f,; is indeed the
metric, it would appear from (2) that four-mo-
mentum is proportional to four-velocity, i.e., that
the rest mass is a constant scalar  for each type
of particle. This would seem to dispose of the
possibility that rest masses vary. But we have
here a subtle point. The f,dx°dx® is the line
element in units defined by particle properties
since f,3 was defined from particle dynamics (see
also Sec. VI). In such “particle units” rest masses
are constant scalars as shown by our argument.
However, Planck-Wheeler units are independent
of particle properties, and thus may differ from
particle units in a spacetime-dependent way. In
particular, the ratio of the particle mass unit to
the Planck-Wheeler mass M, may be a scalar
function of the coordinates which we shall call .
Thus, if in particle units the rest mass of a par-
ticle is 7, in Planck-Wheeler units it is m =my.
Therefore rest masses may vary in Planck-
Wheeler units; if they do, they must all vary in
the same way, and the variation defines a univer-
sal dimensionless “rest-mass field” x. Since the
particle unit of mass may always be changed, the
overall scale of x is devoid of physical signifi-
cance; only relative changes in x from event to
event matter physically.

If fopdx°dx® is the line element in particle units,
which is the line element in Planck-Wheeler units?
To answer this we must know the relation between
the units of length and time in both sets of units.
The particle unit of length may be defined as the
Compton length of the particle mass unit, while
the unit of time can be taken as the unit of length
divided by the speed of light. We recall that in
Planck-Wheeler units ¢ and 7% are constants while
the particle unit of mass is just x. Thus the par-
ticle units of length and time will both vary as x ~*
relative to the corresponding Planck-Wheeler
units. It follows that in Planck-Wheeler units the
line element is

Zapdx®dx® =y 2f gdxdx® . (7
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For convenience we shall henceforth regard the
metric g45, rather than the coordinates, as carry-
ing the dimensions of length and time.

III. DYNAMICS OF THE REST-MASS FIELD

If the rest mass of a particle varies, there
would seem to be a violation of the conservation of
energy. This paradox is explained when one realizes
thatthe particle is notfree; itis coupled toanexter-
nal field—the rest-mass field. The particle’s
changing mass energy is as natural as the changing
energy of a charge moving in an external electro-
magnetic field. And just as the electromagnetic
field carries energy and has dynamics of its own,
so should the rest-mass field carry energy and
have dynamics of its own. Let us investigate these
dynamics. We shall endeavor to avoid specific
models; therefore, we only make some general
assumptions and leave it to experiment to narrow
down the possibilities (Sec. VII).

Our assumptions are the following: (a) We as-
sume that the dynamics of x are derivable from an
action S, constructed out of x and its derivatives,
and g, and its derivatives. (b) We assume that
Sy is coordinate independent so as to obtain co-
variant dynamics. (c) We assume that the dynami-
cal equation for x is of no higher order than the
second, since higher-order equations are known
to suffer from causal anomalies related to the
initial-value problem. (d) We assume that S, con-
tains no constant scale of length. Such a length
could only be a Compton length, the universal
length L;y, or some new constant of nature. It
is inappropriate to introduce a constant Compton
length because of the implication that it associates
a constant rest mass with the field responsible for
the variability of all other rest masses. The
scheme is clearly forced. We hesitate to intro-
duce L,y, an intrinsically quantum length, into
the dynamics of x already at the classical level.
Moreover, L,y is the characteristic length of
quantum gravitation; were we to introduce it in
Sy, we would for self-consistency have to intro-
duce it also into the gravitational dynamics. Since
it is not known how this should be done, we ex-
clude Ly, altogether. Finally, it is premature to
invent a new constant of nature with units of
length just for the problem at hand. On these
grounds we exclude a constant scale of length from,
Sy. It must be admitted that of all our assump-
tions, (d) is the least firmly grounded, and there
may be room for reevaluating it in the future.

In constructing S, we shall work in Planck-
Wheeler units. The most general action conform-
ing to assumptions (a)~(d) and having the correct
dimensions (those of 7c) is

Sy=-3G"'c* f [EQX,ax'“+FQ)R](-g)"*d*x,
(8)

where the constants G and ¢ are introduced for
dimensional reasons, R is the scalar curvature,
and E and F are two arbitrary dimensionless func-
tions of x. A term such as H(x)x . * could also be
included; however, it differs from the first term
in (8) only by a perfect divergence (which is dy-
namically inconsequential) and so would be super-
fluous. In the absence of a constant scale of
length, a function of x alone and a function of
X,aX'* (other than x, ox'“ itself) do not have the
appropriate dimensions to be included in (8).
Terms involving R* gyss Bq g, Or derivatives of R
contracted with derivatives of x lead to third de-
rivatives of x in the gravitational equations and
also, via the curvature, indirectly in the equation
for x. Thus we rule them out. For similar rea-
sons we may rule out contractions of second- or
higher-order derivatives of x with themselves or
lower-order derivatives.

We mentioned in Sec. II that the overall scale of
x is devoid of physical significance. Thus the dy-
namics of x should not determine its overall scale.
This means that S, should be invariant under multi-
plication of x by an arbitrary positive constant a.
A necessary condition for this to be true is that

E(x)=Ax®, (9)
F(x) = By**?, (10)

where A, B, and s are arbitrary real constants.
If s=-2, S, is automatically invariant; if s#-2,
S, will get multiplied by a constant unless we as-
sume that A~ Aa~**2?) and B—Ba~(**2), Thus for
s#—2, A and B separately have no physical sig-
nificance; only their ratio has. The inelegant ap-
pearance of A and B in S, will be remedied pres-
ently.

Let us consider first the special case s =~ 2.
Then F=const and the second term in (8) has the
same form as the gravitational action [see (17)].
Thus without loss of generality we may take B=0.
Defining A=x"2 and w =~ 3+ 4A we have

Sy=- (w+HE™et AN (g, (1)

This may be recognized as the action for the
scalar field in Dicke’s® reformulation of Brans-
Dicke theory® as a theory in which gravitation is
governed by Einstein’s equations, but in which
rest masses vary as A"Y/2, Since we shall adopt
Einstein’s equations (Sec. IV), and since A"'/2=y,
we see that the special case s =~ 2 of the theory
of variable rest masses is physically equivalent
to Brans-Dicke theory. The latest results from
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solar-system experiments suggest with fair con-
fidence that either w>60 or that w< - 33 (see Sec.
VI). Thus A>492 or A<-252, The large values
of |A| required to avoid conflict with experiment
make the special case s=-2 seem forced; we
shall thus not consider it further.

In the general case s#-2 we define a new real
scalar field ¥ by

P =4G et Al(s +2)"2s*2, (12)

We notice that ¢ is invariant when x is rescaled by
a positive constant a since A~ Aa~**?), Thus y
may be regarded as the more fundamental field.
In terms of it (11) takes the form

sx=-%j(w,aw'“quz)(—g)”zd"x (13)

for A>0, and with the opposite sign for A<0. In
(13) g=5BA™(s+2). We notice thatq is unaffected
by a rescaling of x since A and B scale in the
same way. As we shall see in Sec. VII, it is pos-
sible to construct a consistent quantum theory of
the x (or y) field with positive-energy quanta only
if the sign of S, is as given in (13). We must thus
assume that nature has chosen A>0. The relation
(12) may be written as

X<y, (14)

where 7=2(s+2)™*, and where the proportionality
constant depends on the scale chosen for x. The
action (13) and the relation (14) summarize the
dynamics of the general theory of variable rest
masses. It is surprisingly that the theory has
only two free parameters, » and ¢, despite the
very general assumptions used in its construction.
The dynamical equation for x may be obtained by
setting equal to zero the variation of S,+S, with

respect to ¢, where S,, is the action for all matter.

We may write
sm=f£m(_g)”2d4x, (15)

where the Lagrangian £  contains x in the rest-
mass terms. From (13) and (14) it follows that

w,a;a_qup:_yzp'lXaJ:m/ax. (16)

This is a scalar equation with coupling to the
curvature of strength ¢ and with the rest-mass
terms as its source. The equation is unaffected
by a rescaling of x since £, contains x only in
combinations such as my which are unaffected by
the change in particle units which generates the
rescaling. We notice a Machian feature of the
theory. According to (16), all rest masses in the
universe serve as sources for , which deter-
mines x, which in turn determines the rest mass-
es of particles (their “inertia”). In an empty uni-

verse (no sources), i would vanish identically.
With the choice »>0 x would also vanish, and all
test particles would have to be massless (without
“inertia”).

IV. EINSTEIN’S GRAVITATIONAL FIELD EQUATIONS

We continue to use Planck-Wheeler units in
which ¢ and G are constant. The simplest grav-
jtational action which is coordinate invariant,
and which is built out of g, and its derivatives
only, is the traditional one from Einstein’s gen-
eral relativity,

SG=c4(16nG)'1fR(-—g)”zd“x, (17)

which we adopt. Einstein’s equations are obtained
by setting the variation of S, +S,+S,, with respect
to g*# equal to zero. They are

Gys= 8”GC-4(T¢18+ ZP, o8~ %gaew,riﬂ” - qwz_a;a
+q8ogl®, " +qG 07 (18)

where the stress-energy tensor for the y field en-
ters on the same footing as that for the matter
fields, 7.

We may use these equations to obtain the equa-
tion of motion of matter with variable rest mass-
es. Taking the divergence of (18) we have, after
some rearrangement and cancellation,

Tofi6™ = 0ol s P+ Q™8 0= 7%,50) - 4GP0% 5.

(19)

By the Ricci identity'? the term in parentheses is
just R,Py® , so that

To'6== (3,6° - RV, - (20)
Substituting from (16) we have
T’ a=7x(38,,/80)¥7 Y ,
:(aJ.’/m/ax)xya . (21)

We see that if rest masses vary, matter is sub-
ject to an anomalous force (a£m/ax)x'a due to the
variability. Those fields such as the electromag-
netic or neutrino ones which are massless (and
hence do not feel the variability) do not contribute
to this anomalous force.

V. PHYSICS IN PARTICLE UNITS

The theory of variable rest masses is now com-
plete. It is a theory with two free parameters
only, —o <y<w and —» <g<w, The case =0
corresponds to constant rest masses (x « °),
while the case ¢g=0, r=« (s=-2) corresponds to
Brans-Dicke theory in Planck-Wheeler units. In
principle one could determine the » and 4 in nature
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by comparing predictions of the theory as a func-
tion of » and ¢ with experiment. However, Planck-
Wheeler units are not convenient for this purpose.
The reason is that the results of experiments are
obtained in particle units such as the atomic time
second and the length of a meterstick which are
determined by the dynamics of atomic electrons,
and the mass of the standard kilogram which is
determined by the rest masses of nucleons and
electrons. It is thus convenient to recast the
theory in particle units. Such a transformation
from Planck-Wheeler units to particle units was
first considered by Dicke.?

As mentioned in Sec. II the relation between rest
mass in Planck-Wheeler units m and rest mass in
particle units m is m =my. In particle units the
line element was found to be f,,dx*dx®, where f,,
is dimensionless. It is convenient instead to con-
sider a metric g'raﬂ differing from f,, only in that
it, rather than the coordinates, carries the di-
mensions of length and time. It follows immedi-
ately from (7) that

g’u:ngaa’ (22)

where g, is the metric in Planck-Wheeler units.
Thus we transform the units of the metric by a
scale transformation with scale factor x%. One
can similarly transform the units of any material
field (i.e., meson or electron field) by multiplying
it by an appropriate power of x in accordance with
its dimensions.

What happens to the fundamental constants under
the transformation of units? From (1) we see that
¢=LyyToy ™. But we know (Sec. II) that the Planck-
Wheeler length and time both vary as x with re-
spect to the corresponding particle units. Hence
the speed of light is still the constant ¢ in particle
units. From (1) italsofollowsthatZ=MpyLpy’*Tpy ™
Since the Planck-Wheeler mass varies as x™! with
respect to the particle mass unit, it follows that
in particle units the quantum of action is still the

J

constant Z. According to (1) G=Lypy*Tpy *Mpy ™.
It follows that in particle units the gravitational
coupling “constant” is no longer constant, but
varies as x®. Thus one can speak of variable rest
masses and constant G (Planck-Wheeler units), or
alternatively of constant rest masses and a vari-
able gravitational constant (particle units). Of
course, the dimensionless coupling constant
Gm*ri1c! is independent of the system of units
used; it varies as ¥

Action has the dimensions of c%, and since ck is
not modified in passing from Planck-Wheeler units
to particle units, neither is the action. Thus the
action of the theory is still S;+S,+S,,; the dynam-
ical equations in particle units will be obtained by
setting to zero the variation of this action with re-
spect to the appropriate variables in particle units.
To this end it is convenient to express the action
in terms of fields in particle units. In accordance
with the discussion in Sec. II, S, must take the
standard form appropriate to the fields present;
rest masses in it must be constants »2, and the
metric used must be ... In S, and S, given by
(13) and (17) one must replace g,, everywhere by
X 28,5 in order to make the dependence on the
metric in particle units explicit. It is not neces-
sary to replace ¢ in S, in terms of that field in
particle units since we shall not need the corre-
sponding dynamical equation. By the same token
we leave G as it is since we shall never have to
vary with respect to it. Thus wherever it appears
henceforth, G is still a constant.

When rewriting S;+S, it is useful to use the re-
lation'®

R=Ryx?+6x™ (= g)™"/?[(~ 8)'/22 X, 4], 4 (23)

between the scalar curvatures R and R computed

from g, and g, respectively. The calculations,
which involve an integration by parts with neglect
of surface terms, are tedious. They give

Sg+Sy=c*(167G)™" f X2{R(1—qf)-:[(1 - 12q7+6qr?) f —6r2) 328 f  fof 2} (- g)/%d %, (24)
where help of (26) and (27) gives

f=81Ge™y*. (25) So+5,= (1676 [ oR(- /%%
We now define a new field ¢ by

o=x*(1-qf), (26) - f w¢-1§aﬂ¢'a¢,a(_g)1/2d4x] ,
so that (28)

b,a==X2[r+Q=7)gfl fo . (27) where

Eliminating 1-¢f and f ,f™ from (24) with the

w==-3-1[(g- 647~ fllr+(1-asI?. (29)
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The action (28) has the same form as that for
the metric and scalar field in the scalar-tensor
theories of gravitation'* !5 with vanishing cosmo-
logical term. In these theories w is an arbitrary
function of ¢, the scalar field; the case w=const
is the Brans-Dicke theory. In our case w is a
very specific function of ¢ (through f) with only
two free parameters. Further, it is clear from
(27) that when » and (1 — 7)q have opposite sign,
9¢/d f vanishes for some positive f. Thus f is
double-valued in ¢ and so is w. We thus conclude
that general relativity with variable masses
(Planck-Wheeler units) is physically equivalent
to a two-parameter subset of measure zero of the
one- and two-valued scalar-tensor theories with
constant masses (particle units). This latter
representation is more adapted to comparison with
experiment.

Before we proceed to confront experiment we
wish to mention the conservation law for the the-
ory. The stress-energy tensor in particle units,
T,p» is obtained by functionally differentiating S,
with respect to 2,,.'" It then follows from coordi-
nate invariance of S,,,'” or from direct differentia-
tion of the scalar-tensor theory field equations,
that

7,8.,=0. (30)

Thus in particle units there is no sign of the anom-
alous force [see (21)] owing to the variability of
rest masses. This is reasonable since in particle
units rest masses are constant. One consequence
of (30) is that free test particles follow geodesics
of g, This is in agreement with the conclusions
of Sec. II.

VI. CONSTRAINTS FROM SOLAR SYSTEM EXPERIMENTS

To check our theory one has to compare the
predictions, for various solar system experi-
ments, of a scalar-tensor theory having an w
given by (29) with the experimental results, to
see what values of » and g are acceptable. Pre-
dictions of a broad class of gravitational theories
for solar-system experiments have been computed
in the framework of the parametrized post-New-
tonian (PPN) formalism of Will and Nordtvedt, !5:°
and have been expressed in terms of a set of “PPN
parameters.” Each theory has its own set of such
parameters; those for the scalar-tensor theories
have been computed by Will*s for arbitrary w(¢).
He assumes that the field ¢ is nearly constant, at
a value ¢, determined by the universe as a whole,
but suffers a small perturbation ¢, due to the
solar system: ¢=¢,+ ¢,. Likewise, in appro-
priate coordinates Z,;="0,5+%,5, Where kg is the
perturbation from the Minkowski metric due to the

solar system. Will expands w(¢)=w,+ w’¢,, where
wy = w(¢,) and w’ =dw/d¢ [%, and calculates ¢, and
h,g to post-Newtonian order from the field equa-
tions for the theory. The PPN parameters appear
as coefficients in the results. Only two of them
are nonvanishing:

y=1-(2+ w,)* (31)
and
B=1+w (3+2wy)%(4+2w,)". (32)

In addition, the local Newtonian gravitational con-
stant that would be measured by a Cavendish bal-
ance experiment turns out to be

Gy=2Go, (1+9)*. (33)

It must be emphasized that w,, w’, and ¢, are to
be evaluated asymptotically far from the solar
system—they are cosmological boundary values.
For comparison with (31)-(33) we note that for
general relativity ¥ = 8=1 and Gy=G.*®

For the scalar-tensor theories the first-order
gravitational red-shift equals ¢ times the dif-
ference in Newtonian potential between the absorb-
er and the emitter, independent of y or B.**> This
result is the same as in general relativity, and it
has been verified experimentally to an accuracy
of 1% by Pound and Rebka, and Pound and Snyder.?°
The experiment clearly says nothing about » and
q. However, its results can be interpreted as
showing that the universal world lines of freely
falling bodies (E6tvés-Dicke-Braginski experi-
ments) are, in fact, geodesics of the metric which
measures lengths and times in units of material
rods and clocks.?® Thus the red-shift experiments
support the identification of the tensor f, , as the
metric of spacetime in particle units (Sec. II), and
are consistent with the result (30).

The deflection of electromagnetic waves by the
sun’s gravitational field is nowadays most accu-
rately measured by using signals from extragal-
actic radio sources. To date, the most precise
determination is that of Fomalont and Sramek?
from which they deduce that 3(1+7)=1.015+0.011.
A closely related effect is the relativistic time
delay for radar signals sent past the sun to a
planet or spacecraft, and reflected back by the
same route. Using Mercury as a reflector, Sha-
piro and his group have measured the effect; the
latest measurements give® 3(1+7)=0.993 +0.014.
Using the Mariner 6 and 7 spacecraft as reflectors
Anderson et al.?* deduce that 3(1+7)=1.00+0.03.

The perihelion precession of Mercury’s orbit
can now be determiaed by radar ranging as well
as from optical observations. In view of the low
solar oblateness determined by Hill and Stebbins?®
there is no longer reason to believe in a large
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solar mass quadrupole due to a rapidly rotating
core which might be responsible for part of the
precession.?® The latest determinations of the
precession by Shapiro’s group,?” reduced under
the assumption that the solar quadrupole is ex-
clusively due to uniform rotation, gives
3(2+2y - 8)=1.003 +0.005.

According to the scalar-tensor theories, the
orbit of the moon should suffer an anomalous
“polarization” inthe direction of the sun (Nordtvedt
effect) due to the breakdown of the equivalence
principle for self-gravitating bodies in these the-
ories.!® This effect has been searched for by la-
ser ranging tothe lunar reflectors left by the Apollo
astronauts. One analysis of the results, by Shapiro,
Counselman, and King,?® yields 48 - v-3
=-0.001+0.015, while an independent analysis by
Williams et al.?® arrives at 48 — y-3=0.00+0.03.

Shapiro, Counselman, and King?® have com-
bined all available results for the four solar-sys-
tem experiments, and have arrived at the pre-
sently most accurate values y =1.008 +0.008 and
B =1.003+0.005. All our considerations will be
based on these, except that to be on the safe side
we shall not exclude the possibility that y and g
may fall up to 30 away from their mean values.
Thus 0.984<y<1.032 and 0.988 < g<1.018. It fol-
lows from (31) that

w,<=33 or w,>60, (34)
while from (32) we have
—0.012 <w'(3+2w,)3(4+2w,)" <0.018.. (35)

Our task is to determine when the w given by (29)
can satisfy both (34) and (35).

It must be emphasized that the determination of
fo, the asymptotic value of f, can be made only in
the context of a cosmological model, and is thus
beyond the scope of the present paper. We shall
only determine the physical range of f. First, by
definition, f=0. Now consider (33). From every-
day experience Gy >0 while from first principles!’
G>0. Since y=1 experimentally we see that
¢,>0. It then follows from (26) that 1 — gf > 0.
Thus, for ¢>0, 0<f<g~!, while for ¢ <0,
0<f <w, From the point of view of this paper any
fo in these ranges is a good choice.

Consider the function w(f). For the nontrivial
case r# 0 we have w(0)=—- % and w(g~')=0. Thus
condition (34) can be satisfied for a physical f
only if (a) w(f) becomes unbounded in the physical
range, (b) w(f) has a maximum larger than 60 or
a minimum less than -33 in the physical range, or
(c) for g <0 the limit of w as f == exceeds 60 or
is less than —33. We see from (29) that for ¢+ 0,
r+0, and r #+1, w(f) does become unbounded at
f=rq ' (r - 1)7'. This f is in the physical range

only when ¢>0, <0 or when ¢g<0, 0<¥»<1., For
parameters in these regions of the g plane condi-
tion (34) is satisfied for some physical f,,.

The function w(f) has a single extremum at
f=rq~'(r +1 - 127q)"! which is a maximum (min-
imum) when g(r +1 —12rq) is positive (negative).
Atthe extremum w = - 3 — [96rq(rq —1)]7*. Ifthe ex-
tremum is a maximum, we must have » >0 so that
it may be situated at f >0. The maximum value
exceeds 60 for 0<7¢<0,001or for -0.001<rg - +<0.
Sincer >0, g>0inbothcases. For0<7r¢<0.001the
maximum falls in the physical range 0<f<gq™!,
However, for —0.001<7q - # <0 the maximum
falls at f >¢~!, so we must exclude this case. If
the extremum is a minimum, we must have »<0
in order that it may fall at f >0. The minimum
value is less than -33 for -0.002<#¢<0.or for
0<rg - #<0.002. Since r<0, ¢>0 in the first case,
but if so the minimum occurs for f >¢~?, so this
case is excluded. Inthe second case 1-12rg=-1.
If indeed » < 0, then ¢>0 from the condition for a
minimum, But this is inconsistent withrg= %, so
this case is also excluded. To summarize, for
>0 and 0<7¢<0.001 condition (34) is satisfied for
some physical f.

For r+1 and ¢<0 w has the asymptotic value

we)=3[-1+1+%[q] )1 -7)"2

This exceeds 60 for a strip in the g plane bounded
by the curves» =1+0.016(1 + | ¢|~?)2for ¢<0. For
values of » and ¢ in this strip condition (34) is
satisfied for sufficiently large f,. In the special
casesr =1, ¢<0 and ¢=0, r+#0 which have not yet
beentreated, w - asf-wo, Thus for suchvalues of
¥ and ¢ condition (34) is also satisfied for suf-
ficiently large f,. Figure 1 summarized our con-
clusions. For values of » and q in the hatched
areas condition (34) is satisfied for some physical
So-

We now turn to condition (35). Computing w’ we
have

w' =i 2lg(1+7 = 12rq)f 2 - 7f,]

x[r +(1-7)gf,]™*. (36)

We now need to know the constant of proportion-
ality between x and " which is fixed by the choice
of particle units. In arriving at formulas (31)-(33)
Will'® chose units for which at the present cosmo-
logical era G,/G =1. According to (33) and (26)
this fixes the proportionality constant so that at
the present time x,>=1 - gf, since y=1. We see
that w’ becomes unbounded as w2 for f,-rq~ (r -1)7%,
Sufficiently near this point (35) is clearly

satisfied as is (34). We know that w’ vanishes at
an extremum of w. Thus if w has a maximum

or a minimum satisfying (34), then sufficiently
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near this point, both (34) and (35) will be satisfied.
Now consider (36). If g<0, »+1 we see that as
fo—~=, w'=0. Thus whenever asymptotically w
satisfies (34), (35) will also be satisfied for suf-
ficiently large f,. If ¢=0, »#0 (r=1, ¢<0) then

w’ diverges asymptotically as f, (as f,®) while w,
diverges as f, (as f,2). Thus both (34) and (35) are
satisfied for sufficiently large f,. What we have
shown is that if the parameters » and g are such
that (34) is satisfied for some physical range of
fs, condition (35) is automatically satisfied inside
this range.

Thus if we do not appeal to cosmological con-
siderations to determine f,, all values of » and ¢
in the hatched areas of Fig. 1 are compatible with
solar-system experiments to date. It is interesting
that were the experiments to improve in accuracy
so much as to agree with the canonical predic-
tions of general relativity with constant masses
to arbitrary precision, we would still be left with
the following cases: ¢=0, anyr; ¢>0, » <0 and
g<0, 0s7 <1. Thus a decision on the question of
rest-mass variability will apparently be possible
only after the value of f, has been determined
within the framework of a cosmological model.
This will be the subject of a future report. We
shall also consider the influence of the time de-
pendence of f, due to the expansion of the universe
on the evolution of the solar system, stars, and
pulsars. In addition we shall investigate the
properties of collapsed objects from the viewpoint
of the present theory.

VII. QUANTUM THEORY OF THE REST-MASS FIELD

Since the rest-mass field is a dynamical field,
it must ultimately be quantized. Here we con-
sider some consequences of such quantization. It
is best to focus on the ¥ field since it, unlike the
x field, is free of scaling ambiguity, and since its
free-field action (13) has the standard quadratic
form. Since field quantization in curved space-
time is not completely understood, we shall con-
fine our remarks to Minkowski spacetime, where
the metric is 7,5 and the curvature vanishes. To
begin with we work in Planck-Wheeler units.

As with any field,?° we can decompose } as
Y=9c +1g, where y. is the classical (vacuum or
ground-state) part, and Yo is a Hermitian quantum
field operator which may be expanded in creation
and annihilation operators. For simplicity we
assume that y. is just the constant (cosmological)
background field y,, From (18) we infer the free-
field stress-energy tensor in the limit of flat
spacetime

bas =Yq, a¥q, 8 ~ 2Masd, y¥'”
—qW@ a5 ~ as¥y™) © (37)

The total energy is given by —[63d 3x. The con-
tribution to 63 of the terms proportional to ¢ is the
divergence qy 2,, ! which integrates out to zero
(periodic boundary conditions). The total mo-
mentum of the field in the i direction is -[6,'d 3x.
The contribution to 6, of the terms proportional
to g is —quz'o" which also integrates out to zero
with periodic boundary conditions. Hence the @
field has the same total energy and momentum
operators as an ordinary massless scalar field.

In exact analogy with that field, ¢, allows an in-
terpretation in terms of massless scalar quanta
carrying positive energy Zw and momentum 7Kk,

It is relevant to note that had the constant A intro-
duced in (9) been negative, the sign of S, would
have been the opposite of the choice in (13), and
as a consequence the quanta would have carried
negative energy. Hence the choice A >0,

Let us now consider the interaction of the y
field with matter, say, with an electron field ¥.
The mass term in the action of the (Dirac) elec-
tron field is Jm¥¥(-n)"2d*x. Since m=ry and
x =by", where m and b are constants, the inter-
action action is

Se=biy’ [(1+9o Y TE(=n)/2d%.  (38)

The operator (1+y,""Yy)" is a polynomial in yq
only if » is a non-negative integer. Thus unless
r=0,1,2,... the quantum field theory of the mass
field interacting with an electron field is nonpoly-
nomial. However, it is not clear whether the
values r=0,1,2,... are to be preferred on this
account,

In the classical theory one passes from Planck-
Wheeler units to particle units by multiplying the
metric by x?, and the fields by appropriate powers
of x in accordance with their dimensions. In
particle units there is no interaction between x
and the matter (masses constant). As we shall
see, the story is different in the quantum theory.
The conformal factor to be used in changing units
must clearly be a classical quantity; the only ob-
vious candidate is the normal-ordered vacuum ex-
pectation value of x, (x). Since y=0y" we clearly
have (x) =by,”. Denoting by the symbol ~fields in
particle units, we have (—n)!/2=(x)~%=%)"2 and
¥ =(x)*/%¥ (since T¥ is a volume density). Thus
(38) can be written as

Sr=im (14795 g +++ WU (-T2 . (39)

We see that in particle units there is still a quan-
tum interaction between i, and ¥, although clas-
sically the interaction is removed by the change in
units. In (39) the term

mf@\l';(—ﬁ Y2d4x



is the standard mass term. To lowest order the
interaction is

i, f Yo TF(~7) 2 dx.
The strength of this interaction is measured by
the dimensionless coupling constant

g = (Fr = P
= 8mr3f,~ (Gm? /hc). (40)

Thus in rough order of magnitude the interaction
is as strong as the gravitational one (more pre-
cisely, 8mr2f,”! times as strong). It follows that
the probability that a scattered electron emits a
Yo quantum is of the same order as the probability
that it emits a graviton of the same energy. The
extreme weakness of the yy-matter interaction ex-
plains why the massless scalar meson, if it ex-
ists, has not turned up in high-energy experi-
ments.
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APPENDIX

We pointed out in Sec. V that in the scalar-ten-
sor representation of the theory, w(¢) can be
double-valued. In practice this causes no problem
because by referring to f as an independent vari-
able (Sec. VI), one chooses one of the two branches
of w(¢) in any given calculation. The only
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problematical point might be where the two
branches meet, i.e., where 8¢/of =0. By com-
paring (27) with (29) we see that at such a point
w—w, This implies that y =8=1 [see (31) and (32)],
so that at this point the theory becomes degenerate
with general relativity. Could this be an artifact
of the scalar-tensor representation due to the
meeting of the branches of w(¢)?

To show that this is not so we return to the action
in particle units (24) which is not in scalar-tensor
form. Here there is no double-valuedness. By
varying f we obtain the field equation

Pf i +3P'f of**+Ro¢/af =0, (A1)
where
P(f)=3x"2[(1-12gr + 6qr2)f =~ 6r2f 2] (A2)

and 8 ¢/8f may be inferred from (27). There are
no contributions to (A1) from S,, because in particle
units rest masses are constant. In the neighbor-
hood of f =f,=rq~'(r-1)"', we write f =f, +f/, where
f’ is a small spacetime-dependent field. Since
ap/af =0 at f =f,, to first order in f* (A1) reduces
to

P(f(&%f 16);c+ RO*/0 % |y, £ =0, (A3)

Because 8¢ /df vanishes at f,, this equation is
homogeneous in f’'—it is sourceless everywhere.
Therefore the physical solution must vanish
identically. We conclude that if the value of f
asymptotically far from the solar system is f,
then f is constant within the solar system. The
action (24) then reduces to that of pure general
relativity with Gy.2(1~ gf,)"! playing the role of
gravitational constant [compare with (33)]. Thus
the fact that for f,=f, our theory degenerates to
general relativity is not¢ an artifact of the double-
valuedness of the scalar-tensor representation.
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