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A general time-dependent formulation of many-body, multichannel scattering using the channel-coupling-array

theory is presented. The formalism is based on the use of the channel-component states, previously introduced

by Hahn, Kouri, and Levin. These states obey a set of non-Hermitian matrix equations, the non-Hermiticity

arising from the presence of the channel-coupling array W. Despite the lack of Herrniticity, it is shown that

the eigenvalues will always be real if the channel-component states obey a fixed-phase convention under time

reversal. Use of the channel-component states leads in a straightforward way to an interaction picture and a

single S operator. The analog of the usual two-body (single-channel) result connecting the time-dependent and

time-independent descriptions is demonstrated. It is also shown that the channel-component states have the
remarkable property that only the component in channel j gives rise to {two-body) outgoing waves in that
channel: Components in channels m &j do not yield outgoing waves in channel j. This is explicitly seen from

the time-dependent development. but is inherent in the time-independent description. Such a property is

known for the Faddeev decomposition in the three-body case; the present work extends and generalizes this

result for the case of an arbitrary number of particles. In particular, the present formulation is seen to yield

precisely the Faddeev equations for the three-body problem.

I. INTRODUCTION

In this article, we present a time-dependent
formulation of many-body scattering based on the
channel-coupling-array theory. ' Unlike much of
the earlier work involving this theory, where the
coupled equations for the various transition oper-
ators were emphasized, "the approach followed
here uses the wave-function decomposition into
channel components introduced by Hahn, Kouri,
and Levin. ' Two major conclusions are reached.
First, and in contrast to previous expectations, 4

an interaction picture for multichannel scattering
can be formulated. This immediately leads to a
single S operator for rearrangement collisions.
Second, in the limit t -~, it is shown that only
the jth channel component of the wave function
contributes to the amplitude for transitions to two-
body states in channel j. This is in contrast to
the result based on an analysis using the complete
Schrodinger wave function which contributes to the
scattering in every channel.

The study of time dependence given herein is
abstract, in that various choices of the channel-
coupling array S' are not introduced, except as
illustrative examples in Secs. III A and V. Spe-
cific realizations of the 8"s, and their concomi-
tant sets of coupled equations for transition op-

erators and wave functions, are given elsewhere. ' '
Our purpose here is to develop a general time-
dependent formulation which will hold for any
choice of TV, although applications will involve
only those lV leading to connected kernel equations.

In previous work, discussion of wave functions
has mainly concerned the properties of the char-
m~'. t-scattering states, ' which have been shown to
be equal to the Schrodinger state when 8' is chosen
to be a channel-permuting array. ' Although this
feature allows one to establish some interesting
properties of the channel-scattering states (e.g. ,
Ref. 5 and Sec. II 8), the fact that each channel-
scattering state contributes to the scattering in
every channel makes them less useful for our
present purposes than the channel-component
states. Hence our main development is based on
these latter states. A discussion of relevant
properties of each kind of state is given in Sec.
II.

The channel-component states obey' a set of
coupled equations with a non-Hermitian Hamil-
tonian matrix H: H~WH. It is therefore important
to work only with eigenvalues of H that are real.
We show in Sec. III that if H is invariant under ro-
tations and time reversal, and the phases of the
time-reversal channel-component states are fixed,
then H has real eigenvalues. This is the key to
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further development, especially the introduction
of the Schrddinger and interaction pictures, also
introduced in Sec. III.

Section IV is devoted to a proof that the channel-
component states behave asymptotically as de-
scribed above, and then to establishing an S oper-
ator for the multichannel case. Section V sum-
marizes and discusses the results of this paper.

A few remarks on conceptual aspects of this
paper may, in addition to the preceding comments
on organization, be appropriate at this point. The
theory derived in this work is based on a non-
Hermitian matrix formulation of many-body scat-
tering theory. This should not come as a surprise
to anyone familiar with recent developments in this
field, beginning with the pioneering work of Fad-
deev, since it is possible to transform many of the
equations derived so far for various (three-, four-,
. . . , X-body) transition operators into non-Hermit-
ian, time-independent equations for wave functions
or state vectors of one kind or another. Because
we are interested specifically in time dependence,
we work with state-vector (wave-function) com-
ponents, and the non-Hermiticity occurs almost
ab inif~o. The 8'-array method is, we believe, a
"natural" way of doing this because of its gen-
erality. ' " However, the introduction of any
correct, connected, non-Hermitian, time-depen-
dent theory of many-body scattering seems to us
to be in itself a natural procedure, in the follow-
ing sense. The Schrodinger equation for an @-
body system is not a very suitable equation for
describing multichannel effects, a point empha-
sized by the various approaches to n-body scat-
tering theory based on T-matrix rather than the
Schrodinger equation methods. Since SchrMinger
methods are not easily extended (at least directly)
to include multichannel effects, schemes that do
so, even if they involve non-Hermiticity, are of
interest. Introducing non-Hermitian matrix meth-
ods clearly enlarges the arena in which results
can be sought. In order to ensure contact with
ordinary quantum mechanics as well as to avoid
certain ill-defined limits (see Sec. IIIA), one must
endeavor to select a particular subset of results
in the enlarged space corresponding to the non-
Hermitian H, viz. , those solutions with real eigen-
values. It is not hard to prove' that any exacf. so-
lution of the II problem is also a solution of the
Schr6dinger (H) problem, so that eigenvalues will
indeed be real. As insurance, particularly in the
case of approximate solutions, we show in Sec.
III that imposition of the usual symmetries of
time-reversal and rotational invariance that are
assumed to hold for H guarantees that the eigen-
values of H are indeed real. Since for remote
times in the past (exact or approximate) initial

states can be generated which are well defined
under these two symmetry operations, then a one-
to-one correspondence with ordinary quantum
mechanics is maintained, and the present theory
provides a satisfactory time-dependent descrip-
tion of many-body scattering. It is this fact, cou-
pled with the multichannel nature of the descrip-
tion, that causes us to believe that the non-Her-
mitian matrix approach is a "natural" one.

The main body of this paper begins with a very
brief summary of previous results from the chan-
nel-coupling-array theory that are relevant. Even
though our development is based exclusively on
the channel-component states, we discuss both
them and the channel-scattering states. This is
done mainly for contrast but also to develop cer-
tain interesting results and to establish procedural
methods based on what are probably more familiar
aspects of the channel-coupling-array theory.
Readers for whom such a review is unnecessary
or who wish to follow the development of ehannel-
component states only may skip immediately to
Eq. (1V) or possibly even to Sec. III. That is, the
matrix notation of Eqs. (25)-(31) and Eqs. (32)-
(34) could be regarded as providing the basic theo-
retical foundation. It is interesting to note that
Eqs. (21) and (22) lead to a complex scheme of
coupled, second-order, integro-differential radial
equations with specific boundary conditions, for
which existence theorems may be hard to prove.
If instead we consider the first-order equation (34)
as the starting point, with the boundary condition
(53), then proof of an existence theorem is not a
problem. Furthermore, from (72) we have that
the desired solution to (21) and (22) is just the so-
lution to (34) at f = 0, thereby finessing the poten-
tial existence theorem problems connected with
the time-independent equations.

Finally, we note that the theory is formulated
mainly in terms of plane-wave relative motion
states of sharp energy E. In actuality, the strong
limit procedures of Secs. III and IV require that
the initial states be represented by wave packets
rather than plane waves. We shall only resort to
wave packets where necessary by implication,
preferring to present results based on the less
rigorous but didactically simpler notion of plane
waves. Places where rigor would require wave
packets are noted in the text.

Ir. PRFI.IMINARIZS

A. Transitioo operators

State vector equations have been introduced in
the channel-coupling-array theory in two ways,
corresponding to the integral equations for the
transition operators T»(z) and T»(z) discussed in
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previous work. " These latter equations are

T»(z)= V~W, «+ V~+ W, G (z)T~«(z)

while for (2) it reads

(V„-V~)G«(+) = —6q«+ 1

f»(z) = Wq, v«+QTq„(z)G„(z)W gv«, (2)

where the notation is as follows. The subscripts

j, k, m, l (etc.) refer to the arrangement channels
of the n particles forming the systems of interest;
It is assumed that each channel is defined through
its asymptotic (bound) states. Associated with
these asymptotic states are partitions of the full
n-particle Hamiltonian into a channel Hamiltonian
and a channel perturbation as follows:

H=HJ+ V)=H~+ V~= ' ' ' .
Here H& describes the internal and unperturbed
relative motion states of the m clusters forming
channel j (2~I—n}, and V& is the set of inter-
cluster interactions, assumed to go to zero rapidly
enough when the intercluster c.m. separations
become infinite so as to allow asymptotic states
to be defined. 4 These asymptotic states are the
internally bound eigenstates of the various channel
Hamiltonians H&. In general we write

H,
~
C,(z}) E~=C, (E)).,

where E is the total energy.
The G~(z) are the channel-j resolvents, defined

as usual by

U,', '(+)=gG~ '(+)G (+)T «(+) (8)

From (6) and (7), it follows that

U~«'(+) = T»(+)

when acting to the right on a state ~4«(E)} in a
two-body channel 0, and

G,. '(~}G«(+}= 6„,
where ~ stands for E ~ i0 with E being the total
energy. These latter sets of equations are to be
interpreted as operator identities, valid only for
Eq. (6) when acting to the right on two-body states

~

4 («E}) and only for Eq. (7}when acting to the left
on two-body states (C,.(E) ~. Hence, on-shell matrix
elements of T»(+) and T»(+) are the transition
amplitudes of interest only when k in the case of
Eqs. (1) and (6) and j in the case of Eqs. (2) and

(7} label two-body channels. When these require-
ments are not met, matrix elements of the opera-
tors U&", (+) and U,'.„'(+) must be determined in-
stead, ' where

U! (+)=QT, (+)G (+)G, '(+) (8)

(4) U,' (+)=f,.„(+)

when acting to the left on a state (C ~(E)
~

in a iwo-
body channel j. Thus, while T» and P» are well-
defined operators through Eqs. (1}and (2}, their
direct interpretation as transition operators is
limited as above.

G, (z) = (z-H, )-',

with z being a complex energy parameter. In the
limit z-Exi0 we have

lim G, (z)=G (a),
s ~Etio

B. Wave functions

1. Channel-scattering states

Let us now consider time-independent wave-
function equations. We discuss the set correspond-
ing to Eq. (1) first; it has been derived in several
ways, e.g. , the methods of Hahn, Kouri, and
Levin' and Kouri and Levin. ' We shall compare
the two methods, as this comparison is extremely
useful for our subsequent discussion.

Proceeding directly from Eq. (1), we define
channel scattering sta-tes ~X «) by

T,,(+) ie, (z)&= V,.g W,.iX,&. (10)

G,(+)(v, —v, ) = —6»+1

where G&(+) are the familiar outgoing (+) and in-
going (-}wave Green's functions for channel j.
Finally, the W, , are elements of the channel-cou-
pling array W, normalized in Eq. (1) to Z&W„= 1
and in Eq. (2) to Z&W, &

= 1. The index t occurring
in Eqs. (1) and (2) is free to be chosen as is con-
venient. In general, the W are selected so as to
lead to kernels for (1) and (2) that are connected
after a finite number of iterations. For an N-
channel problem, the (N 1)! channel-p-ermuting
arrays (CPA's) lead to connectivity after (N 1}—
iterations. "

The derivation of Eqs. (1) and (2} is based on
Lippmann s identity, which for (1) takes the equi-
valent forms""

G, (s)G, '(+) = 6;, ,

(6) Operating on ~4«(E)) with both sides of Eq. (1) (in
lim z = E+ i0) and then using Eq. (10) in the result-
ing relation leads to
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Vg Wrm Xm = V, Wrn @a E when written out in detail with k = 1 and all IX,)
replaced by lq& reads g W, =1)

+v, g w, G (+)v w, ~ lx. ,).
m, m'

(11)

The arbitra, riness of the W, implies that (11}is
equivalent to

lq&= IC (E}&+~ (+}v I+&

Ie& = G, (+)v, I 4&,

Ie& =G, (+)v, le&,
(16}

IX..&
= Io«(E)»- +G.(+)v.Q wi. IX.'& (»)

m

le& =g w,.IX.,&. (14)

As shown in the last of Refs. 2, this is proved
using Lippmann's identity (6) as well as Eq. (14)
in (13), which establishes that IX «& of (14}also
obeys (12).

Equation (14) may appear ambiguous, in that l

has not been specified. We therefore take 8' to be
a CPA; in this case, ' there is one value of unity in
each row and column (with no repetitions and all
W, &

= 0). Suppose we now systematically let l run
over the values 1, 2, . . . up through the total num-
ber of channels coupled together. For any given
l, the sum on m will be limited to only one term:
that value m, for which W, = 1 (recall that

lmg

Z W, =1). It now follows that for a CPA, (14)
is equivalent to

IX.,&= le&, ail (15)

That is, the channel scattering states-IX g are
each identical to the Schrodinger scattering state,
and the channel subscript m is simply a mnemonic
device indicating which complete set of eigenstates
(of H ) should be used in expanding I4& as it ap-
pears in particular places in (12) or its differential
equation equivalent, derived below.

Equation (15) is identical to a similar result
proved earlier, ' also in the context of CPA's. How-
ever, notice that (15) will hold for any W having
only one value of unity in each row and column with
no repetitions. Thus, even for a W not leading to
connected equations, such as the unit matrix, Eq.
(15) still holds.

Equation (12) is a set of coupled equations, which,

It is simple to show that IX «& of (12) asymptotical-
ly yields as a transition amplitude just the relevant
on-shell matrix element of T «obeying Eq. (1).

In view of this latter remark, it is of interest to
determine the relation of the IX,& with the scat-
tering (Schrodinger) wave function Ik&, which is
that solution of (E H)

I
4& =-0 obeying

4"(E)&+(E+i0 H) v«-I4«(&)& (»)
The desired relation is

In this form, the coupled equations obeyed by

lx„g = I4& may be more familiar. For the three-
body problem, (16) is precisely the set of three
two-body equations shown by Gldckle' to specify
IC& uniquely. For an arbitrary number of par-
ticles n, it is the set proposed by Tobocman' as
a basis for analyzing multichannel nuclear reac-
tions. It is also a set discussed by Sandhas' as
providing a unique solution to the n-body scatter-
ing problem. In differential form, obtained by
multiplying both sides of the ith equation in (16)
by G, (+) ', it is the set of coupled equations de-
rived by Kouri and Levin' for n-particle, N-two-
body -channel scattering.

Equation (16) is not the set we shall consider as
the basis for our time-dependent description of the
next section, because the identification IX,) = Iq&
means that each IX „) of (14), since it is the full
Schrodinger wave function, lacks the special
asymptotic property we derive below for the chan-
nel-component states It),& [Eq. (78)j. We have pre-
sented the preceding analysis partly as a guide to
a similar one in the next section, and partly to
make explicit the fact that the IX,) are an alter-
nate to, although for our present purposes less
useful than, the set of channel-component states
ll(, &) introduced below: There is more than one
way, for arbitrary W, to introduce wave functions,
and the properties of these different wave func-
tions will differ, as we shall see. We comment
here on two aspects of the set (16). The first is
the question of uniqueness: What is the minimum
number of equations needed for an n-particle prob-
lem to ensure that I4& as defined by (16) is unique' ?
For n=3, the answer is three, viz. , the set of
three two-body-channel equations, as was shown
byGldckle. ' Because of the use of Lippmann's
identity in deriving (12) from (1) via (10) and also
from (13), this answer is correct only when

I C, (E)&
is an initial state in a two-body channel, but we
shall assume only such initial states in this dis-
cussion. The logical extension of Glbckle's result
to the case of arbitrary n is that (16) must conta, in
at least the N, equations corresponding to the set
of N, two-body channels. To our knowledge, a
rigorous proof of this statement, for example along
the lines of Gldckle s proof, has not been given.
That the set of N, two-body channels is the mini-
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mum number is strongly implied by the analysis of
Benoist-oueutal, ' who showed that the T,,(z) would
not satisfy unitarity if the set of defining equations
(1) were smaller in size than N, x N„as above.
Since (16) uniquely leads to (1), the implication is
thereby established. Unfortunately, a connection
between unitarity (i.e., the discontinuity relation)
and uniqueness has not been demonstrated; a rig-
orous proof would thus be an interesting result
to derive.

The set (16) has been obtained essentially by use
of an off-shell transformation, viz. , Lippmann's
identity, Eq. (6). While this fact seems not to have
been recognized previously, it is of no consequence
when exact solutions to (16) are determined, since
they yield as amplitudes precisely the correct, on-
shell matrix elements of the T,,(+) of Eq. (1).
However, when only approximate solutions are,
or can be, obtained, Lippmann's identity plays
a different role. One particular consequence of it
is that in most channels, when one-body distorting
(optical) potentials are introduced, the lowest-
order contribution to the approximate amplitude
will not be the distorted wave Boxn approximation,
even though multistep processes will be included
(in higher-order contributions) in an approximate
way. The effects of Lippmann's identity on exact
and approximate amplitudes will be discussed in
detail in a forthcoming article, ' but it is useful
to recall that approximate solutions of (16) need
not yield standard results.

g(E-H,. -V,.) I&,.)=0, (19)

where H=H~+ V,. has been used. Introducing the
elements W„, obeying' W, =1 allows V,. to be
written as

v,. = Q w. ,v, ,

so that (19) is equivalent to

(z H, ) IP-,.) —Pw, ,v IP ) =0, (20}

where in the double summation, there has been a
relabeling of subscripts. The

I p, ) are now defined
to be that solution of (20) obeying

(E —H, )I (&) = P. w, ,v„
I g ), (21)

subject. to the outgoing-wave boundary conditions
implied by

with the channel subscript j corresponding, in a
manner to be determined subsequently, to the par-
tition H = H&+ V&. No orthornormality assumption
is made about the

I g,.); in fact, we fully expect that

(&,. Ig,)CO, yah. Note that, unlike (14), Eq. (18)
expresses 14') as a linear combination of the

I q~)
without intervening weights [i.e., no elements of
a W array occur in (18)j .

Substituting (18) into (1'l) yields

2. Channel-component states

The channel-scattering states IX,), because
they each are equal to the SchrMinger wave func-
tion I%'), must asymptotically contain outgoing
waves in all channels. As such, the IX,) and Eq.
(16) are not the most convenient quantities to con-
sider for the purposes of a time-dependent develop-
ment of many-body scattering. %e choose instead
to work with the channel component s-tates

I gj),
first introduced in the present context by Hahn,
Kouri, and Levin, ' although these states are an-
alogous to similar ones used earlier by Eyges, "
Hahn, " and Diestler and Kruger. " As in Sec.
II B1 two derivations of the equations obeyed by the

Itp~) are given, one starting from the Schrodinger
equation, the other based on Eq. (2}. The former
derivation slightly generalizes that given in Ref. 3,
and we begin with it.

The Schrodinger equation is

(E H)
I e) = 0. (17)

In view of the partitionings (2), we seek an expan
sion of I4) into channel-component states It},) via

(18)

(22)

Before relating this latter set of equations to
those derived directly from Eq. (2), we note sever-
al. points. Equation (21) is a generalization of the
set of equations derived in Ref'. 3, to which it re-
duces simply by choosing l= m in each term of the
sum on the right side of (21). The a.rbitrariness
in l allows this to be done. Secord, Eq. (22) differs
from Eq. (12) in what may appear to be a minor
matter, viz. , W, ,V in (22) is replaced by its
transpose in (12). However, as we shall see,
this difference is a profound and important one,
since Ig,.)e IX,.~}. Third, the derivation of (22)
has not employed Lippmann's identity, and so it
might be regarded as a more fundamental set than

(12) or even (16). We now show, starting from
Eq. (2), which does depend on Eq. ("I), that (22)
leads to the operators EJ~. Because of this, Eq.
(22) cannot be regarded as more fundamental than
(12).

The derivation of (22) from (2) proceeds in two
stages. First we note that Eq. (2) defines the same
set of operators (T,,}as does
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T~00(z) = W~iV~+ Q WirV00G00(z)T0000(z). (23) In terms of the matrix Green's function G(+) de-
fined by

f„(+)i 4, ( E)&=gw„v, ilf,&, (24)

substitute (24) into (23), and then use the arbi-
trariness of the W» to obtain Eq. (22). This is an
a Postexiori justification for using the symbols

i g, & in (24}. It should be clear by inspection that
the set of integral equations (23) for the T» is ob-
tained from (22) by the simple off-shell expansion
E+ i0- z.

In the sense of also providing amplitudes which
involve Lippmann's identity, the sets (21) and (22}
cannot be considered to be more fundamental than
Eqs. (12) or (16). They are merely an alternate
form, which if solved exactly yield the T,.~, and
we already know from Ref. 5 that exact, on-shell
matrix elements of T»(+) and T»(+) are identical.
The difference between the sets of equations for
the iX,& and the if,.& lies in the nature of the ex-
pansion (18}and the properties of the ig, &, which
we establish in part through the time-dependent
analysis of the next section. Finally, we remark
that the question of uniqueness noted in subsection
B, i.e. , the size of the set (16}, is reflected in the
present case in the number' and kind of channels
to be included in (18).

III. TIME-DEPENDENT EQUATIONS

A. Time-reversal properties

Before introducing and examining the structure
of our time-independent formalism, we reexpress
Eq. (21) in a more compact matrix notation. De-
fine H to be a matrix Hamiltonian operator having
components H» given by

(H)jq=H~q= (H00)~~+ ( V)» H~6~1+ W~, V„——, (25)

which defines V» = 8'„V, and H, » =H„D». Also,
let i/) be a, column vector with components if~&.
Then (21) is equivalent to

Proof of the equivalence of (22) and (23) follows
the method given in Sec. IV of Ref. 5 and we do not
repeat it here. The second stage of the derivation
parallels that given in Sec. II B 1 for Eq. (12). We
introduce if,& via

G(+) = (E+i0 -H) '

and obeying

G(+) = G, (+)+G,(+)VG(+)

= G,(+)+G (+)VG, (+),

the solution to (27) may be written as

(29)

(30a)

(30b)

IC&= ie&+GVle&.

The analogy with standard two-body results is
evident, as noted elsewhere. "'

Just as Eq. (21) [or (25)] was derived from (17),
so a time-dependent set of coupled equations can
be derived from the time-dependent Schrodinger
equation for i4(t)& (5=1),

, 'i'('}&=H i~(f)&at

(31)

(32}

Let
i P, (t)& be a time-dependent state analogous to

if~& of Eq. (18), and let

i4'(f)& =g it&(f)& (33)

be the analogous expansion. If (33) is now substi-
tuted into (32) and the same steps are followed as
occur between Eqs. (18) and (21), we find the ma-
trix result

; 6
I e«» H

i ((l»at (34)

where the notation used above is followed.
Equation (34) is the basic, time-dependent re-

sult on which all further analysis is based. We
shall assume henceforth that H is at least an N,
x N, matrix, where N, is the number of two-body
channels. The channel labels will thus include at
least all two-body channels unless otherwise spe-
cified. Through the elements of W, Eq. (34}
couples together the various channel-component
states ig, (t)&. As a concrete example of the de-
tailed structure of this set of equations, we con-
sider the n=3, N, =3 case, and choose a channel-
permuting array of the form (see Tobocman, '
Kouri and Levin"~)

Hit& =&if&,

while Eq. (22) reads in this new notation

(26)

i4) = i@&+G.(+)Vil&, (27)

where i@& is a column vector containing i4, (E)&
in row k and zeros elsewhere and G, (+) is a dia-
gonal matrix of channel Green's functions:

(0 1 0)
S'=, 00 1

(100)
Setting I = k in V» = W»V, and using (35) in (34)
yields

(35)

G, (+) = (E+iO-H, ) '. (28)
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(i —-H, g t =V, P t

i —-H3 $3t =V, $ t

The cyclic nature of the coupling due to the chan-
nel-permuting array is evident from this example.

We shall discuss the time evolution of the
~
P{t))

by means of time-evolution operators, e.g. ,
U(t, t, ) = exp[-i H(t t, )]-. Unlike the usual approach
to this analysis involving the SchrMinger equation
Hamiltonian H in exp[-i H(t t,)], t-here could be
serious problems associated with U when lim t, to-
+~ is taken. The reason is that H is not Hermit-
ian, while H is: Ht + H, H~ =H. That is, H,. and

V~ axe as usual assumed to be Hermitian for all
partitions, but the presence of W in V»= $&,V~

means that Vt 0 V, and thus that Ht WH. This is
easily seen in the n= 3, N, = 3 example defined by
Eq. (35). However, if it ean be shown that only
the real eigenvalues of H enter, then taking the
preceding limits will introduce no singularities,
the resulting operator will be as well defined as
in the standard approaches to a time-dependent
theory, and we can proceed with the development.
%e shall now show how to ensure reality of the E
in Eq. (26) [or (2V)].

%e do this by first assuming that H is invariant
under time reversal and rotations, and then im-
posing the effects of these symmetries on the so-
lutions ~g& of H. This is especially important
when approximations are introduced, though we
shall not be concerned with these here. Since H
(and all its partitions) are assumed invariant
under time reversal, then

THT =H, (36)

where T is the (antilinear) time-reversal operator.
Invariance of H under rotations means that the
8chrddinger state ~4& is characterized by angular
momentum Z and projection M: lq&

—= l@(Z+I))
time-reversed state is T ~4'(ZM)&, and we choose
its phase so that

T ~g(ZM)&=(-I)'-"~e(J M)&. (3T)

This is one of the standard phase conventions for
time-reversal-invariant systems-as discussed
for example by I,ane and Thomas" or Rodberg
and Thaler. " Notice that if the system has only
axial symmetry, then ~q& will be characterized
only by the projection M on that axis, but a phase
convention similar to (37) can still be introduced,
as discussed by Bohr and Mottelson. "

I et us now apply these considerations to H and

~P). By assumption, TH, Ti=H, and TV,. T~=V,.. for.
ail j, and TR',.~T

~ = 5'» because the W» are all
real. Therefore we find the important result that

THT =H. (38)

Furthermore, because H, , V, , and 8;.„are all
scalars under rotations, every

~ g~& and thus
~
g)

can be characterized by unique J and M. It is
clear that the same value of J and M must occur
on each side of Eq. (18) since eigenfunctions be-
longing to different irreducible representations of
the rotation group are orthogonal. That is, while

{P&(ZM) ~g, (JM)&x0, we do have

{q,{ZM) ~q„(Z M'))=0

=({1,.(ZM) ~q(Z'M )),
M'4M,

~4(ZM)& =g ~q, (ZM)&. (39)

The behavior of ~g) under T is not so straight-
forward. From (37) it follows that

T
~
q{ZM)& = (-1)'-"

~

q(Z- M)& .

Hence, applying T to both sides of (26) gives

TH T'T~ q(ZSS)& =E*T~y{ZM)&

(41)

TNT'
~

q(Z M)& = E*
~

q(Z-M)-&,

but the nonorthogonality of ~P,.& and ~(,& (for the
same value of Z and M) does not allow us to con-
clude that"

T
i g, (J M) &= (-1) "[~tj,.(Z-M)&

holds for each j. However, if this condition does
hold, then (37) follows automatically from it.
Furthermore, this also is a sufficient condition
for H to have real eigenvalues. Therefore we
choose the phase of each channel-component state
~
|t,.(ZM)& by demanding that

T
~
0;(~M)& = (-1)' '~ 4, (~-M)& (40)

Equation (40) is an extremely weak condition.
But, since the original Schrodinger equation prob-
lem satisfies (36) and (37), it is an obvious re-
quirement to impose on the

~ g, &, particularly since
H obeys (38). We are "simply" limiting the solu-
tions of the extended problem to those that obey
the same physical conditions as ~4'& itself. By
doing so, we ensure that the eigenvalues of (26) are
real. An alternate way of stating this is that (26)
may admit both real and complex eigenvalue so-
lutions. Imposition of (40) selects the real ones.

To establish reality, we first notice that from
(40) it follows that
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where we have assumed a J» dependence for
I g)

as in (40) and have used the antilinear nature of T.
Using (38) in (42), we find that

H Iq(~-M)& =E' ly(~-M)&.

Proof of the reality of E in (26} is now trivial.
We project both sides of (26) onto ((}(JM)

I
to find

&q(~M) IH I
&(~M)& = E&q(JM)

I
q(Z»)& (44)

where we again assume a JM dependence for
I g) .

Similarly, projecting both sides of (43) onto

((t (Z-M)
I
gives

(CV M) I-H
I
C(& M» -=E*(C(~-») IC(~ »)&-

(43)

(45)

Subtraction of the members of (45) from (44) leads
to

[&~(~M) IH l~(~M)&-&~(~-») IH le(~-»)&]
= E(g(j»)

I
$(JM)& E*((}I(J»)I(tI(J»)& .

(46}

Since H and H are scalar operators under rota-
tions, the Wigner-Eckart theorem immediately
implies that the two matrix elements on the left-
hand side of (46) are equal as are the two on the
right-hand side. Hence (46) reduces to

(E —E*)(P(JM) l(}(JM)&=0. (47)

Since the matrix element in (47) is a sum of nor-
malization integrals (Z„((}(„l(}(„&),not all of which
can be assumed to vanish simultaneously (indeed,
we assume that ((}„Ig„& t 0, all n), we then find that

E =E*

B. Schrodinger picture

By assumption, H and thus H is independent of
time. We may therefore introduce a time-evolu-
tion operator U(t, t,) such that

I(t(t)& = U(t, t.) I4(t.)&. (48)

which provides the desired proof of reality. Clear-
ly the same procedure can be followed to establish
the reality of the eigenvalues of H.

Reality of the eigenvalues of H holds under the
condition that the Ig,.& obey (40). Notice that it is
sufficient that the continuum solutions of (26) [or
(27)] obey (40) for each total angular momentum
partial wave for E to be real. No other conditions
need apply. Since H or any operator function of
H will always be applied to such continuum solu-
tions, then it is clear that quantities such as
exp[i H(t- t, )] and their limiting values for t, t,
-+~ will be as well behaved as exp[iH(t —t, )] in
more standard treatments of time-dependent
scattering theory.

The requirements that U(t, t) =I, where I is the
unit matrix, and that (48) obey (34) immediately
give

U(t t ) + (H(( (0) (49)

I
q(t)&

c-(H(t-t )-(oHO(o
I y& (54)

Our interest is in times t=0, t, - —~. The analy-
sis of Chandler and Gibson" indicates that

I
q(t = o)& = n'

I y&, (ss)

with the matrix Mt(lier operator 0' defined by"
0'= s-lim e'-"'e '-0'

pm aO

(s6)

In a similar fashion, the operator A ~, defined by
(56}but with t -+~ and s-lim replaced by w-lim,
can be introduced, as in Sec. IV.

From Eq. (55) it now follows that

lq(t)&= U(t, 0)n'Iy)
e-(Btg+

I y& (57}

Also, the operator 0' can as usual"'" be shown to
obey an intertwining relation,

HQ' = O'Ho, (58)

in complete analogy with standard results. Equa-
tions (44) and (45) help to define a matrix Schrod-
inger picture, while the analysis of the preceding
section ensures that (49) is a well-defined quantity
in the space of interest.

Unperturbed channel states
I y& can be introduced

in analogy to the Ig&. They obey

H. I(('& = E
I y& (50)

with
I P& of Eq. (27) being one example of a

I
y&.

Notice that if more than one row in
I y& is nonzero,

each component
I y, & of

I ((» is defined to have total
(real) energy E. Because H, is diagonal, time-
dependent states lp(t)& can be introduced in a trivial
manner:

I(((t)&=~ "'Iv&

(51)

The time-evolution operator U, (t, t, ) for the
I
y(t)&

is essentially given in (51):

U (t, t ) = e (Ho(( '(0 (52)

We now examine the time dependence of
I
g(t)&

following the usual assumption of two-body scat-
tering theory" that at a remote time t, in the
past, lg(t, )& is given by

I 0(t.)& = ~ '"-'"
I 0&

=c *'"le& (53)

At a later time t we have from (48) that
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C. Interaction picture

An interaction picture can be introduced in a
straightforward way analogous to the usual pro-
cedure in two-body scattering, essentially be-
cause our matrix formalism is constructed in
precise analogy to the two-body case. The inter-
action vector of states

I
X(t)& is defined by

I
x(t)& = e'-"" l)t (t)& (60)

and UI(t, t, ), the time-evolution operator in the
interaction picture, is given by

which implies that (57) is equal to

t}& = e ' 'O'I @&
=- e ' 'I P(t= 0)&. (59

We thus obtain the important result that
I
((t)& has

the same energy dependence as
I
Q(t}&. For wave

packets, (59) would be replaced by an integral
over the same coefficients as found in the wave
packet describing

I
Q(t)&. These manipulations all

follow from the analysis of subsection A, which
allows us to use exp(iHt} freely since all states
(l)t)& and l)t)&) on which FI acts are assumed where
necessary to obey the time-reversal condition (41).

where again following the analysis of Chandler and
Gibson" we have defined 0; by

A;= s-lim U, (0, t)

= s -lim ei 'e i-p' =- 0'
i' —U'w OO

(68)

Let us now apply the strong-limit procedure of
(68) to both sides of Eq. (64). We find that

p

A~ =I-i dt'V(t')U~(t') —«)),
mCO

(69)

where Uz(t', -~}is to be interpreted as
s-lim, „U,(t', t,). Applying both sides of (69)
to I)I» gives

IxU=U))=Id& f«-' "U'"-"Ix'U"-'&)

(7o)

If we substitute Eq. (60) for
I
x(t')& in (70), and

note that lx(t=0))= l((t = 0)), then (70) becomes

U (t, t, ) = e' ""U(t, t, )e -'-""U

iHpt -iH(f cp)e iHpi'p
(61)

t= o)) =
I 0& —t 'dt'e ' "U'v--

woo

where U, governs the time evolution of lx(t)):

lx(t))=U (t t.)lx(t.)&.

It is straightforward to show that Ui(t, t, ) obeys

(62)

I ) 0 eiHUt Ve 18)&tU (I t )
. sU (t, t)

I & p

-=v(t)U, (t, t, )

In integral form, (63} reads

(63)

U (t, t ) =I —i dt'V(t')U (t', t ), (64)

and an equivalent form can also be derived:

U, U, ),)=l—fdUU)tU)V U').', ,
tp

(65)

I x(t)& = U.(t, t.) I
e&. (66)

Pur interest again is in times t=0, t, - —~, and
the development in Sec. III B leads us to

I x(t = o)& = II'i
I @& (67)

These results are analogs of the familiar results
of two-body scattering theory. "

In the interaction picture for remote times t„
I x(t, )) is equal to e'-"o'o )t&(t, )&, or

Ix(t.)&= I4&, t.«0
For later times we find

Use of Eq. (59) in this latter result now gives

lg(t=0)) =ly& —z dt'e "'"""v l-((t-=-o)).

(71)

The integral in (71) is a familiar one occurring in
scattering theory, and we treat it in the usual way
through insertion of the standard q factor" to give

lc«= 0}&= I@&+G.(+ }VIgt = o}&, (72)

where G, (t) is defined by Eq. (28). Equation (72)
is precisely the same as Eq. (27), thus establishing
the expected result that l((t= 0) is the solution of
Eq. (26). Had we used (65) rather than Eq. (64),
the end result would have been the replacement of
('l2) by Eq. (31). The introduction of an interaction
picture thus not only leads to results in complete
analogy to those of two-body scattering, but is
consistent with the results derived from the T-
operator equation.

IV. MULTICHANNEL S OPERATORS

The S operator $ will be shown to be given by
the product U(t, 0}U(0, t, ) = Ui(t, 0)Uz(0, t, ) in the
limit as t -+~ and t, - -~, with matrix elements
to be evaluated between initial and final asymptotic
states. In particular, for II' defined by (56) and
g-f' byl6



15 ARRANGEMENT-CHANNEL QUANTUM MECHANICS: A GENERAL. . . 1165

0 = w-lim e'-o'e '-'
gw to

S will be"
s= n-'n'. (73) (77)

gw t)O

of Eq. (9}.
We shall now show that if (33) is substituted into

(74}, then

~t.=st. = »-m«t(r'} le)Et tlat«»
To determine $ in the above form, we must es-

tablish two results. First, it must be shown that
the present formalism leads to amplitudes de-
termined by (73}, and second, these amplitudes
must be shown to be identical to the usual S-matrix
elements. In achieving this, we shall establish
some interesting properties of the channel-com-
ponent states.

The standard approach, "modified as in Ref. 16,
determines an 5-matrix element $» through evalu-
ation of

~t =»m(ct(E'}
I
et"t'l~(t)&

where
I
4(t)& is generated from the asymptotic

state
I

C(E)&, although we have suppressed the &

dependence of l)lt(t)&. For the channels of interest
here, 8» can be shown to be "
Pt~ = 6t~h„.„—2)ti6(E -E')(4t(E)

I
Tt~(E+ io)

I
O~(E)&,

(75)

where y' (y) is the complete set of quantum num-
bers including the energy, characterizing the state
I4t(E)) [l(f„(E)&]. To emphasize this aspect of the
asymptotic states IC t(E)& we shall rewrite them
in a different notation:

I4~( )&- let(r)&, «c. (76)

Note that (75} contains matrix elements of T» be-
cause this operator is known' to give the correct,
on-shell transition amplitude. If j does not denote
x two-body channel, T» must be replaced by U,'.~'

i.e. , that

I, =-»m(ct(r') e ""I( (t))

(78)—g„5,
Hence, in limit t —~, only the component l(I), (t)&

occurring in lq((t)&=5 li( (t)) contributes to the
scattering in channel j. The generalization of this
result will yield Eq. (73}.

To prove our clajm, we use the interaction pic-
ture. From Eqs. (64) and (66}, and the arguments
leading to ('ll), we find that

Ix(t)&= ly&-i «" "E""vl«t =o)&, (79)
mOO

x p w.tv. , li, (t'=0)&. (81)
m'

Substituting (81) into the definition of It, Eq. (78},
we find that

where lim t- -~ has been assumed in applying

U, (t', -~) to l(t)&. Next, use of (60) in (79) leads to

t
lt(e)) e e"lt) e='"-'(f -ee'-e -".'=""'v(t(t=(-))).

(80)
Finally, the fact that H, is diagonal in channel in-
dices means that (80) is equivalent to

lq-(t)&= '""l~.(r)&6-.
t

~ -fHmt dg~~-f(E-Hm) t'

neo

( ()(lee'" 'e "-'le,(r)»..-) e b") '" ''e" eeeee e"*' "gee',-(,-t.-.(e =o)). (te)
t~~ t ~OO m'

The desired result follows from (82} by making use of Lippmanns identity. We first note that the inte-
gral in (82} can be evaluated by using the usual" & convergence factor to give

i(E H)t' e-tee(eE Heee-) tG (+)-
m (83)

exactly as in the derivation of Eq. (72), where we had t=0. Substitution of (83} into (82) leads to

I, =lim (p,.(y')le'"t.'e '" 'I(p, (y)&6, -i y, (y') e" "t"G (+)P W )V . )t),(t'=0
m'

(84)

m'

(85)

Next we insert the factor G,.(+}G, '(+) = 1 to the left of G (+) in (84), and then use (83) with the subscript
m replaced by j to rewrite (84) as

t I

I,„=lim ((t),.(y')Ie'"t'e .
'

I
(re))&& t, -i y, (y') e ' "t"dt'G, '(+)G (+)g W„)V, .(I)(t'=0),

g ~ ao m 00
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Now consider the limit in (85). The first term will vanish unless j= k and y=y, as the usual wave-packet
arguments show. " The second term contains an integral which yields the factor 2v5(E H,-). H. ence we
find that

), =n, ,(.),ll„„.—2 (5(Z-8')(q;(y') G~ '(~)G„(+)g w, ( . ( ()=.0)
le

where we have used (y~(y') IH& ={rp,(y') IE' to move the 5 function outside of the matrix element and also
5(E E'-) to set the arguments of G, '(+) and G (+) equal to each other. Lippmann's identity in the form of
Eq. (7) now yields the final result

I& =5,. 5» „,-2mi5 F. -E' p, y' 8',V, P, t=O

= &~kg 6„-2vi5(& -&'&&C»(E)
I »a(+) I

C a(E&&&

(86)

yy' Q~ . g' ~'py (89)

where we ha.ve used the fact that H, is diagonal in
channel indices and also the definition of 0 in-
troduced above Eq. (73). This last result clearly

where we have used 5»5 „=5~ 5» to get the first
line of (86), Eqs. (24) and (76) to go to the second
line, and the definition (75) for S».

The last line of (86) is just Eq. (V8), and so our
claim is now verified. Note that the result is valid
only if

I y~(y')& is a two-body state, since only
then does Lippmann's identity hold. As long as
only two-body final states are used in forming the
matrix elements, we may write S,.~= 8,.~ as the ma-
trix element of the operator S,.~ defined by

B~~= 5» —2vi6(E H„)T»(E—+ i0), (8V)

a definition we use after next establishing Eq. (73).
To verify (73), we note first that (5V) in compon-

ent form reads

I(t, (&)& = P (e '-"');.(fl')., I v, (~)&,

where we have assumed that I(j)& has only one non-
zero element, viz. , I y, (y)&. Substitution of (88) into
into (77) yields

s„=)'m (,(~') ~'"~'g(~ '-"'),.(() )., r, (v))(
t~ oO m

=lim u, (y') g(e' ""e '"'), (-fl'), -V),(r)
f ~oc) tel

s„=&v;(~') g» I v, (~)&. (91)

The fact that S is an operator matrix in channel
space means that we could reformulate the pre-
ceding in terms of single "superoperators" de-
fined in a new vector channel space 'K'"' given by
K(")=K(3)3C(8) ~ (IK (N factors), where Vt is the
usual Hilbert space of the eigenstates of H, and N
is the number of channels. We have not done this
because there seems to be at present no special
advantage to be gained by it, "

Our basic assumption so far has been that the
channel labels run over the set of two-body chan-
nels. Indeed this assumption was necessary to
derive Eq. (78), since we employed Lippmann's
identity [Eq. (7)] to obtain the final line of Eq. (86).
We now examine the case when the final channel
index refers to an m-body channel, m~ 3. In this
case, Lippmann's identity (7) does not hold; in-
stead we get

G& '(+)G (+)= l+(V, —& )G (+),
which could be used in Eq. (9) to help evaluate

U,', '(+). Since Eq. (7) cannot be used, we find that
I,. becomes

establishes that S,.~ is the dogMe jk matrix element
of S as given by (73), which is the result we set
out to prove. That is, to find S,-„we first form

S„=(S),„ (90)

where S,.„ is given in Eq. (87), and then evaluate

(s =5i ();,()„-2~'()(&-&') v()") G; '(+)G„(+)Q tv„, v. , ( .()=0)).
The S matrix element S,,=S», from Eq. (74), now becomes

(92)

=&;P„-2 ()(& -&')(w, (~') g G; '(~)G.(+)&..(~ ) w, (~)&

= 6,„5,—2vi5(Z —E')(C,{Z)
I U,' (+) I4,(E)&, (93)
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where we have used Eqs. (24) and (9), and have
again reintroduced the states ~C». This result is
no surprise, in that it indicates the consistency
of our procedure: When j is not a tmo-body chan-
nel, the correct transition operator is U&, '(+}, and
the preceding analysis simply shows how this lat-
ter operator is obta ned.

We conclude this section by noting tmo proper-
ties of S. First, by construction (i.e., reality of
W), we have that the usual results" of time rever-
sal inva. riance follow from the present formalism.
Second, as long as the set of channels used in de-
fining 0, and thus S, contains at least the set of
two-body channels, then the relation (87) plus the
analysis of Benoist-Gueutal' suffices to show that
the usual discontinuity relations are obeyed.
Hence, the present formulation of many-body scat-
tering theory leads to results consistent with those
of more standard formulations. " The fact that we
are able to formulate a, single S operator is com-
pletely in accord with the results of Faddeev for
the three-body problem" and, e.g. , that of Taylor"
for the arbitrary n-body problem. The existence
of an interaction picture for multichannel scatter-
ing seems not to have been shown in detail before.

V. DISCUSSION

In the preceding sections, we have shown that
channel-component states

~
g (t)) can be used as

the basis for a time-dependent many-body scat-
tering theory. Time-evolution operators can be
formulated leading to an interaction picture and
single S operator exactly as in the tmo-body case.
Furthermore, the usual connection"'" between the
time-independent and time-dependent descriptions
has been made. In particular, we have shown that
~g~(t=0)& and

~ gg of the time-independent analysis
(Sec, II 8 2) are IdenticaL We now examine some
consequences of this relation, based on the re-
sults of Sec. IV.

We consider the total (Schrodinger) state ~4&

first. In two-body (single-channel) scattering,
~4'& obeys a Lippmann-Schwinger equation and
manifestly contains only outgoing scattered waves
asymptotically. " In the n-body, N-channel case,
the physical boundary condition on ~4'& is that it
contains only outgoing scattered waves asymptoti-
cally in each open arxangement channel. One ob-
ject of many-body scattering theory is to provide
a formulation in which this aspect of ~4& is en-
sured and manifest, as it is for example in the
channel-coupling-array theory. ' The fact that
~@& must have this property means that

(»)"'(r„C;(~')
~
+& e '& '», ,5,„,

g~~ OO

where
~ y,.(y')& is the product of internal bound

states present in
~ y,.(y'}&, r&(r~) and p,.(p~) are

the relative coordinate and momentum of the tmo
clusters in channel j(k), and f„,, „, is the relevant
scattering amplitude.

Suppose me now mere to attempt to calculate
f„,„,. Apart from the very real problem asso-
ciated with the fact that me mould be dealing with
a many-body scattering system, there is an inter-
esting conceptual problem that one ean usually
ignore in a practical calculation because only (in-
ternal) bound states of two-body channels are nor-
mally included in such calculations. " The con-
ceptual problem is tha, t of ensuring that only the
state

~
y~(y')& actually contributes to f„,„~. This

is a nontrivial problem as the following two ex-
amples show. First, suppose that one attempts
to approximate ~4& using a single Lippmann-
Schwinger equation, for example

where 0 is the initial arrangement channel. This
is an approximation in the sense that such an equa-
tion does not define a unique solution to the Schrod-
inger equation. The eigenstates of H~ form an ex-
pansion set for use in (95), and it is evident that
to find f„,„,from (95}, one must use, in principle,
all such eigenstates in computing ~4&. In this case
then, bound and continuum states in channel 0, and
not merely

~
cp, (y')& alone, contribute to the scat-

tering amplitude of interest. An alternate way of
stating this is merely to note that G,(+}gives rise
to outgoing waves asymptotically in (open arrange-
ment} channels other than k.

The other example involves approximations to
~4'& obtained by expanding it in selected states of
various channel Hamiltonians, as in the nonortho-
gonal basis expansion (using states from two-body
channels) associated with the coupled reaction
channel method discussed e.g. , by Udagawa, Wol-
ter, and Coker. " We assume that only two chan-
nels, j and Q, need be considered, and we here let
the expansion states include two-body and three-
body states of both j and p. Because [H&, H,] e 0,
jok, it is evident that even if

~ p,.(y )) is a two-
body state, thxee-body states of H, mill in general
make a contribution to f„,», unless special pre-
cautions are taken. Such precautions are non-
trivial to impose for n ~3, as has been noted in
another context. "

The point of the preceding rema, rks is that even
though in pri~cip/e f„,„,is uniquely defined by
the projection of ~4& onto (P, (y') ~, in practical
calculations for many-body scattering systems,
states other than

~ P,.(y')& may contribute to f„,„„
essentially because of the complicated nature of
the many-channel scattering problem and the fact
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that eigenstates of Hj and H, are not orthogonal,
i.e. , [H&, H,]c0, jok. Thus, in formulations of
many-body scattering theory in which various H
(and their associated eigenstates) occur, it is of
interest to try to determine from I4& the sources
of outgoing waves in the different arrangement
channels. This problem has been briefly com-
mented on in a slightly different context by
Schwager, " and a. heuristic method for such a,

determination has recently been given by Redish,
Tandy, and L'Huillier. " The results of the pre-
ceding sections show that this is accomplished
within the present formulation of many-body scat-
tering theory in an exceedingly simple way. That
is, if the channel-component formulation of the
channel-coupling-array theory is used to describe
multichannel scattering, as in Sec. IIB2 (and Sec.
III A for the time-reversal property), then only

I P,.(y')& need be considered in determining f„.& „„
even if m-body states (m ~ 3) from channels other
than j are used to calculate IC). That is,

(r., P (y')l4 ) = 0, mgj.

This property follows from the time-dependent
analysis of the preceding section, where we showed
that only lg,. (t)& contributes to S». To see this, we
first note that lg~(t=0}) is identical to the usual
time-independent state

I g;&. Second, it yields
asymptotically the same matrix element
(y, (y'} IT»(E+f0) lq~(y)& as occurs in S,, [deter-
mined from lg&(t)&]. But, since this matrix ele-
ment is the coefficient of

I
q&,.(y'}) in the asymptotic

form of lg~&, the preceding property is established.
Notice that this property is an intrinsic one, and

is thus independent of the presence or absence of
m-body states in any arrangement channel other
than j.

The time-dependent analysis serves to drama-
tize this property of the

I P ) . We note that it also
follows from consideration of the expansion (18),
Eqs. (21) and (22), and the fact that (22) yields the
T» via. Eq. (24}. That is, among the set (I g &]

used in (18), only
I ic,.& yields (ultimately} the scat-

tering amplitude f„,„~. Hence, the decomposition
(18) plus the equation obeyed by the Ig ) are a
unique way to determine scattering amplitudes.
This is in obvious contrast to the results obtained
from use of the channel-scattering states, where
each IX,& contributes outgoing waves in all open
channels.

These comments help to clarify the meaning of
the expansion (18). We noted below Eq. (18) that
the subscript j corresponded to the partition H
=Hj+ Vj. The previous implication of this cor-
respondence is now established since lt}~& yields
T,~. f,„is the operator for .making transitions

from states in channel k to those in channel j, and
channel j is defined by the asymptotic states of
Hj, which asymptotic states themselves are de-
fined under the assumption that the Vj go to zero
sufficiently rapidly. '" We may therefore describe

I g,.& as that portion of I4& which yields the two-
body scattering amplitudes for transitions to states
in channel j. That is,

I $,.& is the only portion of
4& where the two-body bound-state components

P,& have asymptotically nonvanishing coefficients.
Given that lg~& essentially describes the be-

havior of I4& in channel j, we see that (18) may
be considered as an "expansion" of Iq & in the non
orthogonal bases corresponding to the different
(two-body) arrangement channels. Thus, while

I P,.& is not obtained from I4) via an obvious pro-
jection operator, it is a clearly identifiable ingre-
dient in (18) and also in the set of Eqs. (21) or (22).
In an asymptotic sense, then,

I g,.) is the portion
of I@& present in channel j.

From (22) we see that
I g,.& contains breakup

states of Hj as well; these are necessary to give
a complete (exact) representation of lg,.& via the
eigenstates of Hj Notice that the eigenstates of

H, m cj, could in principle be used to expand
the

I (,&, but that one then loses the advantage of
being able to select by inspection the relevant
scattering amplitudes f„, „~ as in an expansion
via eigenstates of H, .

Apair of examples for the case n=3, N, =3, i.e.,
the three-body problem with pair interactions, may
help to make these remarks clearer. Introducing
the standard cyclic pair notation,

V(i) Vjk &

where V» is the two-body interaction between
particles j and fz, we have'4

with 6„,.= 1-6, Then (22) becomes

(96)

as the relevant set of equations.
In the first example, we make the Faddeev-

Lovelace choice" for W, which consists in set-
ting I =j in (96} and then choosing W, = 5„~. This
gives

With no loss of generality, we set & = 1 in (97),
leading to
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Iy,&=lc, (E)&+G,( )v"'[Ie.&+I&.&],

Ie,&=G.(.)v"'[le,&+ le.&],

I 0,&
= G, (+)v "'[

I 0,&+
I 0,& l .

(98)

I~,&= Ic,(E)& G, ( )[v""v"']le.&,

IQ=G (+)[v"'+v' ']l4,&,

Ik &=G (+)[v + v ] IP».

(99)

The set (99) is clearly very different in appear-
ance from (98), although it is only an alternate
representation of the dynamics. Since it is the
combination G,.(+)V "' that is supposed to ensure
only outgoing waves in each of the relevant chan-
nels for the Faddeev equations, the set (99) might
appear to require a detailed analysis in order to
establish the sources of outgoing waves in the
various channels because of the presence of the
factors G, (+)V'~', jxi. Or, noting that (99) can

On using the relation" G,.(+)V'"=G,(+) t"'(+),
where G, (+) is the three body free Green's function
and t"'(+) is the j-k pair two-body T matrix in
three-body space, we immediately recognize (98)
as the set of coupled equations first derived by
Faddeev" for the three-body problem. It is well
known by now2' that the set (98) implies that only
in channel m will there be (two-body) outgoing
waves corresponding to the bound states of the
pair potential V ' '. This particular example
serves to emphasize the role played by the chan-
nel-component states in the present formalism.
That is, for the preceding choice of IV, the

I g &

are precisely the Faddeev wave-function compo-
nents, whose relation to I4'& is just Eq. (18). No-
tice that if we do not use G, (+)V "'=G, (+) t"' but
retain the channel Green's function G,.(+}, then we
readily see that through G;(+), all the bound and
continuum states in the potential V"' enter the de-
scription of Ig,&. However, no matter how Ig~&

and lg~& might be approximated,
I g, & will be the

only source of two-body scattering amplitudes in
channel i. %e again remark that, in differential
form, the

I g~& of (98) obey a non-Hermitian matrix
equation.

The asymptotic property of the lg ) is both mani-
fest and familiar when presented in the Faddeev
form, Eq. (98). But this is a property independent
of the choice among those S"s leading to connected
kernel equations, as we have demonstrated in the
preceding sections. Our second example estab-
lishes this through the choice of the channel-per-
muting array, Eq. (35), for W. Setting k = 1 in
(96) and using (35) now gives

be reexpressed in the form

lg, & =le, (E))+G,(+)v, Ig,&,

I &.& = G.(+)Vs I
&3&" (100)

Ie,&
= G.(+)v, le,&,

then it is the set of channel interactions [V,) that
might not seem to provide the necessary cutoffs
in coordinate space to prevent

I g,.& from contri-
buting outgoing waves in channels j or k. (Similar
remarks might be thought to hold for the general
n, N case also. ) It is certainly true for the similar
but not identical set (16) that outgoing waves for
all channels ail/ be contained in each IX „&

= I4&.
But there is an important difference between (16)
and (100): The factors G, (+)V; (same subscript)
always appear in (16) and never appear in (100).
This difference is indeed crucial. In Eq. (100),
we find that the factors G, (+)V;„occur, so that any
particular channel interaction will not recur in an
iteration of (100) until all other channel interac-
tions have appeared. It is just this characteristic
of the CPA that guarantees connectedness of the
iterated kernel in general, and which in the pres-
ent case serves to ensure that only channel j con-
tributes outgoing (two-body) waves to Igj&. In the
context of the Tandy, Redish, and L'Huillier heu-
ristic method for determining outgoing waves in
many-body wave functions, "this property of (100)and
its N-channel (ti ~ 3) generalization is equivalent
to the statement that there is a lack of primary
singularities in any channels other than the one
of interest, and hence that each

I g,.& has the de-
sired connectivity properties. "

These two n=3, R, =3 examples also illustrate
an important property of the expansion (18), viz. ,
that the

I g~& need not be unique. For example,
different choices of W do not lead to the same
channel components lg, & in each channel j. In-
stead, equality of channel components will hold
only asymptotically. This ls obvious froID Eqs.
(98) and (99), which are not transformable into
one another, although exact solutions of each will
yield as amplitudes identical matrix elements of
the operators T~,. The nonuniqueness is also
easily seen in the context of identical particle
scattering, for example, e +H scattering, n=2,
H. = 3» t»s c~e lg'& =

I y &+
I e.& ~d I', 2 l~&

= —Ik&, where P„ is the two-particle transposi-
tion operator and 1 and 2 label the two electxons.
These two equations imply that

I g,&
= -P»

I g,&.

From this it follows that if
I q ) is the ath state

of hydrogen (a = nlm}, then equal, but arbitrary
amounts of the product lq (1)& rt (2)& can be added
to

I f,& and (with opposite sign to Ig,& without
changing I@&. Nonuniqueness is an obvious conse-
quence of the fact that [H~, H,]0 0, je k, and as .
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such, is an intrinsic property of systems which
can be partitioned in various ways.

We have seen that the
~ g,.) provide an in-prin-

ciple means for readily supplying the scattering
amplitudes in channel j, implying that the formal-
ism presented in this paper seems well suited to
a description of multichannel scattering processes.
It is both general and, presumably, flexible, and
should be applicable to a wide variety of nonrela-
tivistic many-body problems. In particular, we
note that not only is there a W giving the Faddeev
equations, but there exists" a choice of W leading
to the Bencze-Redish equations, "thus indicating
one aspect of the generality of the channel-cou-
pling scheme. Applications of this formalism to
bound-state problems, to identical particle prob-
lems, to variational principles, and to various
approximation schemes will be discussed in future
work.

Note added in proof R. C..Johnson has
pointed out to us that the discussion of reality of
the eigenvalues of H as stated in Sec. IIIA is not
valid for the case of continuum (scattering) states.
The essential point is that the application of T in
this case produces the complex conjugate of the
radial functions, and the occurrence of the com-
plex conjugate cannot in general be included as a
phase factor. Nevertheless, one can still prove
that the exact eigenvalues of H are real, following

the arguments given by Faddeev (Ref. 19). That
is, by summing over j and using Q~ W, , =1 in Eq.
(21), we find HZ, ~t(I, ) =8+, ~tt, ). This is just the
Schrodinger equation, all of whose eigenvalues E
are real. Since these same eigenvalues E also
appear in Eqs. (21) or (26), reality of the exact
eigenvalues of H is thus ensured. (We conjecture
that other properties, similar if not identical to
those proved by Faddeev in the case n=3, also
hold for the exact solutions when n&3.) We thus
conclude that apart from the time-reversal dis-
cussion, the analysis and results of this paper are
indeed valid for exact solutions of H. This is suf-
ficient to establish a general (exact) time-depen-
dent scattering theory. In addition, the time-re-
versal arguments, which are valid for discrete
states, play an important role in the application
of the present formalism to bound-state problems,
as will be shown elsewhere. We thank Dr. Johnson
for a useful discussion and correspondence on time
reversals
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