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An extended partially conserved axial-vector current (PCAC) hypothesis that incorporates a family of heavy

bosons in a model-independent way is proposed. This is motivated by the impossibility of accounting for the
corrections to Goldberger-Treiman relations, both in SU(2) X SU(2) and SU(3) X SU(3), by means of ordinary
dynamical mechanisms (many-particle intermediate states). This new hypothesis coupled with an assumption
on the strong-coupling constants of the heavy bosons leads to the following results: (i) A universality among

the corrections to Goldberger-Treiman relations for AS = 0 decays, b, , on the one hand and for ES+0
decays, 5„, on the other. (ii) From this universality there follow two sets of sum rules involving masses and

strong and weak coupling constants. These sum rules become identities in the chiral as well as in the SU(3)
limit and although a definite check has to await for the advent of accurate hyperon data, there are indications

that they might be saturated. (iii) By studying the Dashen-Weinstein sum rules, new sets of sum rules

involving only strong coupling constants are predicted as well as an expression for 6 /6„ in good agreement

with present data. (iv) It is found that 5 and h, K, which are a measure of chiral-symmetry breaking,
determine completely the on-mass-shell corrections to soft-meson theorems. Since both h„and h„are known

experimentally, a calculation is made of the on-mass-shell amplitudes for m —lyly, g —«yy, q —immy, y —in''~,
yy —~mme. starting from the zero-mass limits implied by anomalous Ward identities. In particular, it is found

that the results for the radiative q decays are in agreement with present experimental data without the need

for invoking, g-q' mixing. Finally, the corrections to the soft-pion and soft-kaon theorems on Kt3 decay are
also obtained and it turns out that in the last case the ratio fz/f comes into agreement with present data after
the derived chiral-symmetry-breaking correction is performed. In summary the proposed extended PCAC
hypothesis links many chiral-symmetry-breaking problems together in a unified fashion.

I. INTRODUCTION

Despite all efforts devoted to it, the problem
of the reliability of the PCAC (partially conserved
axial-vector current) hypothesis still remains an
open question. ".Clearly, the usefulness of the
low-energy or soft-meson theorems depends cru-
cially on the validity of the PCAC hypothesis. Since
these low-energy theorems are a consequence of
symmetry, ' there is a link between PCAC and cur-
rent-algebra and the chiral limit theorems. ' Thus,
a proper understanding of the corrections to PCAC
can shed light on the nature of the deviations from
chiral symmetry. One can obtain an estimate of
these deviations by looking at the corrections to
the Goldberger-Treiman relations (GTR).' In the
case of neutron P decay these corrections are de-
fined by

Inserting recent experimental values' it turns out
that

6,„=0.06 y 0.02 .

Since in the chiral limit 6,„=0, one concludes that
SU(2) x SU(2) is a good symmetry to 6%.' However,
a problem arises when one attempts to calculate
4,„theoretically. In fact, as has been shown by

Pagels and Zepeda, ' theoretical estimates fail by
one or two orders of magnitude.

Turning to SU(3) x SU(3), one can derive GTR
for strangeness-changing (n, Sc0) hyperon p de-
cays and define corrections in a similar fashion
as for 4S =0 decays. For instance, in the case of
A P decay one has

(m~+ mp)g~

~~ApKfK

Experiment gives in this case'

(3)

AK~ = 0.30 + 0.15, (4)

while theoretical estimates give' ~«-—0.051.
Therefore in both SU(2) x SU(2) and SU(3) x SU(3)

we are faced with the situation that ordinary dyn-
amical continua'9 are unable to account for the
corrections to the GTR. One is then led to expect
that the corrections to soft-meson theorems (the
extrapolations to on-mass-shell mesons) estimated
on the basis of ordinary dynamical cuts might also
give wrong results. Some examples of this are

-yy, y- mme, yy- wan, g-yy, g wry, and the
soft-pion and soft-kaon theorems in Kt3 decay.
Then, a proper understanding of the dynamical
origin of the corrections to the GTR might also
lead us to a correct prediction for the on-mass-
shell extrapolations of the soft-meson theorems.
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s "A'„= g f, p,, 'P; . (5)
n=0

For the purposes of the present paper we do not
need to commit ourselves to any particular model
for the mass spectrum or the decay rates. There-
fore, we shall leave N (N~1), p, ', P„', and f,
unspecified. However, the Goldstone mechanism
we just mentioned poses some restrictions on f, ,
a,s we immediately discuss.

Identifying the axial-vector current with the
axial-vector current in the weak interactions, its
coupling to pions is defined by

(0~A'„(0)
~
B'„(q))=if, q„. (6)

Taking. the divergence in Eq. (6}we have that in
the choral limit

f, I, '=0.
Since we wish to prevent the heavy pions (n ~ 1}
from becoming Goldstone bosons, f, has to have

rn

It has been suggested'" thai if one wishes to
preserve a no-subtraction hypothesis in the dis-
persion relation for the matrix element of the di-
vergence of the axial-vector current, D(q'), then
there might exist a heavy pion and a heavy kaon
which could account for the corrections to the GTR.
Such a heavy kaon, by the way, seems to have been
detected recently at SLAC."

Shortly after this suggestion was made, a speci-
fic model was proposed" in which an infinite num-
ber of pions of the Veneziano type was used to
saturate the dispersion relation for D(q'). The re-
sult for h,„was 2-3%, which is fairly close to
the present experimental value. Later on, Drell"
constructed a model with a single heavy pion which
had the feature that in the chiral-symmetry limit
the axial-vector current was not conserved. The
corrections to PCAC due to such a heavy pion were
also discussed l.ater by other authors. "

In the present paper we want to elaborate further
on the idea of modifying the standard PCAC hypoth-
esis in order to accommodate a family of heavy
bosons (v', K', q'). We shall work in the framework
of the so-called strong PCAC, i.e. , we shall pre-
serve axial-vector current conservation in the
chiral-symmetry limit, and our heavy bosons
shall not become Goldstone bosons in that limit.
U there are one or more boson daughters in the
game, it becomes difficult to accept that they
might turn out to be Goldstone bosons because this
will require a larger symmetry group with a larg-
er breaking.

Our generalization of the PCAC hypothesis,
which we name extended PCAC (EPCAC), is de-
fined by's

AB +AB
n

(9)

This assumption might look too drastic and with
almost no justification. However, in Sec.
II we present alternative and more plausible argu-
ments which lead to the same results as Eq. (9).

Equations (5) and (9) (and their equivalents for
K and r}) are then our working hypothesis of
KPCAC. The main motivation is the need for an
additional dynamical origin of the corrections to
the GTR. It is obvious, though, that with such
general hypothesis it will not be possible to pro-
duce a definite number for those corrections.
However, it is known that within certain models"
the family of heavy pions do give the right answer
for h,„. Therefore, we take that EPCAC when
complemented by additional assumptions provides
the correct answer for the corrections to the GTR.
Granting this, Eqs. (5) and (9), despite their quite
general nature, are enough to allow us to derive
a series of sum rules and relations among differ-
ent processes. One of the main results is that the
corrections to the GTR determine completely the
extrapolations to on-mass-shell bosons of the
soft-meson theorems. Therefore, we obtain a un-
ified picture in which the corrections to the GTR
(which in turn measure the deviations from chiral-
symmetry limits) play the central role. Since
these corrections are known experimentally we
are able to give a set of numerical predictions in
a number of cases.

In Sec. II we discuss the corrections to the GTR
for AS =0 decays, ~„and obtain a sum rule in-
volving masses and strong and weak coupling con-

the following form:
2

2 f (6)
n

where p., is the mass of the ground-state pion and

f, is a certain (unknown) function of n.
When taking matrix elements of Eq. (5}between

hadronic states A and B (we shall not be concerned
here with composite systems such as nuclei) we
have to specify the coupling constants g, ». Since
the heavy pions do not belong to the same multiplet
of the ground-state pion, there is no a priori rela-
tion for the coupling constants. However, we
know that even within a multiplet the couplings are
related by Clebsch-Gordan coefficients and, there-
fore, are all of the same order of magnitude. This
is still true for all measured strong-coupling con-
stants of hadrons whether they belong to the same
multiplet or not. But since we know nothing about
the couplings of the heavy bosons, it is at the level
of a simplifying assumption that we postulate them
to be approximately constant, i.e. ,
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stants. In Sec. III we derive a relation between
m'-yy and 4, . In Sec. IV we discuss the correc-
tions to the GTR for AS c0 decays, d.~, and find
another sum rule analogous to the one obtained
for 4S =0 decays. Section V is devoted to the
Dashen-Weinstein sum rules" and we derive there
new sum rules and a prediction for n, /nz. In Sec.
VI we obtain the corrections to the soft-pion and
soft-kaon theorems for K» in terms of 0, and AE,
respectively. In Sec. VII we discuss g- yy and

g - 2t ny decays and give numerical predictions
which agree with experiment without the need of
introducing singlet-octet mixing at all. In Sec.
VIII we consider y- m2tm and yy- mme processes,
and finally Sec. IX is devoted to the discussion and
conclusions.

(mB, +mB)gB~gB'Br+fr

(mc'+mc)gBc
A,c =1—

~gc.c:f, (18)

Using Eqs. (12}, (13), and (14}at q'=0, we find

We stress that in the chiral-symmetry limit the
contributions of the heavy pions (n~ 1) to Eqs.
(13) and (14) vanish, so that the GTR are a result
of symmetry and not of pion pole dominance. '
Since SU(2) x SU(2) is not exact we expect these
GTR to show deviations, and therefore we define
the corrections as

II. GOLDBERGER-TREIMAN RELATIONS FOR
DS = 0 DECAYS

n,s=l- —Q f, =-—Q f,
r no r nal

(19)

Let us consider two different AS =0 P decays:
B -B'+ll and C -C'+ll. The matrix elements of
the axial-vector current are defined as

(&'(P ) IA'(0} l&(p ))
= u(P, ) 2&&,r.g,"(q ') + r, q, hB(q')]u( p;),

(10)
q =P( —P;.
and similarly for the other decay. Taking the di-
vergence in Eq. (10) we have

(B'(Py)
I
i 9'A'(0)

I B(P,.))
= u(P~)y27'DB(q ')u(P(),

where

DB(q') =(mB+mB, )gB(q')+q'hB(q') .

Substituting Eqs. (5) and (9} in Eq. (11) we find

N fr Pr
B(q } ~gB'Br+ Q 2 2

~r q
n=o

(12)

(13)

and equivalently

vYgB. B,.f, =(mB, +mB)gB (15)

D,(q') = Wgc, c,.Q (14)
n=o

where ~gB, B,, and ~gc cr are the strong
coupling constants, and we have ignored the norm-
al continuum because it is negligible. ' The first
term of the sum in Eqs. (13) and (14) is clearly the
pion pole and, therefore, the result of standard
PCAC. If we consider just this term and take
q'=0 we obtain the GTR, i.e.,

1 ~ 1
tc f ~ tn f r

n=0 n=i
Hence,

(20)

(21)

In other words, EPCAC as defined by Eqs. (5}
and (9), predicts a universality among all the cor-
rections to GTR for AS=0 decays. Equation (21)
leads immediately to the following sum rule:

mB. +mB gc gB.B,+A

Amc, +mc gB gc, ct+
(22)

mp + mn gQ gn~+
my+my- g~ gg-Jt r+

(23)

We remark that in the chiral-symmetry limit h,,B
and h,c strictly vanish, as they do if we substitute
Eq. (8) in Eqs. (19) and (20) and take the limit p,2-0.
Therefore, Eq. (21) as well as Eq. (22) become
trivial identities in this limit, although away from
it, i.e. , in the real world, they acquire the status
of meaningful sum rules. Another interesting fea-
ture of the sum rule Eq. (22) is that it becomes an
identity in the SU(3) limit (if all four particles
belong to the same multiplet).

It must be pointed out that Eq. (22) is a well-
known result in the chiral-symmetry limit. The
new point here is that even when that symmetry is
broken, the sum rule remains unchanged. There-
fore, it becomes useful to s tudy the interrelation
between chiral- and SU(3)-symmetry-breaking
effects.

As an example we consider n-P+ll and Z —A
+If and obtain from Eq. (22) the following:

~gc c+f (mc +mc}gc (16)
This relation cannot yet be tested because g~ is
very poorly known. However, we can get a feeling
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of its validity by computing g~c from Eq. (23) and
comparing the result with the prediction of the
Cabibbo theory. %'e wish to emphasize that al-
though this is not a legitimate procedure [ a real
test should be performed by inserting al/ experi-
mental values in Eq. (23)J, its only purpose is to
see whether the sum rule makes sense or not.
Using: gc ~„'/4m=12 +2 (see Pilkuhn et a/. , Ref.
5) and taking the phases from the SU(3) limits, '
'we find

g~c = -(0.64 + 0.07),

whereas the result of the Cabibbo theory is' g~
=-0.68. Final tests of the sum rule, Eq. (22), will
have to await the advent of hyperon-beam facili-
ties.

Before closing this section we wish to discuss
alternative arguments to Eq. (9). We start from
Eq. (5) when (0

~ g, ~
v) = 0 (which is not a dynamical

assumption}. Since P,„carries the same quantum
numbers as the pion, there exist diagrams such
that of Fig. 1. It seems reasonable to assume that
such diagrams together with that of Fig. 2 dominate
for q' small. Denoting the "blob, " Fig. 3, by
h, (q ') and h, (0) —=h, , and assuming that the mes-
on-baryon coupling is smooth, i.e. , g~e, (p,,')
g~s, (0}, we find the following GTR:

FIG. 2. Diagonal contribution to D&(q2), Eq. (13).

= e„„~k,"02&, ef E,(q'), (25)

where q= k~+k2 and D3= e„AS is the divergence of
the (neutral) axial-vector current. As is well
known from the theory of the PCAC anomalyxv for
triangle graphs, E,(q') satisfies the following low-
energy theorem:

where to any finite order in renormalized pertur-
bation theory, 8 is fixed by the pointlike constitu-
ents that circulate around the triangle loop. For
instance, in the three triplet models, "8= & and in
the single-triplet-quark model, "8

Since we need to know F,(p,,') in order to com-
pute the decay rate, the question arises as to what
is the value of the extrapolation from the zero-
point limit, i.e., the value of E, defined by

W f,gs, s„+Wg~s,, Q f, h, =(me+mggs.
&r(Pg )
E,(0)

(27)

Therefore,

which is independent of B,B'. Since we are not at-
tempting to predict the numerical value of A,~,
the above result is, for all practical purposes,
equivalent to Eq. (19) obtained by means of Eq. (9}.
None of the results of present paper will be affect-
ed by a choice between the above equation and Eq.
(19). Finally, the same arguments just presented
can be easily extended to the case of E and g dis-
cussed in later sections.

~~ DEeAV

The v'- yy decay amplitude, E,(q'), is defined
by

According to the strong PCAC philosophy, E,=1
and using 8= -' one obtains a decay rate in agree-
ment with experiment. It has been estimated"
that the deviation of E, from unity due to normal
continuum contxibutions is approximately 5 x 10 '.
Such a small contribution reminds us of the small-
ness of 4, when calculated using ordinary dynami-
cal cuts. In other versions of PCAC,"however,
E, could be much larger than 1 and may accommo-
date the value 8= -'.

We shall show now that in the framework of
EPCAC the extraplation factor E, is fixed entirely
by the corrections to the GTR for &8=0 P decays,
and therefore it can be computed from the experi-
mental value for 6,„, Eq. (1).

Coupling the pion family to the circulating bare
constituents in the triangle loop with y, coupling,
one obtains

B'

FIG. 1. Off-diagonal contribution to D(q2), Eq. (13). PIG. 3. The x„-m coupling, hn„(q2).



1854 C. A. DOMINGUEZ 15

(28)
N

F (')=C "

where C is a constant andg the coupling of the m

to the pointlike constituents, which has been as-
sumed to be independent of n as in Eq. (9). We
remark that if F,(q') develops eventually a q' de-
pendence, it is due entirely to the pion family
propagators and not to quark structure.

From Eq. (28) one readily obtains

replace everywhereA„'"' byA'„", f, byfK, p, , '
by mK ', andg» bygK». Once these changes
are made, the considerations of Sec. II are identi-
cal for the present case, except that now we are
dealing with SU(3}x SU(3) instead of SU(2) x SU(2).

Considering two different M 40 P decays,
E -E'+ll and H -H'+ ll, one can derive GTR ana-
logous to Eqs. (15}and (16). The corrections to
these GTR are, as in Eqs. (17) and (18),

&,(v.') f.
E,(o}

n=0

(zzz x, + m x)g~
~~fKg E'EK+

(31)

1
N

}+—g f.
(29)

and comparing with Eqs. (19), (20), and (21), it
follows that

F,(iz, ') 1

F, (0) 1 —n, (30)

IV. GOLDBERGER-TREIMAN RELATIONS FOR
6$ 4 0 DECAYS

In this section we discuss GTR for strangeness-
changing hyperon P decays. Therefore, one has to

Therefore, the corrections to the QTR, which are
a measure of chiral-symmetry breaking, deter-
mine completely the on- mass- shell extr apolation
factor in m'-yy. That this is a matter of general
nature, within the framework of EPCAC, can be
seen from the structure of D(q'), Eq. (13). Apart
from an over-all coupling constant, D(q') is given
by a sum of pion propagators times f,p, , ' which
comes from the divergence of the axial-vector cur-
rent, Eq. (5). Thus, the sum in Eq. (13) is a
universal feature of the divergence; the only dif-
ference between different matrix elements being
the over-all coupling constant. Since at q'= 0 the
sum in Eq. (13) is related to &„we expect that
the corrections to the GTR shall determine the
on-mass- shell extrapolations from the soft- meson
limits. We shall encounter more examples of this
as we proceed.

Numerical results for the m'-yy decay width are
as follows: Using S = —,

' (three-triplet quark model)
we find F(zz'-yy) =7.8 eV for E,= 1 and I'(zz'-yy)
=8.7 +0.3 eV for E, =1.06+0.02 as determined by
Eq. (30) with n, given by Eq. (2). The present ex-
perimental value is I'(zz'- yy) = 7.8 +0.9 eV. Al-
though there is agreement within errors, it could
improve if &, turns out to be smaller than its pre-
sent value (we recall that &, has been decreasing
with time; a few years ago it used to be three
times bigger than what it is now).

H™H}gzz (32)
~2frcgH Hr.

The expressions for the divergence, Eqs. (13) and

(14), in the present case are

Drz(q }=~~gz'sr' Z (33)
=O mK 2-q

Drzz(q') = W2gH, «, g ", ", . (34}
f7= O mK —q

Upon taking q'= 0 one readily finds, as in Eqs. (19)
and (20), that

1=-—Z fr =n~e=-~rKE (35)

i.e. , the corrections to M e 0 GTR are universal.
Using Eqs. (31) and (32) one obtains the following
sum rule:

AE' ™E~H ~E' EK+

mH ™egE ge HK'
A (36)

which is the analogous of Eq. (22). Once again,
Eqs. (35) and (36) are trivial identities in the
SU(3) & SU(3) limit because of the vanishing of &ra
and &«, and in the SU(3) limit Eq. (36) also be-
comes an identity (if the four particles belong to
the same multiplet).

As an example we consider A-p+ll and
2 -n+ ll decays in which case the sum rule Eq.
(36) reads

Amg + m~ gp~K ~ g~
mt: + „gq-„K, g

(37}

Since g~ „K, is very poorly known' one cannot yet
test this relation. However, for the sake of an
"order-of-magnitude" verification we can compute

gc „x.from Eq. (37) and compare it with its 8U(3)
value. Using gc=0.335+0.032 as given in Ref. 21
and the other values quoted in Ref. 8, we find

gc-„r,'/4s = 3.3 + 0.8, as compared to the SU(3)
limit': gc.„r,'/4zz = 3.2.
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V. GENERALIZED GOLDBERGER- TREIMAN RELATIONS
AND SUM RULES

~2gc'cr+fr+t = 6C'cr+( ) . (46)

Some time ago, Dashen and Weinstein" derived
a set of sum rules for the hadronic corrections to
generalized QTR. These sum rules were obtained
by noting that those corrections are proportional
to p'(r, '), where p,

' is the mass squared of a
ground-state meson, and (r') the meson-baryon-
interaction mean square radius. Since (Q is
finite in the SU(3) && SU(3) limit, it can be para-
metrized in terms off and d couplings.

In this section we discuss the consequences of
EPCAC, for the Dashen-Weinstein sum rules. The
universality among the corrections to the GTR for
M = 0 decays on one side and for M 40 decays on
the other, enable us to derive new sets of sum
rules. Furthermore, we obtain a relation for
&,/&r which in the SU(3) limit reduces to a very
simple expression.

In our notation, Eq. (10), the Dashen-Weinstein
sum rules read

v2g», »,f, =(m», +m»)g», B,+6»,B,(0) (i =»', K'),

(38)

where v2 g~,~, is the meson-baryon strong couy-
ling constant and g~,~, the axial-vector-current-
baryon coupling. The 5».B, are the (hadronic) cor-
rections to the GTR which can be yarametrized
in terms off and d couplings as follows:

g, „. , (o)
(47)

gc c" 6c c"(0)
'

Since p, ,' andf, cancel in the right-hand side [see
Eq. (39)], Eq. (47) is a relation involving only
strong-coupling constants.

In a similar fashion, considering E'-E and
H'-H p decays with M rr 0 and using Eq. (35), one
fiends

~~gE EH+fr~« = 5E Er (0) ~

~&g» «r frt'r = 5»»r (0) ~

(48)

(49)

g», »r. 5»,»r.(0)
g»'Hr~ H'Hr+(

(5o)

Taking the ratio between Eqs. (45) and Eq. (48) it
follows that

fr 5» B"(o) g» Er.
6»'Er+( ) gB'B.

(51)

Recalling the definitions of 6»,B„(0)and 5»,»r, (0),
Eq. (39), Eq. (51) becomes

Taking the ratio of the preceding two equations the
following sum rule results:

5»,B,(0) =c[(1—a)f», B, +iad». B,.]m, 'f, .(39)
2

r I r ~l gE'EK+
mK &~ ga a"2 (52)

Recalling the definitions of &, and Dr, Eqs. (17)
and (31), Eq. (38) can be rewritten as

&2g» ~f'B6~B 5» B~(0) (i 1T yK+) (40)

As an example, if one considers n-P, Z -n, and
A-P P decays it follows from Eqs. (39) and (40)
that

where X, and A,, stand for the parametrizations in
terms off and d couplings [the terms inside the
square brackets in Eq. (39)]. If one takes the
SU(3) limit for the coupling constants (all baryons
belonging to the same multiplet) then Eq. (52) re-
duces to the following simyle expression:

&2gnp .4r«= c&r', (41)
mK'

(53)

2 gg &~++gg = c p, ~
V6

v 2 gc- r are--c(1 —2a)m

3- 2a
W2g~&K+ K~ = c mK

W6

(42)

(43)

(44)

V2 g», B„f,&, = 6». B,.(0) (45)

where our conventions for the coupling constants
and SU(3) phases follow those of Pilkuhn et al. '

We yroceed now to exploit the universality among
the corrections to the GTR, &, and &K. Consider-
ing B'-B and C'-C P decays with M =0 and using
Eqs. (21) we find from Eq. (40) that

mK2
gE nr+ g r (gnpr+ ~gc A +) sr

K

2
K I (—)1/2ghpr+ g r L&r & gnpr+ gE Ar+] t

K r

(54)

(55)

It should be stressed that when comyaring with
experimental data, it is Eq. (52) and not Eq. (53)
which should be used. In fact Eq. (53) does not
agree with experiment owing to SU(3)-symmetry
breaking.

As an examyle of the preceding sum rules we
consider the four decays that led to Eqs. (41)-(44).
After some maniyulation we obtain
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/3 ll/2
gAPK+ K 2 & gal~+ gg-Af +

gE-nK+ g„p + —"gg-A»+
(56)

In the SU(3) limit for the meson-baryon coupling
constants, Eqs. (54) and (55) reduce to Eq. (53)
and Eq. (56) becomes an identity. Equations (54)
and (56) cannot yet be tested because of a lack of
information on gc „«„but Eq. (55) can be used to
compute &,/n«. The result is &,/&« ——0.09 + 0.01
as compared to the present experimental value of
n, /n, «=0.2+0.1 [the SU(3) limit, Eq. (53), gives
n, /&«=0. 078]. This is a good indication that the
sum rules just derived might be well satisfied by
the data, once available from hyperon-beam faci-
lities.

VI. CORRECTIONS TO SOFT-MESON THEOREMS IN KI3

It is well known that the sof t-pion22 and sof t-kaon23

theorems in K)3 decay' are a consequence of
chiral symmetry. 2 Therefore, we expect correc-
tions to these soft-meson theorems due to chiral-
symmetry breaking. Since this breaking is approx-
imately gauged by the corrections to the GTR,
4, and AK, we would expect these parameters to
play a role in determining the deviations from the
soft-meson limits. In this section we show how

EPCAC allows us to derive the explicit form of
these corrections entirely in terms of 6, and AK.
Moreover, in the case of the soft-kaon theorem,
the magnitude of the correction we find brings the
ratio f«/f, into perfect agreement with experiment.

We consider the decay K'(0)-«'(p)+ll, and
define the K» form factors, f,(q'), as

+„(q',P„q.) =(&'I v.' IK'&

[(& +P)„f,(q')+q„f (q')]

(57)

dxe+'0 D x, V 0

= (») ' P 6'(P' -P.)(0 ID.'(0) In)(n I
V'. (0) IK) .

(59)

where q =k —p is the momentum carried away by
the lepton- antilepton pair.

Assuming an unsubtracted dispersion relation
for F„we have

+„(P' q' P. q.)

Pr P ~ dP F I2 2
P. +, (P' q P. q. j

~ f f
(58)

where

~„(P" q' P„q.)

Using the EPCAC hypothesis, Eq. (5), and the
assumption Eq. (9), i.e., g, «* g,«*, we obtain

2 2

&„(P tq ~P„~q„)=2 W» -P

&& [(&+P).f.(q')+q„f (q')]

f, 4,„xP ™,

Taking the soft-pion limit, P-O, and using Eqs.
(19)-(21)we find

(60)

= [f,(m«')+f (m«')](1 —n, ) .
r

(61)

f' = [f.(u.') -f (u.')](I —&,). (62)

Once again one recovers the standard result" by
taking the chiral limit in which aK=0. However,
in contrast to the soft-pion case the correction
here is large. In fact, replacing experimental
values' for the form factors one has f«/f, f.(0)
=0.93, if 6K=0. This is to be compared with the
experimental ratio f«/f, f,(0) = 1.26 + 0.02. On the
other hand, for n«o 0 we find from Eqs. (62) and

(4) that

=1 3+0 2f,f,(0)

in perfect agreement with experiment.

(63)

VII. DECAYS q ~ yy AND q ~ rgb

It is known" that anomalous Ward identities
imply low-energy theorems for q-yy and q -«y
decays. In the first case one has a triangle
anomaly similar to the one for n'- yy, while for
q -wry both triangle and square anomalies make
a contribution. If one attempts to calculate the
decay rates starting from the low-energy theo-
rems, two problems, among others, arise. The
first one is the g-q' mixing, and the second the
large value of the q mass. It is generally as-
sumed" "that, despite the largeness of m„', the
amplitudes on mass shell are still dominated by
the anomaly. It then follows that the g-g' mixing
becomes essential to bring the decay rates into

In the chiral limit 6,=0, and we recover the soft-
pion theorem. As expected, the correction term
is small, although the interesting result is that,
as in m'-yy, 6, is measuring the deviation from
the soft-pion limit.

The derivation of the soft-kaon limit is perform-
ed by considering (« I[V«(0),D«'(0)] IO) instead of
(0 I[D,'(x), V«(0)] IK) in Eq. (59). It is straightfor-
ward to show that EPCAC gives in this case
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agreement with experiment. However, we see no
reason to expect the extrapolation of the low-
energy theorem for q-yy to be small. In fact,
we have seen that in the case of the soft-kaon
theorem the K», the smoothness assumption
gives a wrong result for f»/f„. It is only when we
introduced the chiral-symmetry-breaking correc-
tion that agreement was found.

In the following we study the consequences of
EPCAC for q-yy and g-wry and show that when

proper account for the extrapolations is taken, the
decay rates come out in agreement with experi-
ment without further need for any q-g' mixing.

We start by defining the 17 decay amplitudes as

M(») - yy) = e„~8k",k,"e",e, F„(q') I (64}

M(») —m'+» y) = e
& 8» f"u ps p» G „(p, n, p ~ 0, . . . ),

(65)

where e and k are the polarizations and momenta
of the photons, q= k, + k, is the q momentum, and

p, the m' momenta.
The low-energy theorems implied by the anoma-

lous Ward identities are"

= 0.14+ 0.01,
r(q - yr)

(72)

while fnr 6,=0 the result is 0.109. This is to be
compared with the experimental value"' of 0.132
a 0.004. Therefore, the chiral-symmetry-break-
ing factor is enough to get agreement with experi-
ment and there is no need to invoke q-q' mixing.

Turning to q-yy, we would need to know f„and
E~in order to calculate the decay rate. Since
both quantities are unknown, the most we can do
is to invoke SU(3) symmetry. In this case one
has f„=f,. Regarding E„we expect, as in vo-yy,
that E„=1/(1—n„), where n is a hypothetical
correction to a GTR. By SU(3) symmetry we
would have n„= g» and, therefore, E „would be
approximately equal to the soft-kaon-limit cor-
rection in K», i.e. ,

1
En 1 —g IC

(73)

is the phase-space factor. The EPCAC correction
in Eq. (70), i.e. , the term (1 —n, ,} ', amounts
to 26%, which certainly is not negligible. In fact,
we find for the ratio, Eq. (70),

F„(0)= — ——S
1 2n 1

~s (66) In actual fact, E „should be slightly larger owing
to the q-K mass difference.

Under these assumptions we obtain (S= ~)

1 vmn 1
Q q(0) 0, . . . ) = —

~3
Nl ~I'(q —yy) = ' E „'F„'(0)= 0.35 s 0.14 keV, (74)

F„(m „')
F„(0)

It can be shown" that for g —mmy one has

(66)

G n(m n i p w ~ 9 w ~ } ~0~ ~ )
G„(0,0, 0, 0, . . . }

(69)

where S has been already defined in Eq. (26). The
extrapolation factor for the q - yy amplitude is
defined as

while the experimental value" is 0.324 + 0.046 keV.
If wehadused, instead, 4~= 0orE„=1 the result
would have been I'(») —yy) = 0.175 keV, i.e. , a
factor of two smaller.

In conclusion, the smoothness assumption, i.e. ,
E~ =E„=1, is found to give wrong results for the
radiative q decays. However, EPCAC correctly
accounts for the on-mass-shell extrapolations of
the low-energy theorems without the need for an
introduction of g-q' mixing.

where

4 1
1 —h~ f ~ 4ma

4
", (7.48x10 '),

(70)

(71)

where E„ is the extrapolation factor for m'- yy,
Eq. (27). Since we already know from Eq. (30),
what E„ is, i.e. , E, = (1 —b,„) ', we can compute
the ratio I'(»I - n'w y)/I'(») - yy), which is independent
of f„and E„.After performing the phase-space
integration" one has

r(»)-»'w y), 1=E
I(»)-rr) ' f.' 4&n

VIII. P ~ w7fm AND yy ~ weft

As a final application of EPCAC we discuss in
this section the y-~m~ and yy-mam processes.
Here, the predictions of standard strong PCAC"
differ from those of weak PCAC" by at least an
order of magnitude, the later enhancing the am-
plitudes by that amount. The experimental pos-
sibilities of determining which prediction is cor-
rect have been extensively discussed in the li-
terature, ""so that we shall concentrate in de-
riving the results of EPCAC. As is to be expected
from our results for m'-yy, the predictions of
EPCAC will turn out to be close to those of
standard strong PCAC.
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For the process y-r'& ~' there is a low-energy
theorem, "implied by anomalous Ward identies,
similar to the one for q —m'm y, i.e. ,

Fir+ir-irii(0 0 0 0 ) =
2 3 S

v'~u 1
m' r'

The on-mass-shell amplitude is given by"
2 2 2F»+ii »0(p ii ~ p ii i V ii i ~ )

(75)

=E» F,+, -%0(0, 0, 0, 0, . . . )

1 3

F»'»-ira(0 0 0 0 . )

IX. DISCUSSION AND CONCLUSIONS

The impossibility of accounting for the cor-
rections to GTR, both in SU(2) x SU(2) and SU(3)
&& SU(3), led to the suggestion'" that there might
exist heavy bosons. These heavy bosons would,
we hope, provide an additional dynamical origin
responsible for the rather large magnitude of the
corrections to GTR. That this might be the case
was shown later" in the context of a specific mod-
el incorporating a family of heavy pions of the
Veneziano type. However, the problem does not
end there because there are a number of instances
in which those heavy bosons can make a contribu-
tion. Probably the most important situation per-
tains to the soft-meson theorems which rely heav-
ily on the validity of the PCAC hypothesis. Ques-
tions such as how large are the extrapolations to
on-mass-shell bosons of the decay amplitudes

(76)

where we have used Eq. (30) to fix E, Ther. efore,
according to EPCAC, we would expect an enhance-
ment of approximately 20%%u0 with respect to strong
PCAC (E„=1). On the other hand, weak PCAC
gives" E„=3 and consequently a much larger
extrapolation in (76).

Turning to yy-&'v'v' (similar remarks apply
to yy- v'v v'), it can be shown" that the low-
energy theorem is proportional to F, (0), the off-
mass-shell amplitude for m'- yy. Since the rele-
vant diagram for yy-mum is a pole diagram with
a r' as intermediate state, "one is concerned
with the value of F,(q'), where q' is the invariant
mass of that intermediate m'. Choosing q'= p, ,',
as suggested by dispersion theory, we find then
that EPCAC predicts an enhancement in the
amplitude of (6+ 2)/p [see Eq. (30)] over the stan-
dard strong PCAC result, E„=1, while weak
PCAC" predicts in this case a result three times
larger. It is obvious that here the difference be-
tween standard PCAC and EPCAC is experiment-
ally undetectable.

having anomalous Ward identities, or simply, how

reliable are the soft-meson theorems, e.g. , those
of E„have been answered in the past only qualita-
tively. In fact, one generally believes that, e.g. ,
soft-pion theorems are more reliable than soft-
kaon theorems and that one should not expect mes-
on-pole dominance to give the correct, answer for
radiative-g-decay rates. One could attempt to cal-
culate the contribution of several-particle inter-
mediate states to the dispersion relation for the
matrix element of the divergence of the axial-vec-
tor current, such as was done, e.g. , for m'-yy. '
However, one can raise the question as to how

meaningful those results would be, since we know

that that is not the dynamical origin of the correc-
tions to GTR. Therefore, it is only after we have
correctly understood those corrections that we can
turn our attention to the soft-meson theorems.

In this respect we have been motivated by the fact
that the suggestion' "of the existence of heavy
bosons has proven to be successful' in accounting
for the magnitude of 6,." With this in mind we
have defined an extended PCAC hypothesis by Eq.
(5) in a model-independent fashion. This hypothe-
sis coupled with the assumption Eq. (9) was the
starting point in the study of the soft-meson theo-
rems and generalized GTR carried out in this
paper. In Sec. II and IV we showed that as a con
sequence of EPCAC there is a universality among
the corrections to GTR for AS=0 decays on one
hand and for ASTRO decays on the other. An im-
mediate result is a set of sum rules, Eqs. (22)
and (36), valid in the presence of chiral-symmetry
breaking and which become identities in the
chiral as well as in the SU(3) limits. Although a
true test of these sum rules has to await the advent
of hyperon-beam facilities, we showed in two in-
stances that they are expected to be correct.

The above-mentioned universality also enabled
us to derive new sets of sum rules, Eqs. (47) and

(50), as well as a relation for A,/a», Eq. (52),
starting from the Dashen-Weinstein sum rules for
generalized GTR. The prediction for a,/a» is in
good agreement with present data, indicating that
we might expect good saturation of the sum rules
once the hyperon strong-coupling constants be-
come available.

Regarding the soft-meson theorems, the inter-
esting result of EPCAC is that b,, and D~, which
are a measure of chiral- symmetry breaking, deter-
mine completely the extrapolation factors in the amp-
litudes. Although the result for F., in ma-yy, Eqs.
(27) and (30), turned out to be small as expected,
its precise value turned out to be of crucial impor-
tance in the ratio I'(g - »iiy)/I (q -yy). In fact, the
rate 1 (w'- yy) does not change significantly if

E,=1 or if it is given by Eq. (30), but since it is
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E,' which enters in the above ratio of radiative

g decays, the results there can be quite different.
In particular, we have seen in Sec. VII that there
is no need to invoke g-q' mixing when E, is taken
from Eq. (30). Furthermore, we have also seen
that the smoothness assumption usually invoked"
for g —yy is far from being correct.

Finally, regarding the soft-kaon theorem in K)3,
we have seen in Sec. VI that the EPCAC extrapola-
tion factor brings the ratio f,/f» into agreement
with experiment.

In summary, EPCAC provides a working explan-
ation for the dynamical origin of the corrections
to GTR and at the same time predicts expressions
for the extrapolation. factors in the soft-meson
theorems. These expressions are such that in the
chiral-symmetry limits one recovers the results
of standard PCAC or meson-pole dominance.

There are a number of issues that we deliberate-
ly left out in this paper, but that we believe de-
serve future consideration. Among these we men-
tion the following:

(i) What are the implications of EPCAC for the
different existing approaches to chiral-symmetry

breaking, "e.g. , chiral perturbation theory, etc. ?
(ii) How does EPCAC influence the results of

PCAC for scattering processes, e.g. , Adler-
Weisberger relations, forward neutrino-nucleon
scattering, etc. ?

(iii) Specific models that may implement EPCAC
should be studied. A good starting point could be the
Veneziano model, which has worked well for 4,.'
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