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The quark-parton model is discussed from the point of view that the quark partons are the quanta created by
the Fourier transforms of the quark fields at constant x *. We argue using this picture that, for a given
behavior of a hadron’s deep-inelastic structure function W,(x) as x —1, the Drell-Yan-West relation provides
a lower bound on the behavior of its form factor F(Q?) as Q?— . The connection between the parton and
Bethe-Salpeter descriptions of hadron structure is described and used to translate known information about
the pion’s Bethe-Salpeter wave function into information about the amplitude for a pion to consist of precisely
two quark partons. We find that the two-parton contributions to v W,(x) and F(Q?) behave roughly like
VW, (1 — x)? for small (1 - x) and F(Q? « (Q?)"" for large Q2 respectively.

I. INTRODUCTION

The parton model of hadron structure has proved
to be a fruitful tool, since its invention by Feyn-
man' and Bjorken,? to explain scaling in deep-in-
elastic electron scattering. It is widely applied
today in such areas as the interpretation of neu-
trino scattering experiments. This use continues
despite the recognition that pure Bjorken scaling
is probably not quite right and therefore that the
parton model is not quite right. On the other hand,
the parton model seems to be almost right, and it
has a simplicity and intuitive appeal that account
for its continuing usefulness as a theoretical
guide.

Another framework for understanding the prop-
erties of a bound state of elementary constituents
was invented by Bethe and Salpeter in the early
days of quantum field theory.® If one assumes that
the underlying field theory is asymptotically free
or that it has a renormalization-group fixed point
such that the anomalous dimensions of all the
fields are very small, then the Bethe-Salpeter
field-theoretic picture will give (almost) the same
results as the parton picture.

In principle, all the information that one needs
to know about hadron structure is contained in the
Bethe-Salpeter (BS) wave functions of baryons as
bound states created by a quark field and an anti-
quark field. Given these wave functions and the
appropriate quark Green’s functions, hadronic
scattering amplitudes can be computed by integra-
tion. Of course no one knows the exact quark
Green’s functions or the exact BS wave functions,
but some information about these objects that is
relevant for high-energy processes can be ob-
tained by using such tools as the renormalization
group, the operator-product expansion, and con-
formal invariance.

The purpose of this paper is to elucidate the con-
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nection between the parton description of hadron
structure and the Bethe-Salpeter description, and
to use this connection to learn something about the
structure of the pion in the parton description. In
particular, we translate the information about the
pion’s BS wave function in a (nongauge) field theory
obtained by Goldberger, Guth, and the present
author® into the equivalent information about the
amplitude for a pion to consist of precisely two
quark partons. The information obtained concerns
the behavior of this wave function as the trans-
verse separation between the partons approaches
zero, and its behavior as the momentum fraction
x of one of the partons approaches 1.

We find that the two-parton contribution to the
pion form factor behaves for large @ roughly like

FOQY)« @) (1.1)

(as in Ref. 4 and elsewhere®®), and that the two-
parton contribution to the pion structure function
vW,(x) behaves for small (1 —x) roughly like

W@(x) o (1 -x)2 (1.2)

[in agreement with the results for vW,(x) of Ezawa®
and of Farrar and Jackson’].

In Sec. II the quark-parton model is developed
from the point of view that the quark “partons” are
the quanta created by the Fourier transforms of
the quark field operators on a surface of fixed x*
=(x° +x%/V2. This version of the parton model is
essentially equivalent to the P—« version''?''8 put
it is more amenable to field-theoretic interpreta-
tion and to the use of Lorentz invariance. The
“equal-x*” version of the parton model is not new.
However, it has not received a systematic expo-
sition and analysis, which is the goal of Sec. II.

In this analysis, we describe the deep-inelastic
structure function vW,(x) of hadrons, paying par-
ticular attention to the way bilocal operators®
arise from the application of the impulse approxi-
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mation to current commutators. The hadronic
electromagnetic form factor F,(@? is also dis-
cussed. We find that vW, for small (1 -x) and F,
for large @2 need not be related by the Drell-Yan-
West (DYW)!° relation. [Indeed, Egs. (1.1) and
(1.2) above are not so related.] However, the
DYW relation is found to provide a lower bound on
the behavior of F (@3 for large @2, barring a can-
cellation between the contributions to F, from dif-
ferent quark flavors.

In Sec. III the connection is made between the
pion’s Bethe-Salpeter wave function and the two-
parton part of the parton wave function. This con-
nection is then used to study the two-parton wave
function in the short-distance and small-(1 —x)
limits, leading to the results (1.1) and (1.2).

Il. THE QUARK-PARTON MODEL

In the quark-parton model hadrons are composed
of constituents called “partons.” The partons are
charged pointlike spin-3 quarks and neutral gluons,
which are presumably the vector mesons of a non-
Abelian gauge theory. (However, the parton wave
function discussed in the next section is derived
for a simpler class of theories in which the gluons
are scalar mesons.)

The collection of partons in a hadron is often de-
scribed by giving the amplitude to find the partons
in a given configuration at time =0, in a reference
frame in which the hadron is moving in the z direc-
tion with nearly the speed of light. As viewed from
the rest frame of the hadron, this wave function
tells the parton configuration as it would be de-
termined by making local measurements on a
space-time surface that is nearly the surface x°
+x3=0. Thus an economical approach, which will
be adopted here, is to treat the coordinate x*
=(x°+x%/V2 as a “time” coordinate and to de-
scribe the hadron by the amplitude for the partons
to be in a given configuration at a fixed “time” x*.

A. The parton distribution function

Let us agree to describe each four-vector a* by
its components a* =(@*,a',a%a"), where a*
=(a®+a®)/N2. We will write A for the transverse
components (a',a®) of @*. The scalar product is
a,b* =a*b” +a7b"* -3.b.

Consider a hadron that contains, for simplicity,
a definite number of partons. The nth parton can
be described by its + component of momentum,
p», and its transverse positionk,. Let P* =2 p}
be the total + momentum of the hadron and let

- 1 -
R= FZ p;xn

be its center of P*.

The center of P* plays an important role in par-
ton physics, just as the center of mass is an im-
portant variable in nonrelativistic physics. This
is because the subgroup of the Poincaré group
that leaves the surfaces x* =const invariant is iso-
morphic to the Galilean group in two dimensions.
The momentum P* plays the role of “mass” and
the operator P*R is the generator of Galilean
boosts. !+ !2

We let T, be the transverse position of the nth
parton relative to the center of P*:

T,=%,-R . (2.1)

It is also convenient to let x, be the fraction of the
total P* carried by the nth parton:
Xa=pa/P* .

With this introduction we can now define the par-
ton distribution function. Let®,(x,T)=dN,/dxd¥
be the average number of partons of type A that
carry a fraction x of the hadron’s P* and are lo-
cated a distance T away from its center of P*.

As is well known, the deep-inelastic structure
function vW,(x) of the hadron is related to the x
distribution of partons by

W)= &x [dFe (. @.2)
A

Here 2, is the charge of partons of type A in units
of the electron charge. (We will give a field-theo-
retic derivation of this relation later in this sec-
tion.)

The hadron’s electromagnetic form factor F,(@%)
can also be written compactly in terms of the par-
ton distribution function. By analogy with nonrela-
tivistic quantum mechanics, F,(@?) is the Fourier
transform of the electric charge distribution:

Fl(Q2)=; 2, fdfe*‘ﬁ'? foldx(PA(x,Y*) . @2.3)

This expression is derived later in this section,
but first we discuss the relation between F,(Q?)
for large @2 and W,(x) for x near 1.

B. The Drell-Yan-West relation

According to Eq. (2.3), the form factor is the
Fourier transform of the charge density as a func-
tion of T, the transverse distance between the
struck parton and the center of P* of all of the
partons. Let us define the distance ¥ between the
struck parton and the center of P*of the 7est of the
partons:

F=(1-2)7 . (2.4)

Let us also define

f(x,E2)=; 2, fdfe‘“%,,(x,?) ) (2.5)
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Since ¥ measures the interparton separations,
f(x,%? for large K? probes the behavior of the par-
ton wave function when the struck parton has trans-
verse momentum k.

In terms of the function f(x,k?), the form factor
is

F@)= [ " f(x, (1-0)2Q7) . (2.6)

By a change of variables x - k= (1 -x)Q@ we can
write

F@Y=e7 [ arr(1-%,8) (2.7)
0 Q
From Eqgs. (2.6) and (2.7) it is apparent that the
large-Q?2 behavior of the form factor is sensitive
to both the large-%* and the small-(1 -~x) behavior
of the Fourier-transformed quark distribution
function f(x,Kk?. Let us suppose that f(x,Kk? is
power behaved in these limits:

f(x, )~ g(x) (B, B-w
flx, k) ~hE&)(1-x)"2"1 (1-x)=0.

If a>p, the large-@® behavior of F(@?) can be ob-
tained by taking the limit under the integral sign in
Eq. (2.6):

FR)~ARQYY, a>B (2.9)

where

A =f1dxg(x)(1 —x)

(2.8)

(The integral for A converges at its x =1 end be-
cause a>f.)

If B>, the large-Q2 behavior of F(Q?) can be
obtained by taking the limit under the integral sign
in Eq. (2.7):

FQR)~BRQ>°, B>a
where

B= f dkh(B)k™1
0

(2.10)

The integral for B converges at its k-~ end be-
cause B>« and at its -~ 0 end provided <0, as
one can safely assume in physical applications.
The relation (2.10) between the form factor and
the small-(1 —x) behavior of the parton distribu-
tion function was first obtained by Drell and Yan
and by West.' We see here that the Drell-Yan-
West relation holds in models with sufficiently
strong damping of large transverse momenta
(a= =x). In general, the DYW relation survives
as an inequality; the form factor cannot fall faster
than (Q2)8. [The contribution B, to the coefficient
B from quark type A is proportional to the Mellin
transform of the (1 —x)— 0 limit of the positive
quantity ®,(x,T). Thus B, #0 as long as ®, does
not vanish identically. However, we must assume

that the contributions from different quark types
do not cancel each other, leaving 2JB,=B =0.]

C. The parton distribution function in operator form

How can the partons be described in quantum
field theory? We shall identify the quark partons
with the quanta that are created and destroyed by
the Fourier transforms of the quark field opera-
tors at a fixed x*. Thus, for instance, the ampli-
tude for a pion to consist of two quark-antiquark
pairs is given by

(0w (0)¥ (x ) (x,)¥ (x,)|P)

on the surface x]=x;=x;=0. In particular, the
amplitude for a pion to consist of exactly one quark
and one antiquark can be determined by examining
the pion Bethe-Salpeter wave function

O|T(¥(0)¥(x))|P)

on the surface x*=0. This is what we shall do in
the next section.

In order to make these ideas more precise, let
us review some pertinent facts about spinor field
theories canonically quantized on equal x* sur-
faces.!? Of the four components of a Dirac field
¥,(x), only two are independent dynamical vari-
ables. These are the components projected out by
the matrix $7"y*; the other two components,
%'y*y'\ll, are determined by a constraint equation.
Choosing the representation of the y matrices in
which

0 -0’
10 ol 0
the independent components of ¥, are ¥, and ¥,.
It is convenient® to define a two-component field
bsy S=1% 3, With ), =24, and y_,,, =i2"/4¥, tode-
scribe the independent quark variables. The two-

component field y obeys the canonical equal-x* anti-
commutation relations

{95(x), 33 0}6(x*) =84(x)8,4r

Consider the Fourier transform of i (x) with re-
spect tox~ at x*=0:

(2.11)

J)s(O,i;P*)=fdx’e“’+"-zps(0,§,x') .

When P*>0, this operator destroys a quark at
transverse position X with + component of momen-
tum P* and helicity®® s. When P*<0, ¥,(0,%; P")
creates an antiquark at transverse position X, with
+ component of momentum —P"* and helicity -s.

Using the definition of ®,(x,T) and the interpre-
tation of the quark fields as quark-parton creation
and annihilation operators, we have
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Calx, B = 5 =[x e TR, B, slo B0, F, 090, F,x7) [P, T, 8) (2.12)

Here |P*, 0 s) is a hadron state with + momentum P*, transverse momentum P= 0 a.nd helicity’® s. The
factor 5(R°p) sets the hadron center of P* at the origin; then the Fourier-transformed z,b Y is the appropri-
ate number operator for the quarks. The factor (47)~! results from our covariant normalization of states:

(P*,PIK*,K)=(21)%2P*6(P* —=K*) 6(P -K).
For antiquarks of type A one has
®z(x,T) =—Zl; f de=e P T (p* D, 5|6 (Ro,) 40, F,0) 90, 7, x7):| P*, 0, 5) . (2.13)
The :szzp : denotes the normal-ordered product, equivalent to —zpsz here.
The factor G(Rop) in these equations can be eliminated by using the Poincaré-group commutation relation
[Pt{p,Rgp] = —io’*
For ®,(x,T) we have

d_I))z (P*,0, sle= P (Ropt Ty 0, B, 0)Ty)0,0,%7) | P*, 0, 5)

FOOE Y -
Oale,P)= g far-e=™ [

dP  _pz
(2")2 e iPer

A similar relation holds for ¢z (x, 7).

3 [ @ P, B s (0, 5,099,561, B, 9. (2.14)

D. The form factor

The expression (2.14) for ®,(x,T) can be used to give a simple derivation of the relation between ®, (x, T)
and the form factor. First integrate ®4(x,T) over the physical range 0<x <1. The integral from x =1 to
x =0 can be added at no cost since the integrand vanishes in this rarige (because there are no physical
states with negative P*). Next, subtract the integral of ®z(x,T) from x =0 tox =1, which is the same as the
integral from x =0 tox =«. In the @z integral, change variables from x to —x. This gives

dP
(2m)?

dp -4'5? 1
(21r)2 2p*

Finally, Fourier-transform, multiply by the charge 2, of the quark of type A, and note that the charge
of the corresponding antiquark is —24:

f ld’f[@,,(x,f)—@z(x,?)] = 6"“ . f dx” f ax e P (P B, s[: 40, 0, 0) Ty40, B, x7):[P*, B, o)
0

——(P*, B, s]:y®(0) Ty*)0):|P*, D, s) .

[aze'T [ax(e,0u(x, D) + 220205, D] = 555¢P", 8, 5| 2@ YD1, B, 9

The operator e 2, 3“X0)Ty)(0): is the contribution from quarks and antiquarks of type A to the + compo-
nent of the electromagnetic-current operator, J*(0).}* Thus, if we sum over quark types we have

Y-y 1 1 1 -
> ,iQ°r k< Yl + + +
z;fdre [ ax Q04(%,7) = 5 ~ (P*,Q,s[J7(0)|P ,0,8) . (2.15)

The right-hand side of (2.15) is precisely the form factor F, of the hadron. Thus, we obtain the result
(2.3) that one might have guessed based on the similar result in nonrelativistic quantum mechanics.

E. The structure function

We turn now to the scaling behavior of the deep-inelastic structure function W,(v,Q?) of a hadron. Let us
adopt a coordinate system in which the hadron has momentum components

- M2
PH= <P+, O,TP';> s
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and the virtual photon that strikes the hadron has momentum components
- M
qM: <O; Q)F V) .

Then P,P*=M?, —quq“=§2502, and P!q,=Mv. As is well known, W, can be written as a matrix element of
the commutator of two electromagnetic currents. In the present coordinate system

M

Wav,Q7) = gzya f d*x e (PY|[J*(0), J* (0)] |PY) . 2.16)

(We consider a spinless hadron here. Otherwise one must sum over spins.)
We wish to investigate the behavior of W, in the scaling limit, v=w, @%=w, with x=Q?%/2M held fixed.
Begin with the Fourier-transformed current that appears in W,:

J*(g")=eQ fd‘*xe‘“"‘:wT(x)W):

=eQ fdx*e-“”/"*)"*(zw)-3fdk+di:fp*(k*,E+6;x+)iﬁ(k+,ﬁ;x+): . (2.17)

Here zﬁ(k*, K;x*) is the Fourier transform of the quark field operator at constant x*, 9 is the quark
charge, and the sum over quark types A has been suppressed.

Now we apply the essential approximation of the parton model, the impulse approximation. This ap-
proximation is known to be not quite right in field theory, but it is almost right if the dimensions of the
various fields are nearly canonical. Notice that the current J(¢”) transfers a large “energy” ¢~ = Mv/P*
to one of the quarks or antiquarks in the hadron. (Since ¢*=0 the current cannot create or destroy a
quark-antiquark pair, which must have P*>0.) One assumes that this energy is so large compared to
quark-quark interaction energies that the struck quark can be treated as if it were free. Thus the x* de-
pendence of the quark field operator can be approximated by that of a free field:

2

2
D(k*, K;x*) = exp <—i r(z;y x*)i)(k*,l?;o) .

With this approximation, the x* dependence of the integrand in Eq. (2.17) is known and the x* integration
can be done, producing a 6 function:

L (k_*_(l?+§)2—l?>
fd" My 20\ 2My

The factor |k*| here can be replaced by Q2/2Mv=x for the following reason. The dominant contribution to
W, comes from the integration region |E| <@ (and the region |k +§| « @), since the probability to find a
quark (or an antiquark) in the hadron falls off with increasing transverse momentum. Thus the & function
requires that k*/P* equals approximately @2/2Mv (or —Q?2/2Mv) within the dominant integration regions.
The required impulse approximation on Jj(¢*) has now been made. If we express the Fourier-trans-
formed fields §(k*,K;0) in terms of the x*=0 fields (0, %,x~) and do the k* and K integrations, we obtain

= o X(P*)? 5% ot - = ..
J(g")= S e2 fd:’(e "fdz'dz.w (0,%+4,2")9(0,%-4,2): , (2.18)
where
- p*
= L. [l
A=(e'-2) 2Mvy 6

Notice that the two field operators in this approximation both act at the same “time” x*, but at different
points in the x*=0 plane. Thus J(q”) is a certain integral transform of a “bilocal” operator.® The trans-
verse separation A between the points at which the fields act is small in the scaling limit, but it is impor-
tant not to set A =0 here because of the rapidly oscillating phase factor exp(iéw’().

When we insert the approximate expression (2.18) for J(¢") into the expression (2.16) for W, we obtain

W,(,@)=22" [ a%e®F [dzraz(PI:yT OW(0):, 91 0, %+E, 200, % -E,2)11P) .
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It is now a simple matter to calculate the current
commutator, using the canonical commutation re-
lations (2.11). In computing the commutator one
obtains a factor 8(% +4) or a factor 6 —A). Thus
the rapidly oscillating phase factor becomes

ei5-§ ~e +1QvA _ o *ixPHla’-z]

One of the fields then acts at transverse position
¢2Z, but since A — 0 in the scaling limit we can re-
place $(0,+2A,x") by $(0,0,x7). After a little al-
gebra we obtain in the scaling limit

VWz(v,Qz)zx.%zfdz—;; sin(xP*z)

x (P|: 4T (0)%(0,0,2): | P). (2.19)

Comparison with the definition (2.14) of ®(x,T)
gives

W1, x8,° [ dFI0A(x, F) -@5(x, )]

If we restore the sum over quark types that has
been suppressed above, this is precisely the famil-
iar relation (2.2) between vW, and the parton dis-
tribution function.

III. THE QUARK-ANTIQUARK CONTRIBUTION TO THE
PION’S PARTON DISTRIBUTION FUNCTION

In this section we examine the two-parton con-
tribution to the parton distribution function
®4(x,T) of a pion (or some other pseudoscalar me-
son).

The pion can be considered to be a bound state
of quark-type A and antiquark of type B, plus a
“sea” consisting of an indefinite number of quark-
antiquark pairs. Such a bound state is described
in field theory by the Bethe-Salpeter wave function

(0] ¥¥0) T (—y")|P) .

If one sets y*=0 in this BS wave function and takes
an appropriate trace to project out the dynamically
independent components of the Dirac fields, one
obtains the amplitude for the pion to consist of
precisely the A-B “valence” quarks with no “sea.”

Specifically, consider the amplitude for a pion
at rest,

P(x,¥)=(@8m)"Y2

xfdy-e-iu-:)p* y~

X Tr{y+ v, (0| ¥*)0)¥®X0, -7, -y7)|P)} .

(3.1)

In terms of the independent fields y(x) defined
above Eq. (2.11) this amplitude is

¢(x,9) =(8m)"V2 [ dy~e-PTy"

X [CORER o000, =3, =y7)*|P)
-<0|1P(f,)/2(0)¢(f1)/z(0, —-yi —y')T|P)] .

Thus ¢(x,¥) is the amplitude for the pion bound
state to consist of one type-A quark and one type-
B antiquark, separated by a transverse distance
¥, with the quark carrying a fraction x of the +
component of the momentum of the bound state.
The spin state projected in ¢ is the singlet state

|+2) 4l 205 = =204l +2)5 ;

the triplet state (|+) |-) +|-)|+)) amplitudes can be
obtained by replacing vy, by 1 in Eq. (3.1); parity
invariance thus requires that this triplet amplitude
be zero.!” The normalization has been chosen so
that

fdxfdm(x,?)lz

is the probability that the pion consists of just the
A-B quark pair.

The parton distribution function defined in Eq.
(2.12) is

Calx, Taxdt=|¢(x,§)[Pdxdy + -+ , 3.2)

where the transverse distance T between the quark
and the center of P* of the pair is T=(1 -x)y. The
dots here indicate the contribution to ®, from the
amplitudes for the pion to contain two or more
“sea” partons in addition to the AB valence pair.
We will be unable to say anything about these more
complicated amplitudes. What we can do is to
translate the information contained in Ref. 4 into
the present parton language in order to say how
¢(x,¥) behaves for small ¥ and also for x near 1.

A. O(4) Amplitudes and small-(1- x) behavior

In this subsection we write an O(4) expansion of
the pion Bethe-Salpeter wave function and then
make a Sommerfeld-Watson transform of the sum
over J. This enables us to relate the small-(1 —x)
behavior of the parton wave function ¢(x,¥) to the
location of poles of the Bethe-Salpeter O(4) par-
tial-wave amplitudes in the complex J plane. At
the same time, we relate the small-y behavior of
¢(x,¥) to the small-§ behavior of the partial-wave
amplitudes. Since the mathematical techniques
used here are similar to those presented in some
detail in Ref. 4, we will omit some of the details.

We begin by writing an O(4) expansion of the
Bethe-Salpeter wave function



15 PARTON MODEL AND THE BETHE-SALPETER WAVE FUNCTION 1147

(O ¥ ©F(=5") P)
. Ny
=P1s 20 213 () e HP, B}

teee L (3.3)

The braces here indicate that the traceless sym-
metric part of the tensor enclosed is to be taken.
The dots indicate omitted terms that are propor-
tional to y,, y50,,, and x +yy;. We next set y*=0
and take the trace with y+ y, (the omitted terms do
not contribute to this trace):

Tr(y vs(0[¥(0)¥(0, =¥, -y7)|P))

=-4P+;? & (PP (=1) Uy(cose) , (3.4)
=0

where
iy° iy
cosf =— =- =
(=y"3,)7% " V2 [§]
and
sin(J +1)6
UJ (COSG) = ———(S—ll'—lg)—

is a Chebyshev polynomial of the second kind.'*

The sum in Eq. (3.4) is not a useful representa-
tion for large values of |cosf|. Therefore we re-
write it as a Sommerfeld-Watson integral

Tr(y* 50| ¥ (0)¥(0, -y, =y7)| P))
-€+foo
= -2{P* f_e_‘n ad g, G U’T(lcr;%gl . (3.5)

The contour here initially circles the positive J
axis and is then opened up so that it runs just to
the left of the imaginary J axis. We assume, as
argued in Ref. 4, that g, (¥ is an analytic function
of J except for possible singularities in the left
half J plane.

We can now do the Fourier transform with re-
spect to z that is required to form the wave func-
tion ¢(x,¥), Eq. (3.1). We use'®

mpmii-mPry= o (3 Y”
Jare o -7 &)
=in[§le (1 -x)I_,-, (1 -x)[F| P*)

~I;, (1 -%)[7|P")] ,

where I, (Z) is the usual modified Bessel function.
Thus the wave function ¢(x,7) is

o(x,3) =@/2)/*P*O (1 -x)
-€+foo
Xf . ngJ+1(-s',z)l-§,Il+1
—€=fo

x —1—[1_,_1((1 -x)[§| P*)

sinmdJ
~I;, (1 =x)[7|P*)] . (3.6)

Consider first the term in ¢ containing the fac-
tor I_,_,. Since

L(Z)xZ" for Z-0

the small-(1 —x) behavior of this term can be de-
termined by moving the integration contour to the
left past the rightmost singularities of g, ,§F%. If
&;(F%) has poles at J=J,, one must include terms
¢, in ¢ arising from the integrals around the
poles:

Palx,9) = (2n) V%P O (1 —x) m
x[Res /79191 L, ((x = DIFIP*)
I=J,

(3.7)

The remaining background integral then falls off
faster than the ¢,(x,¥) as (1 —-x)—-0.

Now consider the second term in ¢(x,y), which
contains the factor I, ,. In this term one moves
the contour to the 7ight, picking up contributions
from the poles of 1/sinmJ. These contributions
cancel the 1/sinmJ pole terms from the I_;_, part
of ¢, provided

gJ(yz) |-3.’|J +g-1(yz) |§l-1=0 (3.8)

for integer values J=0,1,2,... . We will assume,
based on the argument given in Ref. 4, that this
“Lorentz symmetry” condition does in fact hold.
After a suitable change of integration variables,
the two parts of the background integral can be
combined into

1/2
1(x,3) = -@ P'o(l-x)
x [ adlg 5T +g-,GFI~]
Re.f:JB

« 1.4 -x)|31P*)
sinmJ ’

(3.9)

where Jp lies to the left of all the pole positions
I e
Thus we obtain

6%, 7) =D 0alx,9) +1(x,9) , (3.10)

where
o, D[ Res ,GO(L-x)1-x) 7 (3.1)
I=d,
for small (1 -x). The background integral I, Eq.
(3.9), falls off at least as fast as (1 —x)"'B as
(1-x)-0, where Jg<Red,.
B. Behavior of the two-parton wave function

We are now prepared to combine the analysis of
the preceding subsection with the properties of the
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partial-wave amplitudes g,(y2) found in Ref. 4.
The results of Ref. 4 are based on the use of scale
invariance and conformal invariance at short dis-
tances (with the presumed fixed point of the re-
normalization group at nonzero coupling constant).
Thus they are presumably applicable to nongauge
field theories. We must also presume that the
anomalous dimension of operators that appear are
all small, otherwise scaling and the parton model
would be seriously wrong. The results that we
need from Ref. 4 are as follows. The small-J2 be-
havior of the partial-wave amplitude g ,(y2), which
is determined by counting powers in the operator
product expansion for ¥ (0)¥ (- "), is

2,5~ CcW,n) ||
n

+higher-order terms. (3.12)

Here v, is the anomalous dimension of the quark
field ¥ (x) and vy, is the anomalous dimension of the
twist-two operator

Ty By * 20, ).

The coefficients c(/,%) in (3.12) have poles at
locations in the left-hand J plane that are deter-
mined by applying conformal invariance at short
distances to the operator-product expansion. One
finds that the rightmost pole of C(J, %) occurs at a
location

Jy==1-37, (3.13)

near J=-1.

We also need to know the J-plane singularities
of g,(y? when y?2 is not small. We will simply as-
sume, following Ref. 4, that the rightmost singu-
larities are poles at the same locations, J =J,
that were found in the short-distance limit. This
assumption is somewhat ad koc, but it is simple
and, more importantly, it is true in the g¥ ¥ ¢
ladder model.'®

We can now deduce how the two-parton wave
function ¢ (x,y) behaves for small (1 —x) and for
small y2.

Small (1 —x). The leading terms in ¢(x,y) as
(1-x)—~0 are the pole terms ¢,(x,y), with

Pa(x,¥) (1 =x)1*"n/2 Res g ,(7?)
J=Jn

[see Egs. (3.10), (3.11), (3.13)]. When y*~0 also,
we have from Eq. (3.12)

Res g,(y?) = ly Ir,,—zyw.
I=J,
Small ¥2 The pole terms in ¢ (x,y), Eq. (3.10),
behave like
O, (x, y) e Iy l'n'zm(l _ x)"'"n/ 2,

The background integral contains the same powers

of || as |F[~0:
16, 5)~ 2| F|re2rsr, (x),
n

where

I(x)oc 3 dJC(J’n)

- 1-x)7
ReJ=Jp sind ( )

[see Egs. (3.9) and (3.12)]. When (1 -x) -0 also,
the pole terms dominate.

In summary, the small-(1 -x) and small-J2 be-
havior of ¢(x,¥) is

B, F)~ D A3 =x)n 240 oo (1=x) =0

¢(x’§)~23"(x)|'§lrn-27w+. ) §2-'0

(3.14)
¢(x’§)~ZC,,(1_x)“‘/n/2|37|7n'2’w+. o

y2-0and (1-x)-0.

C. The structure function and form factor

The contribution from the two-parton state to the
parton distribution function ®(x, T) is

®@(x,T)dxdr=| ¢ (x, ¥) |2dxdy,

where T=(1-x)y [see Eq. (3.2)]. Thus, using Eq.
(3.14), the two-parton contribution to vW,(x) be-
haves for small (1 - x) like

WP =x [ a3 6w, 7))

~ Z a(n, m)(1 = x)27n/ 27 m/ 2
n,m

or, neglecting anomalous dimensions,
vW® (x) < (1 - x)2, (3.15)

To compute the two-parton contribution to the
form factor, we take the Fourier transform

£ O,k = [a§e™ o, )]
Using the information (3.14) about ¢ (v,y), we see
that

£ @0, k) =a ) (1 - x)?

for small (1 -x) and
£ @, k2) = b(x) (k)

for large Ez, where we have neglected the anoma-
lous dimensions after taking the Fourier trans-
form. According to the analysis of Sec. II, Egs.
(2.8), (2.9), and (2.10), the form factor at large @
receives its leading contribution from the la.rge-E2
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behavior of f @ (x, k?):
F®@%) = (@) (3.16)

There is also a possible nonleading contribution
that behaves like (Q2)™*/2, corresponding to the
small-(1 - x) behavior of f @ (x, k?).

D. Comparison with other calculations

The result (3.16) for the form factor is consis-
tent, up to anomalous dimensions, with the result
of Ref. 4 obtained in a Bethe-Salpeter calculation
including all numbers of partons in intermediate
states (but only the “triangle” class of Feynman
diagrams). If one keeps track of the anomalous
dimensions one finds instead of (3.16) the more
precise result

F@(Q?) ~2 cln, m)(Q?) 127/ 27l 2,
n,m

In the Bethe-Salpeter calculation, before correc-
tions for dressed quarks are applied, the contri-
butions to F(Q?) that arise from the short-distance
behavior of the BS wave function have precisely
this form. There are also contributions that be-
have like (@%)'""/2 and correspond to the J-plane

poles of the BS wave function. [These poles de-
termine the behavior of the BS wave function when
one leg is far off shell and, as we have just seen,
determine the behavior of the two-parton wave
function for (1 —x)—~0.] These (@37’ 2 wave-
function pole contributions are absent from the
two-parton part of the form factor calculated here.
The question of how these contributions arise in
the parton model thus remains open.

The present results (3.15) and (3.16), if they are
taken to apply to the whole form factor and struc-
ture function, disagree with the Drell-Yan-West
relation but agree with the results of Ezawa® and of
Farrar and Jackson.”
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