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Sum rules for the single-pion-observed inclusive reactions induced by electromagnetic currents
or hadronic weak currents
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By using partial conservation of the axial-vector current and a technique of Dicus, Jackiw, and Teplitz, sum

rules for the inclusive reactions induced by electromagnetic currents or hadronic weak currents where the
single pion is observed are derived.

I. INTRODUCTION

Recently this author proposed sum rules for the
inclusive reactions such as y„+lq-w'+X (anything),
where N is a stable hadron. ' The main assump-
tions are the following: (i) partial conservation of
axial-vector currents (PCAC), which is nothing
but the assumption of smooth extrapolation of the
q2 =0 amplitude to the on-shell pion amplitude as
is usually stated~; (ii) the Ward identity' (we as-
sume here cancellation between the seagull terms
and the Schwinger terms; since the axial-vector
current is included, the assumption may not be
adequate, but we hope the corrections would be
small compared to the leading terms}; and (iii}
that the currents are composed of spin-~ quark
partons (we use canonical quantization at the null
plane). This is the assumption of the algebra of
currents or bilocal currents (AC or ABC) restric-
ted at the null plane and abstracted from a free-
quark model or a gluon-quark model. ' Thus, the
sum rules will be useful as a test of ABC since we
take the connected matrix elements and, further,
since the virtual-photon mass is fixed. Though
the method is explained in previous papers, me
repeat it in Sec. II for the purpose of extending
the analysis and to make this article self-con-
tained. In Sec. ID the method is applied to the in-
clusive reactioiis induced by hadronic weak cur-
rents. In the Appendix we discuss the high-energy
limit by using the %'ard identity and the light-cone
Bjorken-Johnson-Low theorem (LCBJL).~ Through-
out this paper we use the SU(4) charm models as

an illustration since the discussions concerning
the symmetry properties of hadrons or j,eptons
are not declslve.

II. THE DERIVATION OF THE SUM RULES

Vfe consider the inclusive reactions y~ +&-m'+X
(see Fig. 1). According to a usual technique~ the
hadronic part of the process will be given as

T""= {m„'-q')2

x&pl T*(y..(x)J"(y))T(q..(z)~ "(o))I j»,

s„Z.'"(x) =m„'Zy„(x) +O(e), (2.2)

where E = Wf„when a = 1+i2, E =f, when a = 3, and
O(e) means the contribution from the vector poten-

tials4"(x)

as far as the electromagnetic interaction
is concerned. %'e neglect this term whenever the
first term in Eq. (2.2) provides the main contribu-
tion. Further, there may be an anomaly, but we
hope the contribution from an anomaly would be
small compared to the leading term if it exists.
Therefore, we neglect it and rewrite Eq. {2.1) as

(2.1)

where J'"(x) is the electromagnetic current, com-
pleteness of the intermediate states is assumed,
and the average over spin is understood. Now we
assume the PIC relation'

T = d xd yd x exp[-iq (x-x)+ik y]
(~'- q'&' 4

2~m fm

&&q q & pl [T*(z,", ( ),z,"(y)), T(z,"(x),z,"(0)&] I p& -iq, &( -y') & pl[[J."( ),&,"(y)1, T{J."( ),z,"(o))]l p&

—q,(&(")&j I [T*(~.", (x),~,"(y)},[~. ( ),~."(o)]]I j»

- ~( '-y')&( ')
& j I [[&."( &,&l(y&), [~."( ),~."(0)]llp)], (2.2}
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and

p ~ k

K" —q ~ k k" —k q",

(2.5)

FIG. 1. The inclusive inelastic scattering where the
single pion is observed: yv +N 7t'' + X.

where

+ (P"K '+P 'K") U, +K"K '
U, , (2.4)

where a* =a' =c = 1 —i2, b =d specify electrornag-
netic currents, and a spectral condition is used to
obtain the commutator. Since T,",",„satisfies gauge
invariance and the average over spin is taken, it
will be given as

(s ~ k)'
TPV gPV y k2p)f pV gQv ~rL+

L k"

J.'{x)= q(x) t
"-„'-Z, q(x),

J',"=q(x) y "y',-'X, q(x) .
(2.6)

Here we can 3pply the method of Adler's consis-
tency conditions. -'Taking the discontinuity over
X and using completeness, we get the following
as@ -0:

and U; (s=l, . . .
t 4) ~s a. function of p ~ q, q', q

k-, and p k. According to a usual technique we
can investigate the singular terms as q"-0 on the
right-hand side of Eq. (2. 3) and find that we may
set q+ =0, q., =0 safely. At this limi*t q" =-2q q

-q, -'=-0 p ~ q =p q q ~ k =q k', and q remains
as an arbitrary parameter. We discuss the fact
by usinp a simple Ward identity in the Appendix.
Now we continue to discuss the case q -0.
We take the currents as

(f ~ k)~
gP y k2pPg v f ggv yI. +

k2 2

1 d'xd'y d'«~(ik y) o(x —y ) h(z')(PI [is", (x), ,J,"(y)i, [J,' (&), J,"(0)j]iP),
(2.q)

where

d'»e~{ik»i&plJ (o)I&(p)&«{p)jJl'{y)Ji'(0)I &(p)&&&(p) If; (0)jp&
1

- &P j J!"(0) j &(P) & &'(P) j J,"(0) J l (y) j &(P)& & &'(P) j J '. (0) j P& J

1
d 'x d'y em(ik y) d(x' - y') ( & p j jJ,."(x), Jl (y)1Jl'(0) j ~&(p)& &fi'{p)

I
I;"(o) I p)

— &p I
J;"'(0)Ifq(p)& &&(p) j Jl'(0)i J."(x),J,"(y&l

l p&k

d'yd'z exp(ik y) 6(z') $(P j J (0) jX(P)&(K{P)!J,"(y)i,J; (z), J,'(0)! jP&
1

4f „'p'

+ &P j jJ;"(~),J,'{0)
I I, (y) i 'i(P)& &.&(P) I J."'(0) jP&j, (2.8)

and q'=0, q k=0, p q=0. Hereafter we write U, = U,.(k', v=p k) and assume it to be smoothly continued
to the on-shell pion form factor at threshold. Since Eq. (2. r ) is odd under exchange of. a —c, b —d, p. —v,
and k- —k, we get the same crossing property for V~ or V, as in ~ P- X. A"' is the contribution from
pole terms which are nonzero only when the attachment of the proper vertex of J," in the initial target
does not change its mass and is not forbidden by parity or isospin. The experimentally interesting case
is that of the nucleon target. Thus we evaluate A"' only in that case, and N in Eq. (2.8) mill be a suitable
nucleon state which will be determined by the particular process we consider. By using a technique to get
the fixed-mass sum rules' we integrate over k, change the variable from k to v=P-k, assume we can
interchange setting k'= 0 and performing the v integration, ' and get



J (p ~)'
dv C"'V + -u'P"I'+ C"" V2'+ v L u2 2

d'xd'yd'z exp -i y 5 x'-y' 5z' g '
p g ~ 4, g z J„"0 p=0

(2.9)
r

The right-hand side of E(l. (2.9) is restricted at
the null plane x+ =y+ =a+ =0. Then we use the ca-
nonical quantization at the null plane'

[q(t) (x), q(,) &0)]I„, , =
~2 A(,) 6(x )5'( x,), etc.

(2.10)

By taking p, = v =+, we get

dv%, '[V,'(v, -%,') —V;(v, -%,')]=,r„
(2.1i)

where + means y~+N-n'+X, respectively, and

& pl ~."(0)I p} =p"F. . (2.12)

o' =2(2v)'q' dg

d Q'
(2.14)

where the right-hand side is evaluated at threshold
for the single-pion emission. Next we take
p, =+, v =z and get

j dv v [V,'(v, -ki') + V, (v, -ki')]
0

~2&. ~, 0 +-'~3&s & 0

+ A„((x,0),W6
(2. iS)

As already pointed out, we get the additional
contribution —4xg„'(0) I', /f, ' on the right-hand
side of E(l. (2. 11) in the case of the nucleon target.
As in the case of the Cabibbo-Badicati sum rule, "
the sum rule (2.11) will be transformed into the
more useful photoproduction sum rule: Consider
the case when N is the proton. By use of current
conservation we rewrite T"= [(p+)'/v']k, k, TU, .
take the frame p~ k~ = 0, separate the neutron Born
term, take the derivative with respect to k~2, set

0, and get f~ally
2

a, (0));,'(0) ~
2

'. J (~"( )-~' ( )) =0

(2.13)

where g~(0) 18 the nucleon axial-vector couplMg
constant, g„'(0) = (d/dt) g„(t)I, „o(i»e fine-
structure constant, u is the laboratory energy of
the photon, and g" is defined for the reaction y+p

m +Xas

=p"A, (p x, x')+x"L,(p x,x').
(2.16)

Further, in the case of the nucleon target we get
the additional contribution

(5 —2f.) xz~'(0) "d,
( )~( 0)

+ ", ' da e(o. )A'(n, o)
wg„(0) f,

on the right-hand side of Eq. (2.15), where A,'(o. , o)
is defined as in E(l. (2.16) for the axial-vector bi-
local currents. " The sum rule (2.15) will be use-
fulasatestof ABC since f "„do(e(c()A(a, o) will be
measured by the deep-inelastic electron scatter-
ing. ' %e get, for example, the following when N
ls the nucleon:

dvv V,
'

v, -k~' + V2 v, —k~'

~, [9 —5g„'(0)] dv -—,W;~(v, —k~')2 A k 2 2

, [9 —5g,'(0)] 2, F,"(~) .

(if the sealing holds), where &o = —k'/2pk and F;~(a&)
is the famous sealing function in the deep-inelastic
electron scattering. Finally we take IL(, =+ v =- and
get

rtoo

dvk~ [V~(v, —k~2) —~~(v, -k~2)]
g0

GCRQ + 83 Q&0

&pl l [q( ) y"-,'~. q(0)+q(0)y —,'x. q( )] I p&

=p"S &p x x')+x"S (p.» )

(2.19)
The sum rule (2.18) will also be useful as a test
of ABC, but wi11 be more model-dependent than
the sum rule (2.15). Further, since the measure-
ment of S(o., 0) will be done through the scaling
function G~("i((u) (see Hef. 6) which is defined as
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(2.20)

an experimental check of the sum rule (2.18) will
be more difficult than the sum rule (2.15). There-
fore, we investigate the sum rules derived from
eases p, = p =+ and p. =+, p = i in other reactions.

III. REACTIONS INDUCED BY HADRONIC WEAK

CURRENTS

Since the derivation is the same as in the ease of
electromagnetic currents, we only write the dif-
ferent points and the results. Further, we do not
write the contributions from the pole terms A"'
in A or 8 or C, since we explicitly discuss the
case of the nucleon target in D.

A. v&+N~l+no+L or vI+6'~l +F0+X

The hadronic part of the reaction will be given as q -0,

d'xd'y d" exp( & y)5( '-y')5(")(pl [[~."( ), &,"(y)],[J."( ), I;(0)]]lp&,
1

(3.1)

where a =c =3, b*=d specify charged weak currents, and V„"(x) will be given as

V."{x)=q(x) y"(I -y, ) C, q(x) (3.2)

0 cos8~ sin8~ 0

0 0

0 0

0 0

0 0

0 —sin8~ cos8~ 0

and 8~ is the Cabibbo angle. " Since the current is not conserved T"' will be given as q -0,
T""= g"'W, +—p"p" W, fe"'"'p-„u,W, + {p"u" +p"n") W, + {p%'-p'u"}W, +a"a"W„ (3.4)

and W, is a function of q'=0, q Ii =0, p ~ q= 0, p k, and O'. Then we write W, =W, (p ~ k, k') and assume
it to be smoothly continued to the on-shell pion form factor at threshold; further, we neglect 8', to 8',
since they do not contribute to the cross section in the zero-mass approximation. By taking p = v =+, we
get

(3 5)

where + or —means the reaction p, +N-1+ F0+X or v, +N-3+m'0+X, respectively. By taking g=+, p =i, we
get

dp 8'3 p, -k~ +F'3 p, k~

cos 8c dQe(Q) v2 Ao(Q, 0) +~p3 A8(Q) 0) + A ps(Q, 0)
Fe

~2 oo 00

+ sin'8c do. e(o.)A,(n, 0) +sin8c cos8c dne(a) [A,(n, 0) -A,(o, 0)]

(3.6)

B. v&+N~l+x'+X Or v&+4'+l +m +X

In Eg. (3.1) we only change f,'-2f„' and a =c =3-a*=c = I -i2. By takmg p =v =+, we get

s~[w ), , -i,') —))', (, -R,')]=, case, a' e, (r, ~ r, ) sin')t, r, — ),+ )„}~ ~ (3.7)
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where ++ or ——means p, +X-L + v'+X or 2, +X -T+» +X, respectively. By taking p, =+, v =i, are get

2
OCt

dv [jV~+ '(v, -k~ ) + jV~ (v, —k~ )!
0

= ——,, ) cos-8,, dna( n), &~2 A, ( n, 0) +-';v 3 A, ( n, 0) + A „(n, 0)
CO

Xt

+v 2 sin"0& Qo, e cy A. o(A, 0 +sln0~ cos0~ dAc 0 A6 Q, 0 -49 A, 0

C. t +~-~I. +~'+g
(3.8)

ID Eg. (3.1) We ChRMc f "2f . 0 =C = 3-Q* = C = 1 —I'2 slid V "(X) V", j (X) Wll&1 s

V!..„s(~) —«(~) 7 "&&q(~) +e(~) 7'7'"~~q(x) .. (3.9)

0 0

Q

0

,- + j sin 01'

0 —;";-+= sin"0~

0 1 -'k ~ g n
—,— ——, sin 0~,

(3.10)

0 0 0

0 .'-, 0 0

0 0 .'-. 0

0 00-0
and 0~ ls the Kwj|emberg angle. o By tak1ng IL(,

'= p =+
~ Eve get

J

�2m
d» [iv~7(v, -k, -') —W.', -(v, -k„')]= —.[(1—2 sin-8, )'+1]r, ,

() 7j

(3.11)

where 0+ or 0- Ineans p+Ã-v -I jT' +X or V+X-v+71' +X, respectively. By taking ILL, =+, p =s, %'e get

J dv [iV~3'(v, —k~ )+jV03 (j, , —k~ )] = — . , (1 —2 sin"8~)
0 2J7(

dna(n) ~&2A, (n, 0)+%3A,(n, 0)+
3 A„(n, 0) .46

(3.i2)

D. The case when /V is the nucleon

No;v we list. the sum rules when &V is the nucleon:

dv [ jV"., —jj,, ] = . ——„[4 c8os +scin'8c'g„(0)]+ —,, g„(0)(1+cos'8c) P dn —A'(n, 0) I, ,J
1

0 m G
(3.iS)

(3.14)

dv(W~" —W, ) = —.;[1 —2g„'(0)] [(1 —2 sin'8v)'+ 1]I, , (3.15)

I
OO 3 05 1

dv(W", '+W, ) =—,, (2cos-'8c+sin-'8c) dv, H',P(v, -k, '-)--, (2cos'8c+sin'8c) 2, F;~(jd),
0 r 2(d

(3.16)
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dv(W', +W, ) =—,(12cos'8c+3sin'8o)
Jo r

dv W2 (v, -It„ )
kg

d, (12 cos'8c + 3sin'8o), F;~((d),2

(3.17)

J
qx&

OI- Q

00

dv(W~0+W00 ) = —
2 (1 —2sin 8~) dv W2x~(v, -%~ )-—

2 (1 —2sin 8~) 2F; ((d). (3.18)
0 11 0 &( 0

We define

t&W, =W, ~-W, „and ZW, =W, ~+W, „& (3.19)

where p or g denotes when' is the proton or the
neutron, respectively:

above 5 GeV'. When p. =+, v=i, we find only the
contribution from low-energy region to W„which
can be neglected also by taking I

k'I large.
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APPENDIX

Let us consider the exclusive reaction A +A -B
+n'. The matrix element is

r dv(AW, +t&, W, ) =0.
0

(3.25) (,* —q') Jx'xxxx(iq x)(xl q(q. (x),x(o)&lx)

Note added in Proof Ihave b.een informed of
papers by Sakai and Yamada. " They already
treated the soft-pion limit in inclusive reactions.
I thank T. Oka for bringing these papers to my
attention. According to these works, my treat-
ment of pole terms as q —0 is not sufficient. I
have neglected the pole terms due to bremsstrah-
lung pion from one of the nucleons in the final
state. It is straightforward to include them but
difficult to estimate them generany. Therefore I
comment about them as follows.

(1) Pion target will be useful if possible. In
this case we can neglect all the pole terms as
q - 0, since the probability to find a. nucleon in
the final state is strongly suppressed because it
must be produced by NN production. Thus the
sum rules in case of the nucleon target will soon
be rewritten to those of the pion target.

(2) The sum rules in case of the single-v'-ob-
served inclusive reaction (reaction A in Sec. III)
will be estimated even in the case of nucleon tar-
get. When p, = v=+, we find correction
—4'„'(0)I,/f, ' and the contribution from low-en-
ergy regions. The latter can be neglected if we
take lk'I to be sufficiently large, for example,

(m, ' —q')
m 'F

(A1)

where

T= d ~expiq ~ B T ~uJ'~x A 0~A

(A2)

and the PCAC relation is used. T can be rewritten
as

T=-iq& d xexpiq x B T J'"x,A o) A

d'x exp(iq ~ x)5(x') (Bl IJ (x),A(0)] I A),

(A3)

where the cancellation between the seagull terms
and the Schwinger terms is assumed. According
to a usual technique we can investigate the behav-
ior of the amplitude T as q"-0, and find that q'
and q~ will be set equal to zero safely. Thus Eq.



(A3) becomes

d'wax+ B J~~,A 0 (A4)

T =-iq -d'x exp(i q-g+)(ill T(J (&),A(0))IA)

low-energy theorem will be obtained as q -0, we
can set q -~. In this case pq-~, and the assump-
tion of PCACwill be that the q2= 0, p-~ amplitude
is smoothly continued to the q2=m, , v ~ ampli-
tude. Thus we get as q -~ by using the LCBJL
theorem~ the following:

Ec(uation (A4) holds at an arbitrary value ot q and
q2=2q+q -q~ =0, p ~ q=p+q . Though the usual (A5)
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