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We discuss the current-algebra treatment of the basic quark-model Lagrangian, which contains in addition the
simplest (from a group-theoretical point of view) effective term that can solve the U(1) problem. Reasonable
experimental agreement is found for the relevant pseudoscalar masses. It is shown how the cr-model solution
for the masses is mapped into a whole family of solutions in this generalized quark-model case. A possible

way of consistently getting Gell-Mann-Okubwtype mass relations while not going to the approximation of
an exactly symmetric vacuum is pointed out. This leads to a simple relation among the pseudoscalar-meson

decay constants.

I. EFFECTIVE STRONG-INTERACTION LAGRANGIAN

One expects that the fundamental structure of the
strong interactions should be most clearly exposed
at low energies, before unitarity corrections be-
come important. This has led to the development,
primarily inspired by Gell-Mann, ' of a fundamen-
tal quark Lagrangian whose parameters could be
partially determined by study of the low-lying spin-
zero meson spectrum. In a schematic form this
Lagrangian is

3

z = gq,y„s„q.
a=1

+ [renormalizable

SU(3)x SU(3) -invariant interaction]
3

—P m, q,q„ (1 1)
a=1

where the q, are the quark fields and the m, are
their masses. Equation (1.1) may evidently be ex-
tended to the case of K quarks by changing 3 to N.
For simplicity, however, we shall work first with
the three quark model. For the treatment of (1.1)
it has been recognized that in addition to the ex-
plicit symmetry breaking represented by the last
term, there should be spontaneous symmetry
breaking (an unsymmetric vacuum} which in fact
determines the main features of the low-lying mul-
tiplet structure. Furthermore, the requirement of
getting the correct statistics for the ground-state
baryons strongly suggests that each quark field

should have an additional trivalent "color" label.
The physical particles are taken to be color sin-
glets, so we shall not write the color indices ex-
plicitly here.

The motivation for (1.1} originally was maximum
symmetry of the interaction and maximum sim-
plicity of the symmetry-breaking term. It has since
been recognized' that the symmetry-breaking term
could naturally originate from a weak-electromag-
netic gauge theory as a, term of the form qq(g}„
where P is a Higgs boson, possibly modified by ra-
diative corrections. %hen one investigates the
structure of the invariant interaction in more de-
ty.il, on the other hand, a problem develops. Note
that the interaction term was considered to be
SU(3} x SU(3) symmetric. However, the first term
in (1.1) actually is invariant under the larger sym
metry group U(3) x U(3). Thus, on the grounds of
maximum symmetry one should have considered
the interaction to be U(3) x U(3) symmetric. In fact,
the most reasonablechoice for the strong interac-
tion —a set of 8 Yang-Mills gauge bosons coupled
to the color degree of freedom —does possess this
U(3) x U(3) invariance. In such a case, the applica-
tion of standard current-algebra techniques leads
to a mass spectrum for the isoscalar 0 particles,
in violent disagreement with experiment. This has
become known as the U(1} problem. '

Here we would like to suggest and investigate a
possible effective strong-interaction Lagrangian
which may be the simplest one to overcome the
U(1) problem. This Lagrangian is

3

2= -p q,y, s„q, + [U(3) x U(3)-invariant color gauge interaction]
a=1

—P m, q,q, —U[detq(1+ y, )q+ detq(l —y,)q].
a=1

Here U is a new real parameter and

-1detq(1+y, )q = —,g e„,e„„~q,(1 +y,)q„q,(lay, )q„q,(1 +y, )q~.
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(Again, color indices are suppressed, and the ex-
tension to four quarks is trivial. ) The new term
breaks U(3) x V(3) down to SU(3}x SU(3) x (baryon
number) and is the simplest object which does so.
It is clear that this term must be an effective ra-
ther than a fundamental term since it is not re-
normalizable in the usual way. Qne other motiva-
tion, beyond simplicity, is that such an extra term
does occur in the SU(3) omodel. ' This model, as
we shall explicitly note again here, gives results
very similar to the present one and does not have
a U(l) p~oblem. Thirdly, perhaps the most fas
cinating motivation for such a term is based on
some recent work' of 't Hooft. He has pointed out
that the vacuum of a gauge theory may be a rather
complicated object corresponding to an infinite
number of local minima with tunneling between
them. When he calculates the transition ampli-
tudes in such a (color gauge) theory he finds an ef-
fective term of the same general form as the new

one in (1.2). Actually, his form is somewhat more
complicated and may also include CP violations.
Thus, we can only say that our term may turn out
to be a reasonable approximation to what emerges
from a more detailed study of the gauge-theory
vacuum. We should also mention that 't Hooft's
work is based on that of Belavin, Polyakov,
Schwartz, and Tyupin' and that additional discus-
sion of the underlying physics has been given by
Jackiw and Hebbi' and Callan, Dashen, and Gross. '
Furthermore, Pagels' has expressed a similar
idea.

The rest of this paper is arranged as follows.
In Sec. II the mass formulas for the low-lying spin-
zero mesons are found, and the ranges of the pa-
rameters which ensure the positivity of these
masses is given. In Sec. III we display the U(1)
problem explicitly and give our proposed solution
which leads to some fairly reasonable numerical
predictions. The connection with the 0 model is
explored in Sec. IV. There it is shown that the
mass formulas for the quark model can be ma.pped
into those of the 0 model. The 0-model solution
gives rise to a whole family of quark-model solu-
tions. We also mention a possible way in which
Gell-Mann-Qkubo-type mass formulas can be ob-
tained from the current-algebra approach, never-
theless allowing a nonsymmetr c vacuum. This
leads to an amusing formula connecting the decay
constants of the pseudoscalars. Finally, in Sec.
p w'e briefly discuss the g-3m decay and some ex-
tensions of this work.

II. MASS FORMULAS AND PARAMETER RANGES

By standard current-algebra arguments one can
get a formula for the pseudoscalar-meson masses

=-21 dsxdsy 0 P4X 0 p4b yyo, g 0

+(a—b)

Here (M')„s is the mass-squared matrix of the
pseudoscalar fields expressed in some basis.
P'„(x, i} is the ath pseudovector current, while E„'
is a number (decay constant) obtained by sand-
wiching the p' between the vacuum and state A.
Note that state A may in general correspond to
some linear combination of the usual fields. Sub-
stituting (1.2) into (2.1) gives the squared masses
of the pion and kaon:

2 —1
m, =,(m, + m, )((q,q,),+ (q,q,),), (2 2)

m, =,(m, +I,)((q,q,),+ (q,q,),).2=-1 (2.3)

F, and F~ a,re conventional; our axial-vector cur-
rent is normalized so that numerically E, = m(xo).
Corresponding to the nonconserved vector currents
one can derive a formula similar to (2.1) for some
of the possible scalar masses. This gives a for-
mula for the mass squared of a particle with the
quantum numbers of the ~ meson:

, (rn, —m, )((q,q, ), —(q,q, ),).
K

Finally, setting

P'„(x)= iq.(x)y „y,q,(x),

(2 4)

(2 6)

we find for the matrix on the right-hand side of
(2.1) specialized to the subspace of neutral non-
strange pseudoscalars;

m+U U U

C(U) =--4 C n~, + p V;-;„;)'
m, = m, (q,q,)o,

U= U([detq(1+y, )q+ detq(1 —y,}ql),.
(2.6)

We see that the new quantity U makes its first ap-
pearance in (2.6).

Qne interesting question is: What are the allowed
ranges of the various parameters in the theory'P
The study of this question was begun by Mathur and
Qkubo. " We will give the restrictions which are

based on the idea that they have zero mass (i.e. ,
are Na, mbu-Goldstone bosons) to zeroth order and

pick up mass as a result of the non-U(3) x U(3)- in-
variant terms in (1.2) considered as a first order
perturbation. This formula, "is

APB(M )AB
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imposed by requiring the squared masses above to
be positive. Here we go to the limit of isotopic-
spin invariance by setting

m, = m„(q, q, ),= (q,q,),.
For convenience we define

m, (q,q,),
1 Qlql)0

(2.7)

(2.8)

The relevant parameters for discussing particle
masses are then (apart from the decay constants}
four in number:

R, W, m~, U.

The condition on m, is trivial; the positivity of I,
in (2.2) requires

(2.11)

C being given by (2.6). Then if detC o 0 (the special
case" detC = 0 may be handled separately}, F must
be a nonsingula. r matrix since ( detF)'( detM') = detC.
Then it may be seen that the positivity of M' is
equivalent to the positivity of C. Thus it is suf-
ficient to examine the secular equation which re-
sults from (2.6). Immediately, using (2.2) and(2. 7},
we find that one eigenvalue is m, . The positivity
of the remaining two eigenvalues results in both
the following equations:

U& —' E,'m, '(1+RW),

(2.12)

(1+ 2RW) U& ~E,'m, 'RW.

ml ml(qlql)0 (2.9} For the old case where U= 0 these simply lead to

From (2.3} and (2.4) we see that positivity implies
both

RW&0, (2.13)

(R+1)(W+1)&0 and (R —1)(W-1)&0. (2.10)

This limits R and W to the three regions shown in
Fig. 1.

To proceed with the discussion of (2.6) we first
make the simplifying assumption that there are
just three low-lying neutral nonstrange pseudo-
scalars which are quark-antiquark composites in-
volving only the first three quarks. Vfe have in
mind the m', g, and g'. The g' will be identified
as the A(960); recent work by Ueda" suggests that
E(1420) is not the proper choice. With this as
sumption the quantities F„ in (2.1), with A re
stricted to this subspace, form a square matrix,
and we may write in matrix notation

so that the allowed regions in the second and fourth
quadrants in the RW plane are eliminated. In the
present case we may see that (2.12) implies, for
any value of U, the weaker requirement

RW& -p. (2.14)

-'E 'rn '& U
(2.15)

from which (2.13) and (2.14) both follow by inspec-
tion.

This chops out the cross-hatched region in Fig. 1.
Of course, for a, particular U, (2.12} is more re
strictive than (2.14}. In fact one can transform the
inequalities (2.12) to the following:

1 F'm ' 1

W

III. U(1) PROBLEM AND ITS POSSIBLE RESOLUTION

Al LOWED

ALLOWED
I

ALLOW ED

In the old case where U= 0, a bad mass spectrum
results when one makes a "reasonable" choice for
the decay constants which are not known from ex-
periment. The precise "bad result" one gets de-
pends on one's assumption. The simplest reason-
able assumption is

(3.1)

where the state labels A are considered to be in
the same "group direction" as the pseudovector
currents in (2.5). Then (2.6) becomes directly the
following matrix of the three squared masses:

FIG. 1. The allowed regions in the R- W plane.

0 0

, c(o)= o,' o

0 0 m, 'RW

(3 2)
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Thus, one other isoscalar particle is actually de-
generate with the m', in contradiction to experi-
ment. If one wishes to temporarily ignore this
problem, the results of Qell-Mann, Qakes, and
Renner" may be derived using (3.1) and (3.2). In
our present choice of basis the mathematical fields
m, g, and q' are obtained by multiplication with
the matrix

80

70

60

1//z

a=~ l,/'/6

(z//z

-1/v 2 0

1/46 2Ae

&//z z//z /

(3.3)

50

40

Then ignoring the fact that the mathematical g is
not the physical q, we may write 30

nz„' =, [BC(0)Br]„=zm, z(1+ 2R), (3.4)

where we have set W= 1 to make the vacuum SU(3)
invariant. Taking this together with (2.2) and (2.3}
in the %=1 limit:

nz, '= 4zzz, /F, ',
m, ' = —.'(1+ ft) nz, ',

IO

0 I

IO

we recover the Gell-Mann-Okubo formula 4m„'
=3nz„'+nz, ' as well as R=m, /m=2mr'/m, '. Of
course, the derivation just given is wrong for the
reason mentioned.

This U(l) problem may be avoided if the new

term is present so that U40. First, let us attempt
a fit to the q and g' masses when the approxima-
tions (3.1) and (3.5} as well as W= 1 are made.
This corresponds to the approximations of a U(3)-
invariant vacuum and U(3)-invariant decay con-
stants. In this case the matrix of squared masses
of the m', g, and g' is given by

, C(U), (3.6)

C(U) being defined by (2.6). Diagonalizing this ma-
trix and using (3.5) results in the following formula
for the squared masses of the g and q'.

m'(zi, zi') = mr'+ 3b + [(nzr'+ 3b)' —2b(4mr' —m, ')

-m, '(2zn, '- nz, ')]'", (3.7)

b = 2U/F, '-
We interpret the plus sign as giving the g' squared
mass and the minus sign giving the g squared

I'lG. 2. m ( q) and m (q') plotted against b, all in

units of m (7r ).

mass. A plot of these as a function of b is shown
in Fig. 2. interestingly enough, despite the sim-
plicity of our approximation, both masses come
out pretty well for b = 7m'(zz'). The z)-z)' mixing
angle 8 may also be calculated to be"

2&2(m, m, )tan29 =
90 (3.8)

IV. CONNECTION WITH THE a MODEL

The linear 0 model is constructed out of scalar
fiel,ds S,' transforming like q,q, and pseudoscalar
fields P, transforming like q~y, q, . The Lagrangian
density may be written4

For b = 7m'(zz') one gets 8= -18', which is reason-
able but a little too large in magnitude. " Thus,
three quantities can be correlated in terms of the
single parameter U, which may turn out to have
some fundamental significance. A slightly different
fitting of the mass spectrum will be discussed in
the next section.

&= -2 g (6 „@,'s„g~+ 8 S,&„S~}+[U(3) x U(3}-invariant nonderivative interaction]

+ 2+A,S; —6V,[det(S+ ip)+ det(S —iztz)]. (4.1)
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Each term is analogous to and has the same chiral
transformation properties as the corresponding
term in (1.2). The A, are analogous to the m, and
the quantity V4 to the new parameter U. In order
to compute masses from the 0 model, no more in-
formation than that given above is needed. Actu-
ally, the Lagrangian may even contain an arbitrary
function of the last term, but (4.1}is sufficient for
our present purposes. In this model the symmetry
breaking in the vacuum is measured by the quanti-
ties

&S;).= a.6;

In addition, the decay constants are given by

F,= a, + n„
F~= (y, + o.„
FK = &3 —&x.

(4.2)

(4.3)

To find the spin-zero masses we may either use
(2.1} or the Ward-like identities given in Ref. 4.
The results are'

2- 2
m, '=,(A, +A,)(a, + a,),

f

2 2m»'=, (A, +A,)(a, + a,), (4.4)

m„'=, (A, A,)(a, -—a,),
K

and for the 3 ~ 3 mass-squared matrix M' of the
m', g, and g' we have

n~ —6V

FM2F'= 4 -6V,

sv,

-6V4

2A2(y2 —6 V4

6V,

-6V4

-6V4

243(y3 —6 V4

0 0

(4.5}

F=2 0 (y2 0

(0 O.,j
V4 = 2 V4O.',a2~, .

As might be expected these are remarkably simi-
lar to (2.2), (2.3), (2.4), and (2.6). In fact if we
were to make the substitutions

1
m, =—A„

(q,q,)o= -2Ka„

9= 6V4,

(4.6)

where K is an arbitrary constant, the mass for-
mulas for the quark model and the o model actually

coincide. [This, of course, also requires that the
matrix E be chosen as in (4.5).]

Qne immediate consequence of this correspond-
ence is that if we also set R =A,/A, and W= a,/a„
the allowed regions in the R-W plane are exactly
the same for the two models. This was previously
noted in Ref. 4.

Another consequence is that if we know a numeri-
cal solution to the mass spectrum from the 0 mod-
el we can generate a family of solutions to the
quark model (one solution for ea.ch value of K). In
Ref. 4 a fitting of the masses and decay constants
was obtained with the following parameters:

-'(a + a,) = 0.5m(v'), a, = 0 86m(.v'),

z(A, +A,) = 0.25m'(v ), A, = 9.05m'(v ), (4.7)

V~ = -1.85m(v ).
These values were obtained by taking the m', K',
q, and q' masses as well as F, for input. " Qutput
predictions included FE=1.3VF, and 8= 0.3' as
well as a variety of decay widths and scattering
amplitudes. Note that (4.7) corresponds to a(slight
ly) SU(3)-brokenvacuum since a, c a, and also E»
~F,. This is the chief difference between this fam-
ily of solutions and the SU(3}-symmetric vacuum
solution (with F,=F») given in Sec. III.

It is clear that the quark-model calculation gives
less information than that of the o model since the
F's and the vacuum expectation values (q,q,), are
completely undetermined theoretically. In fact, we
realize that the a.ssumption of an SU(3)-invariant
vacuum which we would appear to have the freedom
to make in the quark model, can only be an approx-
imation since it violates Coleman' s dictum" in that
the symmetry of the va.cuum [SU(3)] is greater than
the symmetry of the physical states [SU(2)]. The
proper connection between the vacuum parameters
z, and the explicit symmetry-breaking parameters
A, is, on the other hand, automatically provided in
the o model by an extremum equation for the po-
tential. (In principle, this may be done for the
quark model too, but the calculation would appear
difficult. )

Vghich then of the two solutions given here is a
better approximation to nature~ The advantage
of the family of solutions (4.7} is that it corre-
sponds to F»/F, e 1, more like the experimental
F»/F, = 1.28. On the other hand, the success of
the Gell-Mann-Okubo-type mass formulas in gen
eral seems to indicate that the effective symmetry
breaker behaves like an octet. From either (4.4)
or (2.2) and (2.3) we see that, in general, unless
the E's and vacuum expectation values are SU(3}
symmetric, the symmetry breaking will have more
complicated group-transformation properties.
Thus, it would seem that nature may interpolate
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between the two solutions given.
%e would like to speculate briefly here on a way

in which this interpolation may be achieved. %e
shall work with the SU(4) version of the model
given here, since in the SU(3) case the differences
between the two kinds of solutions may not show up
so drastically. Since a tensor notation was used,
all the basic formulas here have obvious generali-
zations to higher SU(N) groups. In particular, for
the D and E masses" we have

m'(D) =—,(m, + m, ) &q,q,&0+(&q,q,&,),En'

m'(E) =—,(m, + m, )(&q,q,),+ (q4q, )0).EF'

Comparing (4.8) with (2.2) and (2.3) shows that the
effective symmetry breaker (at least for the v, K,
D, and E) will transform as a member of the 15
provided that

where (4.7) was used in the last step. All numeri-
cal quantities are here expressed in units where
m(v') = l. If we were to take for the mass of the
third quark m, = 3m(v')

5 (4.12) would predict
U=0.051m '(vo).

V. DISCUSSION

A. @~3'

Another aspect of the U(1) problem' is that in a
current-algebra approximation the amplitude for
this process is related to the four-momentum-con-
serving matrix element

Calculating the divergence of the pseudovector cur-
rent P;(x} in (2.5) by using the equations of motion
for (1.2) gives

8~+ 82 8~+ 83 8~+ 84 83+ 8~

e.=-
&q,q.&.

(4.9) e„P' = 2 im, q, y,q,

iU+[detq(1+ y,)q —detq(1 -y,)q]. (5.2)

Equation (4.9) ensures that the relevant squared
pseudoscalar masses are all proportional to the
sums of their constituent quark masses with the
same constant of proportionality. It is also con-
sistent with the approximation made in Sec. III.
Note that the analogous formula for the o-model-
type solution is different:

E~ =E~ +E~ —E, . (4.10)

This may be checked experimentally in the future.
The analogous formula for the a-model-type solu-
tions is E~= E~+EE —E,. An additional conse-
quence of (4.9) is the well-known relation" m'(E)
—m'(D) = m'(K) —nl'(r}

To end this section it may be of some interest to
make a crude numerical estimate of the new pa-
rameter U. From the mass spectrum we have
found U. We then make the following (o-model in-
spired) semiclassical approximation:

U= U&[detq(1+y, )q+detq(l-y, )q]&,

= 2U&q&q, &.&q.q.&.&q,q.&. . (4.11)

With (4.6) this may be written as

3 m '
U= -V -a =1.9x10'(m }'

4 A
(4.12)

o,, + a2 n~+O. s n~+ e~ @3+O.~

Ea

It would be interesting if a dynamical derivation of
(4.9) could be given. Note that (4.9) has a direct
consequence the formula

Now for U= 0 the operator in (5.1) may be written,
using (5.2), as a four-divergence of a current.
This then gives zero for (5.1). Obviously this bad
result does not hold in the present model. In fact,
using the o model, which as we have seen in the
last section corresponds to making a particular
choice of parameters in the new quark model,
gives a result in fair agreement with the latest
experimental value. This was carried out in Ref.
20 where, with a conventional normalization, the
amplitude for q- m'm"mo was predicted to be

~Q 64 g 0
Sg f)

where ~, is the (relativistic) energy of the v0.

This is in reasonable agreement" with the new ex-
perimental result, "which may be presented as

T„,= (0.55 5 0.05} (5 — '
) .

Note that the experimental value has changed dras-
tically since Ref. 20 was written.

B. Generalizations

A discussion of the four-quark case in more de-
tail than the few sentences in Sec. IV is clearly
called for. This will be given elsewhere. Actually,
the associated o model has already been dis-
cussed" with the present notation and point of view.
From that work it is clear that the effect of the
fourth quark on the world of the first three quarks
is relatively small, so that the discussion given
here should not be changed much. Two amusing
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features" of the o-model case (when restricted to
be renormalizable) were (i) the prediction m(D)
&m(F), and (ii) relatively large values of FslF,
and FPF,. In the last section we have shown how

(i) may be avoided in the more general quark mod
el and how (ii) may conceivably be accommodated.

We should stress that we have here investigated
the simplest Lagrangian with an effective term
which overcomes the U(l) problem. It is clear that
effective terms of similar forms can be handled
by the same technique. The o model would seem

to be a valuable tool for guidance in understanding
and interpreting the quark-model results. For the
case of complicated decays like g- Sm it is espec-
ially convenient.
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