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We construct a model for calculating ratios of cross sections. We apply the model to SU(3), calculating

cT+p/0 p and then to SU(4), in order to estimate the Qp cross section. Results are obtained in both "pure" and
broken SU(4). The energy dependence of cr& and the slope of the Qp differential cross section are qualitatively
discussed. Kinematic effects arising from mass splittings and t;„effects are crucial.

I. INTRODUCTION

The newly discovered particles, g(3100) etc. ,'
are being subjected to a number of theoretical in-
terpretations. ' One might hope to use the growing
body' of experimental information on the "strong"
interactions of the P to test these various interpre-
tations. Unfortunately, of course, there does not
exist any well-defined prescription for calculating
the hadronic properties of particles. Nonetheless,
there do now exist some widely accepted, phenom-
enologically motivated "pictures" for production
processes —in particular, pictures based on the
multiperipheral model. 4 In this paper we shall
develop such a phenomenologically motivated (and,
we believe, realistic) model, and shall use it toob-
tain the |tIt) total cross section at Fermilab energies
in the picture where the tt) is taken to be built from
a charmed quark-antiquark pair.

The model will be developed in the next section.
We then test it in the context of SU(3) by calculat-
ing the ratio of gp and Kp total cross sections, and
comparing this to the experimental value. The re-
sults of this comparison then motivate us to extend
the model to a systematic calculation of cross-sec-
tion ratios in a full SU(4) scheme (with Zweig's
rule' ), using both pure and broken couplings. The
masses of course are always kept broken. We then
estimate the effect of taking one P leg to zero
mass so as to be able to compare our results to
the photoproduction results. '

While it is true that the charmed picture of the
g has the desirable properties of being both inter-
esting and sufficiently detailed for us to be able to
carry out a systematic analysis of total-cross-
section ratios within it, its physical status re-
mains uncertain. Accordingly, we shall (in Ap-
pendix A) take a brief excursion beyond SU(4) and
show how, in a quite general situation, a cross
section of the order of 1 mb is to be expected
from the kinematic effects that seem universal in
strong production processes and are explicit in
our model.

The questions of the energy dependence of the
~ total cross section and the slope of its differ-
ential cross section will be briefly touched upon.
The size and energy dependence of the inclusive
cross section will be discussed elsewhere.

II. THE MODEL4 5

Consider the total cross section for some par-
ticle A on protons. We represent it as a sum over
intermediate states, assuming, as shown in Fig. 1,
a peripheral structure at the "top vertex. "

We shall be interested only in ratios of cross sec-
tions such as o,~/err~. We shall find that such ra-
tios are primarily determined by the fact that
strange mesons are generally heavier than the cor-
responding nonstrange mesons. Since this seems
to be the case for all multiplets, in order to cal-
culate ratios of cross sections it should be suffi-
cient to pick out a representative pair of multiplets
B and C in the summation in Fig. i. We shall fol-
low Ref. (6) and specify B and C as follows: When
A is a pseudoscalar (v, E, etc. ) we choose B to
be the vectors (p, K~, etc.) and C the pseudoscal-
ars.

Thus, in the case of SU(3), A and C will be the
pseudoscalars g, K, etc. and B will be the vectors
p, K*, etc. Since the lower blob in Fig. 1 is just
the Cp total cross section, we obtain a set of cou-
pled equations for the ratios of the various pseudo-
scalar-proton total cross sections, which can then
be solved. We shall do this for both SU(3) and
SU(4).

How general can we expect our results to be?
Our cluster multiperipheral model is consistent

B,C

FIG. 1. Peripheral model for the Ap total croSs
section.
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with the view of a predominant short-range corn-
ponent in inelastic data mediated by clusters.
Here clusters are defined as being separated by
nondual 0 exchanges. The model has been shown
to be capable of accounting for a variety of multi-
particle distributions at least semiquantitatively. "'
These include mass distributions, correlations,
etc. , and have been explicitly checked by computer
calculation with exact phase space in specific ex-
clusive reactions near average multiplicities. Such
a model is also capable of resolving difficulties
associated with the calculation of the overlap func-
tion when cluster-spin effects are taken into ac-
count (at least in the energy range E„„&30 GeV/c
where it has been applied). Note especially that
we treat the kinematics realistically without re-
sorting to large-subenergy strong-ordering as-
sumptions that neglect important E „effects. A
restrictive assumption might seem to be that of
pseudoscalar exchange. There are several points
that mitigate this assumption. First, since we in-
clude cluster production, which might be regarded
in some sense as dual to vector-tensor exchanges,
we are in fact implicitly including some of these
effects. Secondly, low-mass (e.g. , v, E) exchange
cannot actually easily be distinguished from ordin-
ary Reggeon exchange in multiparticle amplitudes
owing to a kinematic t „effect which leads to
nearly identical subenergy dependences in the two
cases' ("low mass" means small compared to
cluster masses). Next we shall wind up using an
off-shell ABC (0 0 cluster) vertex function g»c(t')
that rises for moderate values of the off-shell
mass t' before falling to zero. (Actually we shall
examine several versions of this form factor to
test the stability of the calculation. } A form factor
of this type is required within the context of this
model for consistency with both inclusive and cer-
tain exclusive data. "' It should be noted that even
with this choice of g»~ the particle-particle-out-
put-Reggeon form factor pcc(t) —which is closer to
an ordinary form factor than is g»~ —falls uni-
formly for spacelike Off-shell particle mass, M~'
=f' [cf. Eq. (2.5)]. pcc(t) also falls uniformly for
spacelike Reggeon t at a rate consistent with ex-
periment as shown in the overlap-function calcula-
tion reported in the last paper of Ref. 7. We con-
clude that there is no theoretical objection to our
choice of the form of g»c(t') of Eq. (2.4) at moder-
ate t'. We repeat that we expect g»c(t') to damp
out at large t' —the details of which will not matter
much here. Now the reader is entirely free to re-
interpret the enhancement ing»c(t') to mean that
we are qualitatively including ordinary Reggeon
exchange as well as pseudoscalar exchange. If
that is so, claims of model generality would have
to rely on the pure- and broken-SU(N) couplings

being relatively stable under interchange of multi-
plets. As stated earlier we would expect that tak-
ing cross-section ratios would help eliminate this
effect. Finally, we use elementary exchanges.
This differs of course from the popular idea of
dual Reggeized models, but is similar in the sense
that heavier-mass exchanges replace lower-lying
Reggeons. However, it should not make much dif-
ference for the SU(3) calculations, given the small
subenergies involved (on the order of 1 GeV'), and

might even be preferred in view of this fact. For
SU(4) this assumption is crucial. Naive Reggeiza-
tion with respect to ordinary hadronic scales [i.e. ,
choosing s, = 1= 1/c. ' in the formula (s/s, } cor-
responding to iterated clusters of mass vs, ] leads
to a value of o+ many orders of magnitude too
small. " It is important to note that the choice of
these scales provides an inherent arbitrariness in
any attempt to construct a Reggeized model. Our
assumption is closer to Reggeization with a scale
set by heavier clusters (e.g. , containing charmed
guarks).

We close this introduction by stating that of
course we can only test the combined consistency
of the model and the symmetry schemes. We be-
lieve that the results we shall obtain in SU(3) will
persist in more realistic models. The extension to
SU(4) is of course much more speculative and, as
far as o~ is concerned, only the qualitative result
that it is on the order of 1 mb should be taken
seriously.

In accord with the above discussion, we write

Z CCP qfP 2g2 gABC (f )FCD(f )
&A,p g.C 'L™ g J

p „.p M2dM2dt'
+CP

If/ 2%2 gA'BC (f )+CP ( )

(2.1)

We shall assume a constant total CP cross section
(a reasonable approximation —again improved by
taking ratios). Fc~(t) is the off-shell dependence
of the CP amplitude in Fig. 1, and g»c(f') is the
off-shell ABC vertex coupling.

The simplest choice is to take both g»~ and E~~
independent of t'. This is referred to as SFF (sim-
ple form factors). The second simplest choice is
to keep g»~ independent of t' but to use a form for
Fc~(t') that one obtains if one calculates the full
"box" diagram in Fig. 1, assuming no internal off-
shell dependence. This is referred to as AFF
(analytic form factors). Thus AFF is a first
approximation to the off-shell dependence one ob-
tains in a multiperipheral model with point ver-
tices. That it is indeed a first approximation fol-
lows from the fact that as we vary an external
mass on a ladder the effects damp out as we move
down the ladder away from the relevant external
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leg. %'e shall use the AF F off -shell dependence
calculated for asymptotic energies —which is rea-
sonable since me calculate all our cross-section
ratios at 8 = 400 GeV'. This analytic off-shell de-
pendence is then

(2.2)

where

1 s M dt"dMf')= —
2 es f, (f —ms )

and 8' is the first particle produced within the Cp
discontinuity. Using the approximation in Eq. (A3)
for f „,Eq. (2.3) may be evaluated analytically
(the result is exact in the s -~ limit).

The third and most sophisticated choice of form
factors me shall use is taken from a phenomeno-
logical multiperipheral model. ' This is referred
to as PFF (phenomenological form factors). For
moderate spacelike t' it is defined as

Zxsc (f') =gas c (1 —f'/~&'} (2.4)

In this case it folloms from strong-coupling solu-
tions to the multiperipheral model that

(2.5)

where 8' is the first produced particle in the lower
blob in Fig. 1 (i.e. , in &rc~), and n is the intercept
of the leading trajectory —in our case e = 1. Equa-
tion (2.5) is only a reliable approximation for mc2
& m~. ' and t' ~ 0, which will usually be the case in
our calculations. There are a few instances in
which this is not the case —these generally give
small contributions —but we shall use Eq. (2.5)
there anyway. We choose the normalization of Eq.
(2.5} in reasonable ways [recall that Eq. (2.5) is
valid for t' - 0 so that it is not clear how to nor-
malize it]. We shall state the normalization as we
present the results in Secs. III and IV.

We use 5= 1 (this is the enhancing form factor
referred to earlier). This implies that the form
factor rises as (-f') increases. Inpractice, of
course, one expects such a rise to turn into a fall-
off as

~

I'
~

becomes large; since, however, our in-
tegrals will be dominated by

~

I'
~

not large (although
not small), this need not be incorporated explicitly.
The reason for choosing 5 = 1 is phenomenological:
In order to obtain total cross sections from the
ABFST (Amati-Bertocchi-Fubini-Stanghellini-Ton-
in} multiperipheral model that do not fall with en-
ergy it is necessary to increase average couplings
above their physical on-shell values. "'

Note that the choice of 5 = 1 and m~P = m~'
=(m, ,„„„}leads back to our first (SFF) choice
(suggesting that it may not be as naive as it first
appeared).

The remarks above define the variations on our

model as used here. In the succeeding sections we
employ this model on a variety of couplings: pure
SU(3}, broken SU(3), pure SU(4), and broken SU(4).
All of these calculations mill be performed numer-
ically using exact kinematics. In Appendix A we
present an analytic (approximate) calculation of

0&p in which we hope the physics of the model will
be clarified. In particular, the nature of the sup-
pression of integrals due to important t „effects
will be emphasized.

III. SU(3) AND o,p/asap

To begin we use the model within the SU(3) con-
text to calculate c,~/&sr~ and cr„~/or~, since o,~/or~
at any rate is well known experimentally, having
a value

G~p/Grp 1.3 (3.1)

~+q 6IqK +E+Ep

&rp 4'ps&op+ 2I~E: *E:+sop

where

(3.2)

ABc s2 (ft ~ 2)2
tm~a

(3.3)

and t, , is the minimum momentum transfer for
the appropriate process.

In Eq. (3.2) v:. have used pure-SU(3) coupiings
[since the SU(3) coupling breaking is small]. Note
that we have used our first simple-minded choice
for all off-shell dependences (SFF). We find

0''P =1.V,
Ozp

~0 7
0'

&rap
(3.4)

If we now solve Eq. (3.2} with conventionally broken
couplings (about 5/o), we obtained instead

0'
9P ~0

&rp
(3.5}

Notice that the broken- and pure-SU(3) results dif-
fer from each other by around 20%%up.

Encouraged by these results we shall nom pro-
ceed to calculate all the ratios in a full SU(4)
scheme.

IV. SU(4) AND o~p/o„p

To solve the equations which result from the
model of Fig. 1 in SU(4}, seve."al pseudoscalar

for both total and inelastic cross sections. Such a
calculation is, of course, of interest in itself.

The appropriate equations derived from Eq. (2.1)
are

0'rp +rpr~rp+ +a'K E~Ep
3 /3 1 % 3 7

GE'p pIg g +gg&p + (2I~p g +Ig y g +p I

pter

g )0'~p + ~IE' g wf}0'yfp
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mesons must be added to the conventional SU(3)
mesons. We follow here the notation of Gaillard
et al."and call the singlets E' and the doublets D
and D. The I,=O, Y=O physical mesons now in-
clude the g, . The masses are determined to be
ma= m~= 2.2 GeV and m„,= 2.7 GeV. This latter
value results from the solution to the mixing pro-
blem"; this solution is also used in determining
the appropriate physical coupling constants. The
coupling-constant determination is outlined in Ap-
pendix B.

We now proceed along the same lines as in Sec.
III. Taking into account the various possible
charge states, the model of Fig. 1 leads to a some-
what more compli. cated set of equations than in
Eq. (3.2). The SU(3) equations become modified
by charmed terms (for example, o,~ picks up a
vD*D term) and similar equations for o», or&, and

o„,~ are obtained. We shall not write these down,
as they are long and unedifying. We shall, how-
ever, keep all terms and allow for SU(4) coupling
symmetry breaking which was not done in Ref. 4.
We also investigate changes due to the various
form factors described previously. This intro-
duces the following complication. Consider Eq.
(2.1). The off-shell behavior of ac~, namely
Ec~(f'), depends on the vector meson D and ex-
changed pseudoscalar E at the CBE vertex inside

ac~. Thus we should calculate c„~ from Eq. (2.1)
using the form of o~& iterated so as to exhibit this
behavior. We have thus solved the coupled equa-
tions using a numerical iteration procedure. A11

integrals were evaluated at s = 400 GeV'.
We thus obtain results for o„~/c,~ with A =D,E,q,

as well as modified results with A=K, g,X,. One
final assumption (surely reasonable) was to take
g, as effectively pure cc with zero ss mixing,
since in the broken coupling schemes used this
mixing turned out to be very small.

We now obtain o~~ by simply assuming

(4.1)

The major corrections for Eq. (4.1) should come
from the nonzero spin of the P, but we take com-
fort from the fact that a» =o,&

and ignore this
point. We have also estimated the deviations from
Eq. (4.1) due to SU(4) mass and coupling-constant
variations along the same lines as our previous
calculation (ignoring spin); the results are not
appreciably changed.

With Eq. (4.1) we obtain the final results shown
in Table I. We see that the results are relatively
insensitive to the choice of the foxm factor but
exclude one of the sets of broken couplings [set b].
(See Appendix B for a definition and derivation of
the couplings referred to here. ) We prefer set
(a) of broken-SU(4) couplings over the pure-SU(4)
results, partly because of the improved or~lo, ~
value. [In Hef. 4 where pure SU(4) was used, the
SU(3) cross sections were assumed to be unmodi-
fied. ]

In comparing the results for o„~ with that ob-
tained in yP -Q photoproduction at Fermilab we
should emphasize that the model prediction for
a» must be modified to let one of the P's have zero
mass. This decreases the value of c~~ owing to
unequal-mass t „effects. A numerical calculation
of this effect has been performed with the result

(4.2)

We see that our results for 0~~ including the fac-
tor 0.6 are on the order of the Fermilab values~"
for pure SU(4) and the set (a) of broken couplings,
with set (a) again preferred. [In Hef. 4 the off-
shell extrapolation in Eq. (4.2) was not included. ]

V. ENERGY DEPENDENCE; ELASTIC SLOPES

A. Energy dependence

Our evaluation of o&~ was carried out at s = 400
GeV . Since the final states involve massive parti-
cles, one might wonder as to the energy depen-

TABLE I. Ratios of cross sections 0~/0~&, at s =400 GeV, where A are the SU(4) pseudo-
scalars. Also included is O~rr&/g~& (which has been corrected for by taking one of the g legs
to zero mass).

A K qoff x' Gomments

SFF pure SU(3)
SFF broken SU(3)

0.59
0.71

0.41
0.57

PFF pure SU(4)
AFF pure SU(4)

PFF broken SU(4)
AFF couplings (a)

PFF broken SU(4)
AFF couplings (b)

0.52 0.01 0.006 0.34 0.02
0.46 0.02 0.012 0.26 0.01

0 59 0 05 0 03 0 40 0 03
0.51 0.11 0.07 0.31 0.02

0.88 5.4 3.2 0.77 0.05
0.80 7.2 4.3 0.72 0.06

0.15
0.21

0.35
0 ~ 38

14
7.1

0.03
0.05

0.17
0.12

improbable

preferred

excluded
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dence of cr~~. Will it involve a slow rise to the
asymptotic limit, or will the threshold rise be
very rapid? We shall address ourselves here to
this qualitative question.

In Fig. 2 we see the numerically calculated en-
ergy dependence of a„~ using the exact flux factor.
(The graph is in fact for o», but o» will be very
similar. ) Note that the cross section rapidly ap-
proaches its asymptotic value; the cross section
reaches '75% of its asymptotic value at

s = 1.8s,„=1.8(2m'+ m~)'. (5.1)

&~~= &.~+ &'+ &. (5.2)

4i
%P

orb.
units

In practice we might expect the experimental
threshold, s,„, to equal m~ +m~ rather than the
larger value 2mD+m~, where B, is a charmed
baryon. Since the cross section for ~-BQ is
not expected to be small, just as pp-N& is not
small in the pp context, this would just involve an
appropriate shift of the curve in Fig. 2 to lower
energies. This is an important fact to keep in
mind if one wishes to use the experimental thresh-
old of 0„~ to deduce the mass of the D's. Using
Ms,„=2mn+ m~ one would underestimate mn [and
perhaps be led to expect a broad P'(3700) —2D

decay width].

B. Elastic Pp slopes

In this subsection we shall present a qualitative
argument that the t slope of do/dt for PP scattering
should be flatter than that of ordinary cross sec-
tions.

Consider the decomposition of the ~ elastic
amplitude as in Fig. 3(a) for t4 0. The t slope,
b&~, will have three contributions: b» from the
lower pP amplitude, g from the integration over
t' and t», and b' from the upper (DD production)
blob. So,

I" t'

I

I
I

I

(o)
t

(b)

FIG. 3. (a) Peripheral decomposition of the gP ampli-
tude. s& is the invariant mass of the DD* pair, s2 that
of the lower blob. (b) Peripheral decomposition of the

pp amplitude.

bpp=2b p+ &', (5.3)

where f= f' owing to similar kinematics in the
loop integrals. Explicit numerical calculations
suggest f~0.5 GeV '. Now, we expect b'=0 both
because the D exchanges are very massive and
because the spin (vector in our model} carried by
the produced D* produces negligible effects be-
cause its mass is so large. This statement has
been checked by explicit calculation. So

b»='(b-+') ~

Inserting a value b» —- 5 for
~

t
~

& 0.2 GeV' we ob-
tain

(5.4)

~+tIP ~ st
I t I &o. 2N 8~4pp

(5.5)

Since in this energy range the corresponding ex-
ponent for gp and Kp scattering is around 8, we
conclude that the elastic t/P cross section should
be appreciably flatter in t than one finds with the
usual mesons.

A detailed calculation has now been carried out

by Jones within the context of the model (with
PFF vertices} we presented earlier, leading to
similar conclusions for a range of processes. "

If we consider energies in the region of s = 400
GeV', then the energies s, and s, through the upper
and lower blobs, respectively, will be about equal.
Consider now the Pp elastic amplitude decomposed
as in Fig. 3(b) so that s, = s, and hence, at s - 400
GeV', 2 ~x x Then

VI. CONCLUSIONS

50 (00 150
s (GeV )

200

FIG. 2. Energy dependence of o &, with an effective
threshold given by 8& = (2M~+M&) .

This paper involved the construction of a dynam-
ical model specifically adapted to the calculation
of relative cross sections within particular sym-
metry schemes. The results of the calculation
are summarized in Table I for pure SU(4) and for
two sets of broken-SU(4) couplings with two choices
of off-shell behaviors (PFF,AFF) described in the
text. The results for pure SU(4) and a third (SFF)
off-shell behavior were given in Ref. 4, along with
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SU(3)+SFP results.
The peripheral model (which is known to pro-

vide an adequate account of the bulk of production
processes) appears to reasonably reproduce the
response of production amplitudes to momentum
transfers and masses. While this determines the
kind of model we use, our confidence in the fine
details of the model is less certain. Since one of
the major sources of uncertainty concerns off-
shell dependences, we have employed several such
foxm factors. The results of Table I are reas-
suxing in that they do not seem overly sensitive
to such details.

We are forced by lack of experimental knowledge
to accede to a theoxetical picture of the particle
spectrum. For better or worse, this is supplied
here by the charm hypothesis. The SU(4} mass
spectrum is probably essentially correct (see
Appendix A). The number of mass-degenerate
particles is specific to SU(4). A more serious
problem concerns the calculation of the SU(4) cou-
plings. The large mass breaking requires the use
of broken couplings. Given the experimental un-
certainties in the known decay widths, the range of
possible values of the couplings is quite broad
(compare, for example, our (a) and (b) sets of
couplings). Naturally such difficulties will arise
in any symmetry scheme we should choose to ac-
commodate the tj.

The completely dissimilar results from the not
too dissimilar sets of broken coupling constants
suggests that here we may have a practical tool
for choosing between sets of couplings that appear
a priori equaQy probable.

The "experimental" value for o„,& at Fermilab
energies' is about 1 mb. This value is obtained
assuming that the zero-mass yP coupling equals
that at the P mass. Theoretical estimates suggest
that if anything it will be smaller. Consequently,
one expects o„~&1 mb. This is with one P leg at
zero mass. If we compare this with Table I we
see that the (b) set of broken couplings is obviously
excluded, and the (a) set is preferred over the un-
broken-SU(4) results within the context of the
model.

Many of the uncertainties described above do not
apply within a purely SU(3} context. Using the
known masses and conventionally broken couplings
we obtained a value for v,~/sr~ within 15' of the
experimental value. It should, however, be noted
that within a full SU(4) calculation the agreement
wox'sened.

In conclusion, a peripheral treatment of hadronic
processes shows how the mass breakings in SU(3)
or SU(4) multiplets lead to varying total cross
sections. Superimposed on this is the effect of
broken couplings, and we have seen how this can

help to select out the "correct" set of couplings.
A value of o~~-1 mb is to be expected from the
mass spectrum alone. Moreover, a relatively flat
~ differential cross section is to be expected.

APPENDIX A: e~p WITHOUT SU(4)—AN APPROXIMATE

ANALYTIC CALCULATION

In the body of this papex" we carried out a detailed
analysis of o„~ within an SU(4) context. However,
the relevance of charm is far from experimental
vindication. Do we know enough about the "new
particles" to carry out a more model-independent
analysis'P In this appendix we carry out a "mini-
mal" such analysis; that is, we shall, where nec-
essary, make the simplest assumptions consistent
with the data. We also perform approximate ana-
lytic rather than numerical calculations so as to
clarify what is important in determining the result.
We hope this will make more transparent the rea-
sons for our previous results also.

The enormous suppression of P decay and the
strong suppression of P'- P+ anything decays
argue that the direct interaction between any num-
ber of P and the usual particles is strongly sup-
pressed H.owever, the Q cross section is of the
orderof mbratherthatof pb (unlike o&~~ which is
of the order of pb). This implies the existence of
a set of yet unobserved particles that couple
"strongly" to both g and ordinary particles. Let
us ca,ll them D's. The minimal assumption is
that |tf couples to a pair of such D's. In that case
both the threshold behaviox of o~~ and the fact that
$(4100) is broad suggest that

mD=2 QeV. (Al)

The simplest further assumption is that the cou-
plings (pDD"f and fDD(ordinary particles)) are
typical strong couplings. So a ~ collision is just
like any other except that it involves the produc-
tion of a pair of massive particles. What we need
then is a model that will treat more or less realis-
tically the way production amplitudes respond to
the masses of the particles involved. The best
current candidate is the multiperipheral model,
hence its use in the body of the paper and here.
We use the same type of model as used previous-
ly; details should not be too important to the re-
sults.

A typical contribution to o~~ is then as in Fig. 1
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with A = g, B=D, C =D. This compares with a
typical contribution to cr,~ of A =g, B=p, C =7r.
Assuming SFF off-shell dependences

~o oD~fM'dM'dt/(t —mo2)2

o,& o,&fM'dM2dt/(t —m, 2)2

1 x4c
oD~, —mo'x/(1-x)+m~'x —mD'

„, —mp'x/(I -x)+ m, 'x —m, ' (A2)

where x=M'/s and we have used the usual (here
excellent) approximation for t „

2mB+ 2+my &.1-x (A2)

A typical value in the integrands of Eq. (A2) is x
glvlng

2
~o' 0'Dp my

2 '
vga 0'qp m p

Similarly,
1 xdx

one
''

o
—mo2x/(I —x)+ mo'x —m,

—m 'x/(1 -x)+ m, 'x —m, '

(A4)

2m
2mp

(A4) and (As) give

(A6)

0' m~~ =2 ' =—'~cr =1 mb.
cr m'

ffP D
(A6)

Note how the masses come in to determine the
values of the integrals; in Eq. (A2) we see that
both the exchanged and produced masses are im-
portant. It is clear now why 0,~&crE~. With an
incident strange particle one mope often has
strange particles produced and exchanged, and
strange particles are heavier than corresponding
nonstrange particles.

Clearly the value of o&~ in Eq. (A6) will alter
one way or another with modifications in our
"minimal" assumptions. The fact, however, that
the experimental cross section is of this order

strongly suggests that the strong interactions of
the g —whatever its basic nature —are entirely
conventional.

APPENDIX B: CALCULATION OF THE VECTOR-
PSEUDOSCALAR-PSEUDOSCALAR COUPLING

CONSTANTS IN BROKEN SU(4)

We base this calculation on the use of current
algebra, the partially conserved axial-vector
current (PCAC) hypothesis, and a specific form
of the SU(4)-symmetry-breaking Hamiltonian.
We suppose that the total Hamiltonian density can
be written as

BC = Kp+ K

where K, conserves the SU(4) symmetry, while
X' breaks it. In terms of the scalar densities,
X,= apu' and K' = a,g'+ a„u". Considering the
process V, (p)-P, (q)+P, (q'), where i,j,k are
the SU(4) indices and p, q, q' the four-momenta,
we find that

»n)I. 2q.(&)']'"&P~(q),P (q') ~S6~ V;(P)&

ap=if, f;~;+a,d&„ffQf+a»dki5ifta( G,
v2

(Bl)
where f& is the decay constant for the pseudo-
scalar P, and G is the SU(4) reduced matrix ele-
ment which contains the Lorentz structure also.
In the derivation of Eq. (Bl), we have used the
PCAC condition and the equal-time commutation
relations of the axial-vector current with the
scalar densities. If we denote by V and P the
4 x 4 vector and pseudoscalar matrices of SU(4),
respectively, then it is easily cheeked that the
vector-pseudoscalar-pseudoscalar interaction
Lagrangian is given by

Z, „(VPP)=iGO.Tr(Pa„PV")

+ iG,Tr((P, A, )A, )S„Tr([.P,.A(]V")

+ iG»Tr((P, A.,)X»)S Tr([P, A. ,]V~).

(B2)

More specifically, the matrices V and P are given
by

40+ p
v2

p

K*

Dgo

p+ K~ D+0

(d K*' D*
v2

K*' P F�-
*D' F*'

C~

P=

0
7T g8 l15

2 v2 v6 2&3

K

Do

0
~Q + + ~8 + ~15
2 v2 v6 2@3

KP

lp ~8 + ~152

ve 2v3

F4

DO

D

~0 ~152'



CALCULATING HADRONIC CROSS SECTIONS IN SPECIFIC. . .

The particle notation (excepting the rl, 's) is that of
the paper of Gaillard et al." Note that in writing
(82), we have set f,=fr=f„=fa=f„=f„,which
follows on extending the Gell-Mann-Oakes-Henner
treatment to the breaking of SU(4). By evaluating
the traces in (B2), we obtain expressions for the
coupling constants in terms of G„G„and G».
The fact that we have exactly three pieces of data
(decay widths of p, fC~, and Q) does not determine
the three G's separately. To do so, we have to
employ the result according to which the vector-
mass-mixing formula fixes the ratio G»/G, ."
This result may be used in conjunction with the
width equations, taken two at a time, and we end

up with three sets of solutions for the unknowns

G, , G„and G». Actually, because of the errors
on the experimental values of the p, K*, and P
widths, one can introduce a type of X' minimiza-
tion procedure. For example, starting with the

p and K* equations and the above values of G„G„
and G», we seek the values of Go Gs and G» in
the vicinity which minimize the quantity

(i)~Prr, g Krs/EZ
(i) (i) (i) '

Doing this for the pairs (K*,p) and (p, p} as well,
we obtain the three solutions

(a} G, =1.6, G, =0.005, G„=0.11, y =3.5;

(b) GO=2.9, G8=0.022, Gi, =0.48, y = 5.2;

(c}Go = 0.6, Ga = 0.025, G„=0.55, X = 18.

In the text we consider solutions (a) and (b) only
since the solution (c), in addition to having the
largest X', gives comparable values for the sym-
metry-conserving and symmetry-breaking pieces,
conflicting with the notion of regarding the sym-
metry-breaking piece as a relatively small per-
turbation on the symmetry-conserving one.

Note that the particles g„g„and g„are es-
sentially mathematical objects. The physical
particles X', q, and q, used in the text are suitable
linear combinations of the g, (i=0, 8, 15) and are
obtained by diagonalization of the mass matrix. "
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