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Comment on asymptotic planarity
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A qualitative discussion of the approach to planarity {i.e., the t behavior of the nonplanar contributions) in
the framework of the topological expansion is presented. It is pointed out that —under certain assumptions —it
is possible to connect this problem with the t behavior of the average multiplicity. The asymptotic-planarity
condition is opposite to the prediction of the random-walk model.

A very promising new way to study the strong
interactions —the so-called topological expansion-
has recently been proposed by Veneziano' and
further developed by Ciafaloni, Marchesini, and
Veneziano. '

(A slightly different and more prag-
matic approach has been devised by Chan et af.'~)

If one assumes a certain field theory with a U(N)
symmetry (particles —mesons —assigned to the
N' adjoint representation) with interaction

g —.' Tr(M"' "M"') Tr(M"'M"') = 2~

(1)

where M',"~ (n, p= 1, 2, ~,N) is the tensor cor-
responding to the ith meson, then the "topological
expansion" is the following expansion of the phy-
sical amplitudes (g,.'N' ' = r, '):

Q Tr' '(M M)N A„(N, g;)
b

= g Tr'~'(M ~ M)N' "~2N' P N ~"G (r p.).
b h

negligible for f, —~. This behavior —called as-
ymptotic planarity —has been studied by Chew and
Rosenzweig" and by Bishari. " Both papers rely
on a planar bootstrap equation derived by Vene-
ziano et al."'~ In essence, this bootstrap equa-
tion is nothing but the Dyson equation for the Reg-
geon propagator with the dressed vertex approxi-
mated by the bare one and with a certain ansatz
for the full propagators. Taking into account that
for the twisted links the signature factors are re-
placed by 1, Chew and Rosenzweig'0 suggested
that the average value of cosv[o. „(t,) —o.„(t,)] (for
identical trajectories this quantity becomes
cosMvo't ~'ge(f), f)0, where ae(f) is an appro-
priately defined function) may be considered as
a measure of the suppression of the twisted loops.
For t near zero, they obtained a "cylinder quench-
ing interval"

1
c 2+2+s2(~2) t=o

while for I; large, the quenching rate slows down to

Here h (denoting "handle"} is the topological genus
of the graph corresponding to 4'„""', while b denotes
"boundaries" (i.e., quark lines which connect groups
of external particles). The "first term" in Eq. (2)
has h=0 and b=1 and it is the planar contribution.
The second-order contribution (2" ' terms) has
h=O and b=2. It may be visualized as a cylinder
which communicates along its axis (i.e., the t
channel) only with states with zero additive quan-
tum numbers. This contribution is nothing but
the bare Pomeron previously discussed by I ee, '
by Veneziano, ' and by Chan and Paton. ' For an
analysis of higher-order contributions see the
papers quoted in Ref. 2.

In a further study of the topological expansion,
Chew and Rosenzweig ' advanced the hypothesis
that the contribution of the cylinder and all other
nonplanar terms decreases for t&Q and becomes

(The quantities nr and (sv'), , have been esti-
mated as being =m, and =& m, ', respectively. )
By using the same bootstrap equation and a speci-
fic factorization for the triple-Reggeon vertex,
Bishari" obtained a similar result for small t.

In what follows we shall present a new discus-
sion of this topic by limiting ourselves to the bare
Pomeron contribution P (0 = 0, 5 = 2}. As in Refs.
5-7, we shall consider I' as the shadow of the pro-
duction process, i.e.,

where A~& „, is the planar amplitude for the pro-
cess 2-n, +n2. Now, the nonlinear term on the
right-hand side of Eq. (5) may be converted into a
linear one by writing it as a missing-mass dis-
continuity contribution, namely



15 COMMENT ON ASYMPTOTIC PLANARITY

ImA~(s, t) = Q Disc„2As~„„.,(s, t) .

As the quantity Disc„A"„„„„is essential?y
Reggeon-dominated, then (modulo some nonlead-
ing singularities) (Ref. 2)

ImA~(s, t}=s z'(z)exP ~ "z y, y=lns,
K

l.e.
y

zr~(t) =cz„(t)+ Q
Here a, (t) z =P, R are assumed to be linear tra
jectories. Equation (8) is the starting point of our
considerations. First, let us observe that the co-
efficients c„(t) may be interpreted as the cumu-
lants of a certain probability distribution function,
1.e, y

o' (t) - o (t) = &[0(t, I) - I) . (12}

Now, we shall derive an inequality which will be
useful for the subsequent developments. Ob-
serving that (lzl ~1}

ll -z I'=(I -z)(1 -Z) —2(1 -Rez)

with/ (t, z)= fe' P(t, n)dn one has

I('(&)-'I = f("'"-,))z(', )&

e' —1 Pt, ndn (14)

~W2 1 —Ree ~Pt, ndn.

As for real 8, 1 —cos8 ~ —,
' 8', the inequality (15)

becomes

I( (~. & (I fr »« )~ (.-( )*&-.. .=-

= In(t&(t, 1),
K

where (t&(t, z) is the corresponding characteristic
function. Next, we shall introduce a cluster pic-
ture by writing (t&(t, z) as ( I

z
I
- 1) (Ref 15)

m(t, z) = exp[) [P(t, z) —1D .
Hence

p '"(,} =~[9(t, 1)-lj,
K

where X is the average number of clusters and

(t&(t, z) describes the decay of clusters. Therefore,
Eq. (8) becomes

1.e.„
ln, (t) —o,,(t) l

& ~{n(t)}.
We summarize the above results. Using some

general properties of the characteristic functions
and assuming a cluster picture, we obtained an
upper bound for the difference of the trajectories
in terms of the average multiplicity per cluster.
Hence, one can study the approach to planarity by
investigating the t- ~ behavior of (n(t)). In order
to do so we shall utilize a result due to Squires
and Webber, "who showed that, for a fairly gene-
ral Regge-cluster model (which includes the mod-
el considered here), the average multiplicity per
cluster is defined by

(n(s, t)) = Q C„,„,(t)lns,

~s,~(t}= Cs, s, (0)e " (19)

and Ay and R2 denote Reggeons . The behavior of

(n(t)) with respect to t depends on the sign of

a», which, in turn, depends on the t behavior
1

of the triple-Regge vertex fs, zz J,(t„ t;, t). If one
writes fs,+~(t„t„t)= f, (t, t,)f,(t) one can have two
possible cases:

(a) f,(t) falls off rapidly for t &0, i.e., as zz
& 0.

This is the case assumed by Squires and Webber, "
and it corresponds to an increase (decrease) of

(n(t)) with t&0 (t&0). This result is predicted by
the random-walk model. "

(b) f,(t) increases rapidly for t &0, i.e., as, s, &0.
This corresponds to a decrease (increase) of
(n(t)) with t&0 (t&0).

The above faetorized form for the triple-Regge
vertex has also been utilized by Bishari, "who ob-
served that a decrease of f,(t) for t&0 leads to
asymptotic planarity. [This observation was made
in another context with no reference to the behav-
ior of (n(t)) .]

Therefore, not only is the faetorization property
of the triple-Regge vertex (a current theoretical
prejudice) crucial in determining the t behavior of
(n(t)), but so is the t behavior of f, (t) (i.e., the
sign of as,„,). This assertion modifies the empha-
sis of the conclusion in Ref. 16. From these con-
siderations one can conclude that the necessary
condition to ensure asymptotic planarity is the
validity of case (b). Hence, the asymptotic plana-
rity condition is in contradiction with the random-
walk model. A possible ansatz consistent with the
case (b), i.e., with the asymptotic planarity is

e-t /X3t

(t) —a.s(t) I

& const x, X, &0 . (20)

From this relation one can understand the first
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quenching interval defined by Chew and Rosen-
zweig" as being proportional to the "correlation
length" X,. With o, R(t) =n, +n't, one gets A.,=1/n'.
One may also write X, = b/n" (with b=yo. ' con-
nected to the cluster size), which is approximately
in agreement with the results given in Refs. 10
and 11.

We conclude this paper with one more observa-
tion. It is well known that the missing-mass dis-
continuities of the (4+2n)-point functions satisfy
the so-called unitarity sum rules, i.e., constraints
imposed by energy-momentum conservation. '""
These constraints plus dual-amplitude approxi-
mation imply a transverse-momentum cutoff which

can explain the asymptotic planarity. " As a mat-
ter of fact, the Rosenzweig-Veneziano bootstrap
condition, "which has been essential in Bishari's
derivation, " is nothing but a particular case of the
above-mentioned unitarity sum rules.

After this paper was completed, we became
aware of a paper by Veneziano-" where a similar
method to study the approach to planarity is sug-
gested. The onset of planarity is also tentatively
connected with the transverse-momentum cutoff.

The author is thankful to Professor Mutter for
several critical remarks on the manuscript and

to Professor Schilling for his support.
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