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Photon shadowing in nuclei*
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Photon processes in nuclei are studied using a conventional optical model, interpreted unconventionally. To
calibrate the method excellent fits to hadron-nucleus total cross sections are obtained. When applied to photon
processes the "self-absorption" feature of the model tends to suppress the shadowing from what has previously
been predicted. A further suppression is shown to result from the finite width of vector mesons. Reasonable
agreement with recent electroproduction data is obtained.

I. INTRODUCTION

As a photon wave propagates through nuclear
matter a regenerationprocess takes place in which
vector- meson waves (mainly p}build up coherently.
The amplitude for any reaction to take place is
the coherent sum of amplitudes from these waves.
According to vector-meson dominance (VMD) this
interference is largely destructive. As a conse-
quence total photon cross sections are reduced
from what they would be in the absence of regen-
er ation: an effect called "shadowing. "

In the present paper two effects are described,
both of which reduce the predicted shadowing
(i.e., increase the ratio of the total photon cross
section on, say, lead to that on the proton}. The
first effect is due to the finite lifetime of the p
and the second is due to a feature to be called
"self-absorption. " The latter effect also alters
the numerical values of the vector-meson param-
eters extracted from vector- meson photoproduc-
tion experiments.

Before starting it is important to emphasize (as
many have done') that the shadowing phenomenon
does not depend on the hypothesis of VMD. That
hypothesis boils down to the prediction of arith-
metic relations among experimentally measurable
numbers. Since those relationships seem to be
rather well satisfied, it is accurate (though mis-
leading} to incorporate VMD relations among am-
plitudes as one goes along. We will avoid doing
that. At the stage of substituting numerical values
into the formulas the connections with VMD will
be made clear. Unfortunately, there is no uni-
versal agreement about what parameters should
be regarded as sacred and used as inputs and what
should be calculated. Hence, it will be necessary
to specify in boring detail exactly what is being
held fixed and what is allowed to vary when the two
effects in question are introduced.

No attempt will be made to include theoretical
ideas such as "generalized" or "extended" or "off-
diagonal" VMD. The ideas in those models are

quite compatible with the model presented here
and the magnitudes of the corrections would be
roughly equal. The evidence supporting such
generalizations was not deemed persuasive enough
to justify the complication of including them.

Also, this paper does not contain a thorough
survey of experimental data. Some data are in-
cluded for illustrative purposes and to establish
the parameters. Data on total photon cross sec-
tions and Compton scattering are somewhat rag-
ged. What was felt to be a representative sam-
pling has been included.

II. QUALITATIVE DISCUSSION AND ASSUMPTIONS

In this section we will set down most of the as-
sumptions to be made and give a qualitative ex-
planation of the ideas.

As has been stated, shadowing depends on the
near cancellation of a photon and a p amplitude.
If the p wave function is further attenuated owing
to spontaneous decay, the cancellation is less per-
fect and hence there is less shadowing. It can be
argued that the two-pion state should be treated
as a separate channel which can coherently feed
back into (and be fed from) the photon and p chan-
nels. Our formalism is less general than that and
is, in fact, a one-particle formalism: A photon
can coherently regenerate single vector mesons
but not pion pairs; similarly, pion pairs cannot
regenerate photons. The decay of a p meson into
pion pairs has exactly the same effect (attenuation
of the p wave) as does nuclear absorption in the
nuclear matter.

With this hypothesis the equations become close-
ly analogous to the equations governing K' regen-
eration in matter. In that case, though there are
interference effects altering the observed rates
into a specific channel, such as the two-pion chan-
nel, one neglects the coherent amplitude for "in-
verse decay", of two pions back into a K'. For
p's in nuclear matter such a result is less obvious.
If it were flagrantly untrue, however, one would
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expect the shape of the p to depend on the nucleus
from which it is produced. No such effect is ob-
served.

A more serious assumption is to neglect the di-
rect coupling of a photon to two pions. Pion pairs
of mass remote from the p are known' to be co-
herently produced from nuclei. Hence there
should be an effect mhieh has been called **inelas-
tic shadowmg' xn which the photon couples to tmo

pions which couple back to a photon. ' lt is unclear
to what extent this effect is included in "p domi-
nance. " If it is not, then there will be an extra
shadowing effect which we will not have included.
(It depends on the mass of the pion pairs. ) This,
homever, is a different issue which me do not pre-
tend to attack.

The other effect to be discussed is "self-absorp-
tion. " All calculations in this field, in the end,
boil down to the evaluation of integrals over the
nuclear volume. Such integrals can be derived
from an optical model in which the nuclear mat-
ter is replaced by an equivalent {presumably
homogeneous) optical medium, or they can be de-
rived from a more sophisticated particle theory
(Glauber theory). ' The simplest example is the
calculation of the total cross section, o„(A), for
a hadron, k, incident on a nucleus containing A

nucleons. (We will not distinguish between neu-
trons and protons. ) The single-nucleon cross
section oP is assumed known. &r„(A) is given by

(2.1)

where the geometry is illustrated in Fig. 2. I., is
the distance through the nucleus at impact param-
eter b. n is the nucleon-number density which we

assume to be constant and independent ofA.
Equation (2.1) can be expanded as

The nuclear volume is related to the nucleon-num-
ber density by

(2.3)

and„as a result, we obtain

o„(A ) =Ao~'~ [1-6 (A )], (2.4)

(2.5)

where h(A) is positive.
Formulas such as (2.2) are usually applied only

to large nuclei. Let us, however, consider apply-
ing it to a single nucleon. Putting A = 1 we obtain

zb ~Lb = zb

FIG. 1. Scattering geometry. A plane wave is incident
from the left.

But o~~ has previously been identified as the one-
nucleon amplitude, o„(1), and hence {2.5) is self-
contradictory.

We might be willing to tolerate this contradiction
if 6(l) were small. But, looking at (2.2), one an-
ticipates that A(A) is proportional to A' '. Hence,
tbe fractional reduction in (2.5) is less for A=1
than it is for a big nucleus, say, lead, by a factor
{207)' '= 6. The shadowing in lead is known to be
large. While speaking loosely one says that such
cross sections are "geometric, " i.e., cr& is pro-
portional to A2~', which in this case mould cor-
respond to h(A}= v'. Hence, the left-hand and
right-hand sides of (2.5) appear to differ by per-
haps 15%. To avoid this paradox we will now re-
interpret o„.

An intuitive way to consider the situation is to
think of the nuclear diameter as a target thick-
ness. Lead is a thick target. A single nucleon
is a thin target, but not thin enough. A natural
procedure is to define a quantity, o,' (to be ob-
tained by extrapolation to zero target thickness},
whicn is the cross section per nucleon for A«2.
We will employ the terminology that the one-nu-
cleon cross section, cr„(l), is less than ofo owing
to self-absorption. With this interpretation,
formula (2.4) is self-consistent.

As has been implied by these comments, the
single nucleon, as an entity, is to play no special
role. A complex nucleus is not to be regarded as
an assemblage of nucleons but just as a sphere of
nuclear matter. A single nucleon is a smaller
sphere of nuclear matter, and it is even meaning-
ful to discuss nuclei withe small compa~ed to 1.
If single nucleons are, in fact, built from smaller
constituents, then these assumptions may repre-
sent a plausible averaging over the true fine-
grained structure in the nucleus, but me ma, ke no
such claim. We are only striving for self-con-
sistency in an outright optical model.

If one insists on treating nucleons as entities,
then the effect we mant to get at may be the follow-
ing one. In an independent-particle approximation,
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the presence of a single nucleon in a given region
in a nucleus does not inhibit any other nucleon
from occupying the same region. This seems
wrong. Presumably, there is a correlation effect
causing nucleons not to occupy the same space.
This means that for a short distance after a vec-
tor meson is born it should be protected from all
nucleons except its parent. On the other hand,

any "absorption" in the parent is present even for
production on a single nucleon. It may mell be
possible to account for this effect by a correlation
correction to the independent-particle model. It
has been said' that the main effect of correlations
is to eliminate voids between nucleons, thereby
effectively shortening the mean free path of had-
rons in nuclear matter. This would increase the
cross section for nuclei without changing the
single-nucleon cross section, i.e., less shadowing
mould be predicted. At least qualitatively that
agrees with the present work.

It seems to me that treating the nucleus as a
homogeneous and incompressible droplet is a
closer first approximation to the nucleon corre-
lations than is the independent-particle model.
The absence of voids and overlap is guaranteed.
It is not, however, necessary to insist on this
point. Our purpose is to obtain photon cross sec-
tions. Since the nuclear parameters are empir-
ically determined by fitting hadron scattering, it
does not much matter how credible is the rea-
soning by which the formulas are derived. This
ar gument mill be repeated below in a more con-
crete context.

Let it then be granted that even single-nucleon
ex'oss sections ax'e reduced by shadowing. How

does that affect experimental observations? As
regards total photon cross sections, what one
measures is the ratio of the cxoss section on a,

large nucleus to that on a single nucleon. In this
ratio it has always been assumed that only the
numerator has been influenced by shadowing. The
present claim is that shadowing has also reduced
the denominator. That is the main effect. To be
self-consistent, however, it is necessary to check
whether the result depends on other results which
should have been corrected fox' self-absorption.
Unfortunately, there are tmo such effects. The
nuclear radius (the single most important param-
eter) must be obtained from some source. The
sound way' of obtaining it is from high-energy
neutron-nucleus total cross sections. One fits the
ratio of the cross section on the nucleus to that on
a single nucleon by varying the nuclear radius.
Obviously self-absorption alters this procedure.
This will be explained below. Similar modifica-
tions must be made in the analysis of vector-mes-
on photoproduction from which vector-meson

R =ROA. '~3. (2.6)

While such a trend is mell established for complex
nuclei, it is optimistic to apply it for A. =1.' Since
the single-nucleon cross section is obtained as an
integral over the single-nucleon density, the re-
sult is sensitive to this assumption. Furthermore,
there is little reason to expect a uniform distri-
bution to represent the true situation accurately.
This latter comment applies also to complex nu-
clei. Two points can be made to justify our as-
sumption (2.6}. We will find that hadron cross
sections are, to excellent accuracy, consistent
with the assumption of constant nuclear densities
satisfying (2.6}. Short of incorporating results
from elastic electron scattering, one can ask for
nothing more. Furthermore, we are evaluating
corrections to px'evious models' ~ ' which have as-
sumed uniform nuclei.

We have now made a11 the introductory, quali-
tative, and subjective comments we intend to. It
remains to derive formulas for the various cross
sections. The new effects me are discussing re-
sult in minor modifications of well-known formu-
las. There is, however, a confusing prolifex'ation
of such formulas resulting from the diverse pro-
cesses under consideration (total and differential
cross sections for vector-meson photoproduetion
and for hadron and Compton scattering). To re-
duce confusion and to make clear the role of the
two effects in question, we will sketch the deriva-
tion of all results obtained, even though most of
the arguments are elementary and well known.

In the final sections numerical results are given
and compared, in a, limited way, with experiment.
Care is needed in doing this to make clear exactly
how the various parameters are determined.

III. PHOTON-VECTOR-MESON PROPAGATION IN A

UNIFORM NUCLEUS

Referring to Fig. 1, consider a photon wave in-
cident from the left on a uniform spherical nu-
cleus. Let gz(l) be its amplitude on a plane l at
the entrance. Inside the nucleus a vector-meson
wave, g„, is generated. V mill later stand fox

p, e, Q, p', etc. To obtain the amplitudes g and

g„at a distant point P we first obtain them on a
plane II at the nuclear exit and then employ Huy-
gens's principle. The eikonal approximation is
employed in obtaining the amplitudes on plane D.
Rays are assumed to pass, undeflected, through
the nucleus. Phase shifts (and attenuation) due to
interaction with the nuclear matter are accounted

parameters are obtained.
Again we call attention to our assumption that the

nuclear radius is proportional to A '~',
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for, but those due to geometrical deflection are
not. This requires that the energy be high enough
that the scattering is highly peaked forward.

These assumptions allow us to concentrate on an
area, d~b, at impact parameter 5, for which we
can deal with one-dimensional propagation through
a slab of thickness L,, beginning at z = z,.

To obtain simpler equations one factors out from
gy and gY, the main oscillatory factor, exp(f ~k [z),
where k is the photon three-momentum,

~f fk(op

i l%!s
y

(3.1}

If the photon is virtual, its momentum and its en-
ergy v are related by

Q2
[%(= v+—,

2v (8 3)

where Q' is assumed small compared to v'. Sim-
ilarly, the vector mesons, though real, have dif-
ferent momentum and energy

M)%Y(=V- Y (MY«V).
2p

Here it is implicitly assumed that the V energy is
given by v.

The choice of the factor in (3.1) was biased to
make the photon propagation in free space simple.

Py(z ~z~) = l. (3.4a)

Since there is no incident V wave, we also have

consistency have superscript(0}'s onthembut, since
they are not directly comparable to experimental
quantities, we can leave them off with small l isk of
confusion.

The effects discussed so far cause a vector-me-
son wave, @~, to have the form

g goy~ (3.8)

I~vv =~vs+& &j.j., v (3.9)

(3.10)

In nuclear matter P~ wiQ satisfy a differential
equation

d@~
If'

=- aYYAY

+other terms to be discussed.

At this point we can incorporate the effect of the
instability of the vector mesons. As shown be
Gottfried and Julius' this instability has only a
small effect, at high energy, on p photoproduction.
Such experiments detect the decay products and it
does not much matter whether the decay takes
place inside or outside the nucleus. But the total
photon cross section will be altered owing to the
extra attenuation of the vector-meson wave. De-
fine

QY(z ~z~) = 0. (3.4b)
(8.18)

Let us concentrate initially on vector-meson
propagation since, to a first approximation, the
photon wave passes unattenuated through the nu-
cleus. Propagation is governed, as in optics, by
a complex index of refraction,

(3.5}

(3.6)

o~~~ is subject to the interpretation described in the
previous section. Subsequent formulas mill be
simplified by introducing a quantity a«by

nois
aYY = " {I-faY)~

2
(8 'I)

It is the so-called optical potential multiplied by a
factor iv/8. The quantities ynY and aYY should for

where the second term is assumed small compared
to the first. fY„(0)is the forward V-nucleon scatter-
ing amplitude. It can be separated into real and
imaginary parts with the latter given by the optical
theorem,

(aYY++Y)AY ay Y4 y (3.13)

There is such an equation for each vector meson.
It is assumed that there are no couplings of the
various vector mesons among themselves.

The photon wave satisfies a similar equation

any' yyg ayYAY (8.14)

which involves summing over all vector mesons.
We assume a&„=e«

The problem is to solve (8.18) and (3.14) subject
to the initial conditions (3.4). It is convenient to
use operational methods, with the Laplace trans-

where g~ is the vector-meson decay width. The ef-
fect of decay is to replace a„'„by aY'Y+l „in (3.11}.
In evaluating photoproduction formulas, h~ wiQ be
set to zero (thereby giving the result of Gottfried
and Julius).

The final term to be added is an amplitude,
-ayY)y, for the vector-meson wave to be regener-
ated by the photon wave. We get
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&0, —1 =- a»„0» —Qa»v4» ~

V

slav = —a»v0» —(avv+&v)4v

Solving for Q&, me get

(3.15)

form symbolized by an overbar. Transforming the
differential equations and incorporating the in-
itial conditions, we get (s is the transform vari-
able)

1+ a»» g a»»
s s» s(s+av'»+tv)- (3.17)

(3.18)Qy~&&Qyy &&Op@ ~

(Actual numerical values will be given below to
justify this. ) Hence, (3.17) can be written

It is possible to invert this in closed form, but
for several vector mesons the algebra is compli-
cated. Fortunately, we can assume

s s' ~ g'(s+a.„', a,) s s' » + '„+~, )

(3.19)

=1+x+,'x'E, (x) . - (3.23b)

+here me have followed the standard procedure
of decomposing the transform into partial frac-
tions. Before inverting this, and introducing
similar expressions for ft) ~, let us, following con-
vention, introduce profile functions I'& and I'~ by

I"v(b) =1 —Q»(II, b), (3.20a)

1,(b)=-y„(il, b},
where ft)& and (II)~ are evaluated on the exit plane
II shown in Fig. 1. In subsequent formulas the
argument b will frequently be dropped.

Putting all these things together and inverting
me get

r„=(.,„-p, "
) i,

0+, " „1-exp —av~+~v
v a»v +~»J

(3.21)

To obtain I'~ to the same approximation we sub-
stitute Pv = s ' into (3.16) and invert to get

I v = ", II —exp(- avv Ia)] exp(-iq»

»zan)

i

(3.22)

where the final factor accounts for the phase lag
of the vector-meson wave in the interval z, from
the nuclear exit boundary to the plane II. As justi-
fied previously, 6» has been set to zero in (3.22).

Particularly for small values of L~, there tend to
be large cancellations in (3.21) and (3.22). Be-
cause of this, and to abbreviate the formulas me
introduce two new functions E,(x) and E,(x) ac-
cording to

e(x) =1+xE,(x) (3.23a)

They are dimensionless numerical factors in the
range from 0 to 1 mith 0.5 being a typical value.
In words, E,(x) [and E,(x)] are related to the ex-
ponential function by normalizing to 1 at x = 0 af-
ter having dropped the first (and second) terms of
the power-series expansion. Hence me get

I'» =a»~4 aLo'Q-ayv'Ea(- (av»+&v)1 n)

(3.24}

r»=ay„I,,E,( a„'„I,,)exp-(-iq„»z, ) . (3.25)

The second term of (3.24) is the shadowing con-
tribution. In general, the arguments of E, (x) and

E,(x) are complex, but as an intuitive aid they are
graphed for real arguments in Fig. 2. They re-
semble the exponential function and mill be called
modified exponentials.

In passing we comment that the arguments of E,
and E, depend only on the vector-meson factor
a«and not on a».

IV. APPLICATION OF HUYGENS'S PRINCIPLE TO OBTAIN
MEASURABLE QUANTITIES

it vl0

g (P)= — d'bi — P (II), (4.1)

where, for convenience, the origin has been shif-
ted to 0' in Fig. 1. If k' is the scattered momen-
tum vector, one gets

eg vPp V
4„(z)= e"'+ i —d 'b [I- 4 „(II)]e '" ' ',

p

(4.2)

To obtain the propagation from plane II to the dis-
tant point P, we apply Huygens's principle. " For
example, for the photon
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I.O o„=total cross section (y-anything}

0.9

0.8

0 7'

0.6

=2Re I'& d2b,

oz„=total cross section (y-V)

oz„=total cross section (y-y)

(4.4)

(4.5)

(4.6)

0.5

0.4

0.3

~&vV

dg
""(0) =forward V photoproduction

cross section

1 2
~ d'b

4~
(4.V)

0.2

O. I

d&vv
dt

—""(0) =forward Compton differential

cross section

-0.5 -1.0 - l.5 -2.0 -2.5

(4 6)

x= -20„yR
FIG. 2. Some shadowing functions described in the

text. The identification of x values with specific nuclei
is valid only for a specific (but typical) choice of pa-
ramters.

V. ELASTIC HADRON SCATTERING

Hadron scattering was discussed earlier. We

can now write out the formulas in more detail.
A hadron wave, Q~ inside the nucleus satisfies
the equation

where we have approximated p by p, in the de-
nominator, but not in the rapidly varying phase
factor. We have also exploited the remarkable
way in which Huygens's principle applied to a plane
wave at 0 generates a plane wave of just the right
phase and amplitude at P. Written in the form
(4.2) the integral can be recognized as the photon
scattering amplitude, f~(R'):

y„g ~=f; —,
" a ~ r, y)s-'"'. (4.3)

dA
dz

=- aaa4a

for which the appropriate solution is

P „(Q)—e Ak+5

This yields for the profile function

p„=y- g-'aa4

=a~ Lg E,(-ay~ Lq).

(5.1)

(5 2)

(5.3)

(5 4)

A similar expression holds for the vector-meson
photoproduction amplitude f„~(k'). We will be con-
cerned only with forward amplitudes, which are
given by

The following measurable quantities can be de-
rived:

o„=total cross section (h -anything}

f„y(0)=— 1"~ d'b, (4.3' )
=2Re P~ d~Q, (5.5)

f (0}=— F d'b (4 3II )
a~=total cross section (h-h)

One must distinguish between these amplitudes,
which are measurable, and amplitudes f'„'„ in for-
mula (3.5), which are to be obtained by extrapola-
tion to A=o.

We can extract the following measurable quanti-
ties:

Fq db

dt"~ (0 ) =forward elastic cross section

1 2
d~&h

(5.6)

(5.7)
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VI. SMALL-R LIMITS

It is normally assumed that the formulas given

in the previous two sections are applicable only

to large nuclei. But there is nothing to prevent
our evaluating them for very small values of R;
small even compared to the proton radius. Gn

taking these limits me get

a'"= (4 vR')2Rea
7 s

apl' 2vR (aye I

o'" =2vR4(a
Ty y'y y

dg(o)
'„,"' (0)= —, (;vRh} (a„,(h,

dg(o)
(o)=4„(-; ')'

I y„(',

o',"= (~vR')2 Re a~,

a'„'„'= 2wR'(a„„(',

do'I I

„,
"" (o}=4 (V»')' Iahhl'

(6 1)

(6 3)

(6.4)

(6.6)

(6.7}

(6.8)

The conventional interpretation of these formulas
would be that they are single-nucleon cross sec-
tions when R is set to Ro. In our nem interpreta-
tion they are limits as R-O.

R
El(2V(R'-&')'™)„,=E,(2qR}, (7.4)

E.(2~(R' —&')"),= 1,(2ihR), (7.5}

where all these functions are plotted in Fig. 2. p.

is to be replaced by -a«or -a» and hence the
argument can be interpreted as the nuclear dia-
meter measured in attenuation lengths (amplitude,
not intensity). The arguments are defined as nega-
tive numbers to emphasize the similarity of the
functions E„E„and I, to exponentials. The in-
tegrals can also be interpreted as attenuations
averaged over impact parameters. Since the av-
erage distance through the nucleus is less than 2R,

the effect of averaging over impact parameters is
to give less attenuation than mould apply to a flat
slab of th1ckne88 2R That 18 mhy» 1n Flg. 2, E2
is less steep than E, and I, is less steep than E,.

For typical values of the parameters, values of

2a«R for the various elements are indicated at
the bottom of Fig. 2. (E,(-2a«R) (' gives the

shadowing factor for vector-meson photoproduction
and for vector-meson elastic scattering. I'& is
more complicated. It will turn out though that if

a single vector meson, say the p, mere dominant,

and a&&, a&„, and a«are related by VMD then

(7.1) would also be proportional to E,(-2a«R).

VII. EVALUATION OF THE INTEGRALS FOR UNIFORM
NUCLEI

I' = vy„IaE, (b- La), b

~h ahh ~bEl( ahh~b) '

(7.2)

(7.3)

From the latter two it is clear that vector-meson
photoproduction is, except for a constant factor,
indistinguishable from elastic scattering of the
same vector meson (a»=a«). (From this it fol-
lows that VMD in the small implies VMD in the
large; that is, the ratio of photoproduction to
elastic scattering is independent of A. )

%'e are primarily interested in integrals of I'&,
I"~, and TI, over a sphere. For these we need the
results

For uniform nuclei aQ the integrals can be writ-
ten in terms of a single integral. Formulas for
this are given in Appendix I. But, for purposes of
discussion, in this section we will give simpler
approximate expressions obtained when one sets
q» ~ to zero in the vector-meson profile function
(3.25) and ignores real parts. We rewrite the pro-
file functions

1'y= ay) Lb h fb'Qa„v'—E.(- (a«+&p)Lb),

(7.1)

VIII. MODIFICATION FOR NONUNIFORM NUCLEI

Though we shall not exploit the results we will

give, for reference, the modifications required to
handle nonuniform nuclear-density distributions.

The main dependence can be taken into account

by defining a new "optical thickness" variable

1
z =— ndz

~ OO

(8.1)

where n is the variable density and n is an as-
sumed central density mhich mill be identified with

the value n used previously. In terms of n, Eqs.
(3.13) and (3.14) become

(8 2)

dQ~ n=- [ -nial, @„—(a~„a+~+iq„„) 4l]. (8.3)

(8.4)

&ft v
ay Fly a«+(+F +bill, F)- 4Fn

(8 5)

Since amplitudes Q~yy Qyf, and B«ale propolt1onal
to n, these equations simplify to
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mv yv Ov

(GeV) (GeV) (mb) Cv

O.77 O. 14
26.0 0.053 2.56

TABLE I. Vector-meson parameters. where h is an empirical parameter which should
vanish, but has been added to turn (9.3) into an
equality. Its value is in the range 0-0.2.

(b) Real parts. All real parts, nv, are assumed
to be given by

0.78 0.009
1.02 0.003
1.60 0.45

28.2
13.5
28.2

~As determined in the text.

0.0199
0.0254
O. O208

18.4
11.3
16.8

f9 .o GeV (9.4)

This is known to be reasonable for the p, and for
the other vector mesons it has little effect.

(c) Energy dependence. We assume

Except for the term with ~v+q» „ these are the
equations we have solved already. We will set the
factor n/n to 1, thereby making a surface-depen-
dent error of importance only at low energy
(since n»+ q„» vanishes at high energy).

All formulas given in early sections are to be
modified by replacing L, by

1+0.2(3.3 GeV/v)' '
v- v ~ f ~ (9 5)

This is a fit to the average of &' and m single-nu-
cleon cross sections, that is, the quark-model
prediction for o». a»(8 GeV) is determined below.

(d) Q dependence. Most results are quoted for
Q' =0, but for small Q' (0.1 GeV') we use

f
Rdz .

n ~ eo

(8.6)
a„(Q') =a„„(0}(1+Q'/m ')-' (9.6)

The factor exp( iq»-»z, ) in the expression (3.25)
for I'v loses definition. To a good approximation
one can presumably replace z, by a quantity &,
which is the distance from the exit of an "equiva-
lent" uniform sphere to plane II.

(Q2) =a (P)(1 yQ2/0. 6 GeV~) '2, (9.7)

which give reasonable fits to low-Q' electropro-
duction. '3

IX. SECONDARY NUMERICAL VALUES

ayv Cvavv y

where

(9.1)

We have now exhibited, more or less explicitly,
formulas for all relevant photon and hadron pro-
cesses. In this section we will specify the numer-
ical values to be used for the various parameters
which enter. Most quantities are reasonably in-
dependent of energy. Values will be specified for
v near 8 GeV, along with formulas for the v de-
pendence.

(a) Vector mesons. We take account only of p,
~, Q, and p. Since the p is dominant, it will be
treated separately. Parameters for (d, Q, and p'
are taken from the best available values" and held
fixed throughout. The values assumed are given
in Table I. The amplitudes avv are obtained from
a» using (3.7}. Then the regeneration amplitudes
are given by

X. PRIMARY NUMERICAL VALUES

Our main purpose is to study the consequences
of introducing p instability and self-absorption.
Since p instability alters the shadowing but does
nothing else, it needs no special discussion. But
consistent treatment of self-absorption necessi-
tates a reconsideration of the determination of the
p- meson parameters.

The value of f,'/4v can be obtained from collid-
ing-beam results or from p photoproduction. cr,
can be obtained from the quark model (theory) or
p photoproduction (experiment). In both cases we
will use photoproduction. After the fact we can
take note of the agreement with the other deter-
minations (Table II).

Fits were obtained with the two widths (g, =p
and g, =0.14 GeV) and with and without self-ab-
sorption (labeled new and old in Table II).

Five experimental cross sections come in:

(9.2) a(n+ p —all) =39.3 mb (at 10.0 GeV)

az &
can be obtained from Compton scattering.

According to VMD it should satisfy the so-called
Compton sum rule

(Ref. 14}, (10.1)

=0.396 (at 10.0 GeV)
1 a' (n+ Pb —all)

aq» ——Q C» a»»(1+6), (9.3)
(Ref. 14), (10.2)
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TABLE II. Parameters determined. "New" and "old"
refer to the assumption of self-absorption or no self-
absorption. Values obtained from other sources are
given in parentheses on the left. The Roman-numeral
symbols are used in labeling the graphs.

Procedure
I

Old
III

New

IV
New

z, (F)
g, (Gev)
0,"' (mb)

gp (mb)

Cp

0'„(i2)/0„(i }
0'„(207)/o'„(i)

i.30 ]I..30
0 0.14

26.0 26.0
(28.2 P } 26.0 26.0
(0.053 7) 0.053 0.053
(07) 0.15 O. i5

0.794 0.802
0.664 0.68k

f.26
0

33.7
28.i
0.050
0.21
0.867
0.705

$.26
O. i4

33.7
28.1
0.050
0.21
0.873
0.726

—(@+p-p+p) I,.=101 pb/GeV' (at 8.8 GeV}

{Ref.2, 15), (10.3)

= 0.1756 (at 8.8 Gev)A~ do/dt(y+ p —p+ p)

(Ref. 2), (10.4)

&r(y+ p -all) = 121 pb (at 8.8 GeV)

(Ref. 15). (10.5)

The first two values, which are neutron cross
sections, determine the nuclear-radius parameter
It,. o„ is evaluated using (5.5}. The real part, a,
for neutrons is taken as —0.30.' If one ignores
self-absorption, then the value a» is obtained di-
rectly from (10.1) using (3. t) [or (6.6) which is
equivalent]. II, is varied to fit (10.2). To account
for self-absorption one makes a two-parameter fit
to (10.1) and (10.2) to determine the parameters
Ro and c»e

The hope in such a procedure for determining R,
is that errors in the optical model will "cancel
out. " That is, a value of R, known to give correct
neutron cross sections from a theory {wrong at
some level) should give correct values for the
cross section of some other particle using the same
theory {presumably wrong only in much the same
way}.

The next parameters to be determined are 0,
and f,'/4v. They are obtained by fitting to (10.3)
and (10.4). In the absence of self-absorption, (10.4}
determines cr, by the comparison with the xatio of
(4.7) to (6.4). Then one determines f,'/4v using
(10.3). Self-absorption is included by evaluating
(4.V) for both the proton and for lead to fit the two
paramete x'8

Finally, the parameter h is determined using
(4.6) with a given by (9.3). h is varied to fit

(10.5).
There is no need to haggle over the exact values

taken in (10.1)-(10.5). They are experimental
numbers known only to lie within certain errors,
but for present purposes it is necessary only that
all fits are constrained to give those values.

XI. COMPARISON WITH EXPERIMENTS

o Oe
b b

0.3

C Al Cu

J l l
2 3 4

Allb

Pb
Li

6

FIG. 3. Total cross sections for 10-GeV neutrons
incident on nuclei. Roman numerals in this and follow-
ing figures refer to parameter values listed in Table II.
In this and following curves the extra heavy curve is to
be compared with the data (Hef. 14). These data are
used to determine nuclear radii.

The result of fitting 10-QeV neutron-nucleus
elastic-scattering cross sections of Engler et al. '~

is shown in Fig. 3. In this and all subseguent fig-
ures the experimental points should be compared
with the heavy curve. The experimental points
are always ratios of measured cross sections. The
curve labeled I (for parameters see Table II) gives
the fit obtained ignoring self-absorption. The val-
ue obtained for the nuclear radius is R, = 1.302 F.
Curve III (renormaiized to 1 at A = 1) is the fit
given by following the self-absorption philosophy.
The value for the nuclear radius is determined to
be Rp 1 26 F Both cux ve8 fit lead since that was
the criterion determining Ro. It can be seen that
III gives a better fit to other nuclei. That could
be fortuitous as we have taken an over-simplified
density distribution. However, as we have argued
twice already, once we have a good fit to hadron
data we need not worry too much where it came
from.
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t.0

0.9
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FIG. 4. Total cross sections (Ref. 17) for 34-Ge7
neutrons incident on nuclei. From this energy up to a
few hundred GeV the cross sections are nearly constant.

Jones et al. , at least to the extent that it implies
an extra, screening effect at high energy.

We turn now to photon-initiated processes. For
p photoproduction the curves obtained by fitting at
lead, with and without self-absorption, are shown

in Fig. 5(a). The curve labeled IV must be renor-
malized to 1 at A =1 as shown. The values of C~
and 0& obtained in this way are given in Table II.
They can be seen to be in adequate agreement with
the colliding-beam and the quark-model determin-
ations, respectively. The values of h needed to
satisfy the Compton sum rule (9.3), are also listed
in Table II. With the values for p, ~, y, and P'

we have used, the sum rule fails by 31@.
With all parameters determined we can finally

consider total photon cross sections. The nature
of the self-absorption correction is shown in Fig.
5(b). The ordinate is

1 o„(A)
A o'

Y

which is plotted against A'~' for the two values of
v~" specified previously. If one ignores self-ab-
sorption, this ratio should equal the experimental
ratio

It is often stated heuristically that hadron cross
sections on nuclei are proportional to A' '. Un-
fortunately, they are not. (A" is more typical. }
It is gratifying that, with our interpretation, the
deviation from A' ' is entirely accounted for, even
though the nuclear radius is exactly proportional
to A'~'.

We can inquire to what extent the data, of Engler
et al. (10 GeV} agree with other measured neutron
cross sections. Among low-energy measurements,
the data, of Engler et al. agree well with the 6-QeV
data of Jones et al."and with the 19.3-QeV proton
data of Bellettini et al, .'" The 27-GeV data of
I.ongo et aE."and the 8.3-QeV data of Pantuev
et aL. '0 seem to be in serious disagreement and
have been ignored. There are high-energy neutron
data (30-3VO GeV) of Jones ef af."for which 34-
GeV data are plotted in Fig. 4. Data of Biel et aL."
are in reasonable agreement at these energies.
The same fitting procedure yields an excellent fit
to all nuclei (even including the deuteron, which is
undeserved). The radius determination gives Ro
= 1.21 F.

Jones et a/. "have stated that the energy depen-
dence of their neutron cross sections is in rough
accord with the expected inelastic screening effect.
Since this effect is small at low energy, we will
take the nuclear radius determined at 10 QeV in
what follows. The smaller radius which we ex-
tract at 34 GeV is consistent with the analysis of

I.G,

o,e

«f
O

e
b

'D

0,6

0.4

0,2

1.0

0.9
e

b
G,S

—I~

0.7

Al/3

FIG. 5. (a) Forward p photoproduction cross sections
(Ref. 2) at 8.8 GeV on nuclei. These data are used to de-
termine 0~ and C~ . (b) Total cross sections {Ref. 23)
for 8.5-GeV photons incident on nuclei. The main new
claim made in the paper is that the data should be com-
pared with the curves Vf, corrected for self-absorption,
rather than II, evaluated in the conventional way.
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l.Q—

} l } } } } }

~z rrr'
IIg

(o) Corbon

0.025
1 —Ot66

at 8 GeV from lead.
{il) burprlslngiy, the width effect becomes smail

at low values of v. This is an accidental conse-
quence of the longitudinal loss of coherence due to
the p mass. This can be seen from the curves
evaluated with

b}b l.0-

0.8-

I (b} L.eod

i } } j } i

2 4 6 8 IO l2 }4 }6 l8

With the width also zero (parameters I) the sha-
dowing can be seen to be roughly independent of v.
With g~ =0.14 GeV (parameters II) the shadowing
is strongly suppressed at low v. But in the pres-
ence of the longitudinal loss of coherence the sen-
sitivity to gz is much reduced.

(Ilt) The wld'til effec't 18 8111Rll fol' 8111Rll Illlclei.
(iv) The self-absorption correction reduces the

shadowing at S GeV by 15 at lead and by 35/g at
carbon.

A comparison with other data, ""from elements
near lead, as a function of Q', is shown in Fig. 7.

Finally, in Fig. 8 is shown the prediction, ob-
tained from (4.8), for the forward differential
brompton cross section. To compare with data of
Criegee et al."the cross sections are evaluated

FIG. 6. Total cross sections (Ref. 23) for photons
incident on carbon (a) and on lead (b) as a function of p.
The contributions of various effects described in the
text can be inferred from the various curves by com-
paring the parameter values given in Table II.

1 or(A)
A crl(1)

(11.2)

But when evaluated at A. = 1 it takes the value 0.89.
This is anothex' manifestation of the paradox de-
scribed in the Introduction. According to our phi-
losophy the curve should be normalized by dividing

by 0.89 to give the heavy cuxve. It is this curve
which should be compared with the experimental
ratios (11.2) of Eickmeyer ef aI."

The v dependence is iBustrated in Fig. 6 for car-
bon and lead. The data are to be compared with
the solid curve which has all effects included. In-
particular, it applies to Q'=0. 1 GeV'. AU the
other curves apply to Q =0. The curve labels re-
fer to the parameters of Table II. The effects of
the finite width of the p and of the self-absorption
correction can be separately inferred by compar-
ing the various curves. %e can enumerate a few
featur es.

(1) Tile lllaxilllunl Rlllollllt by wllicil shadowing is
suppressed owing to the finite p width is about

b

0,6,,

—

I =4 GeV

o SLAC

g Cornell

g Doresbury

g UCSB

0.8

} }

0.5 l,G

Q (GeV j

}

l.5

Flo. 7. Comparison of shadowing factors for elements
near lead measured neax 4 GeV and 8 GeV from UCSB
(Ref. 24), Cornell (Bef. 23), SLAC (Ref. 25), and Dares-
bury (Ref. 26).
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at 3 GeV and 5 GeV.
It is not our intention to review all experimental

results in this area. The Compton-scattering re-
sult is shown since it is a different (though closely
related) process. The data of Criegee et af. do
not support the theory; though, given the 7% sys-
tematic error, they may be compatible with it.

Unfortunately, comparable discrepancies exist
among total-cross-section experiments. Hence
we have chosen mainly to show the Cornell results
of Eickmeyer et aI, . The present author's objectiv-
ity may well be suspect on this, but the agreement
between experiment and theory appears adequate.
No experiment, in itself, has ever persuasively
observed the v dependence characteristic of the
shadowing effect. The experiment of Eickmeyer
et al. is no exception, but the average shadowing
level is about right and the absence of v depen-
dence can (plausibly?) be blamed on statistics.

b b

0.7-

For word C ompton Scattering

z 36eV
05GeV

Cf!egee et a1.

7'/o systematic error not shown

XII. CONCLUSIONS

A self-consistent solution to a well-defined (es-
sentially classical) problem has been given. Since
it may be argued that it is the wrong pxoblem, let
us consider objectively what has been accomp-
lished.

Certainly the fit to neutron cross sections (e.g. ,
Fig. 4) is excellent (and analytically very simple).
It is a two-parameter fit with 8, and 0„' taking the
values required to force the fit at A =1 and A. =207.
Such a fit need not have fitted intermediate nuclei.
The fact that it does implies that the free proton
is qualitatively much the same as any other nucle-
us. Had it been pointlike, for example, the proton
would not fit on a smooth curve through all other
nuclei.

Essentially the same theory gives a good fit to
p photoproduction. Again the fit is forced at A =1
and A, =207, this time by the choice of Cp and 0 p.
The good fit for intermediate nuclei seems like a
strong confirmation of the VMD ideas. The ~&~~
curve fits p photoproduction and neutron scatter-
ing. The credibility of the theory from which the
curve was derived is logically not even relevant.

The parameters Ao Cp and v p obtained in the
above fits do not come out just anything, but ra-
ther, agree, at least at the 10-201 level, with
independent determinations.

Encouraged by such success one anticipates thai
photon total cross sections calculated in the same
way will be accurate. That is our claim.

The approach has been unabashedly phenomeno-
logical. For small nuclei a more sophisticated
treatment would certainly be preferable (though
the data do not demand it). For the deuteron a
standard Qlauber treatment could be used and for

2

FIG. 8. Forward Compton
section at 3 GeV and 5 GeV.
using the parameters values
IV on other figures).

Ai Cu

l
4 5

I/3
A

scattering differential cross
The curves are evaluated
favored in the text labeled
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APPENDIX: EVALUATION OF THE INTEGRALS FOR
UNIFORM NUCLEI

For a uniform nucleus all the iniegrals in the
text can be written in terms of a single integral

z(~a} fs " "&"=i@ ai"*a'-*
1

, (1-e'~s +2pBe'"")
2(y,ff)'

„2(n +1)
n=o (s+ 2)!

= 1+-', (2gR) +-,' (2 p,A)'+ ~ ~ ~ .

(A2)

all nuclei a more realistic surface shape could be
used. The Q &0 tx'eatment given here is also
superficial. Longitudinal terms have been ignored.
But the main effects, the disappearance of sha, -
dowing at large Q' and the behavior at low Q' have
probably been described adequa, tely.
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While formula (A2) looks particularly simple, it

is numerically treacherous for small A, as can be
seen from (A4). The first two powers of R cancel.
But the situation is actually worse since, on sub-
stituting into (4.4) to obtain oz, the leading term
again cancels, as can be seen from (6.1), which is
proportional to A'. For 0&v the first two terms
cancel leaving a leading 8'.

Fortunately, however, (A3) is rapidly converg-
ent for all relevant values of 2p.R. Hence, intro-
duce new functions J, and J, according to

If the leading term is known to cancel, J can be
replaced by J, (or J, if the first two terms are
known to cancel). Having followed this route,
there is, of course, no escape from numerically
summing J, and J,.

Following this procedure we can evaluate the
integrals in Secs. IV and V after substituting from
(3.21) or (3.22). The main cross sections we need
have I'& or I v appearing linearly in the integrand.
They are

J(gR) =1+J,
=1+—,'(2pR) +J,

(A6)

(A6)

2 2

o =2 Re a& —g, (+mR') —2 Re g, "
z (mR')J&((-avv —&v)R)

v &vv+&v v (avv+&v (A7)

"» (0) = —, (mR'-)'~ J,(ziq „„R)—J,((-a»» nv)-R)~',
vv

(A8)

] 2 2 2
~»(0) =— a —Q, ""

(—', mR') —Q, ~, (mR')J, ((-avv -nv)R)dt 4m, »" v avv+~v v (avv+nv)
(A9)

o „=-2 Re(mR' )J,(-a»R), (A10)

"o»
(0) =

i ~ ( a„„R)i

'
dt 4&

The other measurable iluantities can also be expressed in terms of the function J(VR).
2

o„v =,"' (mR') j-Jz(-avvR) -J2(-avvR) + Jz((~vv -av'v)RN
VV

(A11)

(A»)

a„„=(mR') [-J,(-a„„R)—J,(-a*R) + J,((-a„„-a*)R)] (A13)

The expression for cr is not given. It is an extremely small cross section involving yet more cancella-y'y

tions.
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