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Gauge fixing, the transfer matrix, and confinement on a lattice*
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(Received 29 October 1976)

We use the transfer-matrix formalism of statistical mechanics to relate Wilson's Lagrangian approach and the
Kogut-Susskind Hamiltonian approach to gauge theories on a lattice. As a preliminary we discuss gauge fixing

in Wilson's theory. This process leaves invariant Green's functions of gauge singlet operators. Taking the
timelike lattice spacing to zero, we extract the Kogut-Susskind Hamiltonian from the transfer matrix in the

gauge Ao = 0.

I. INTRODUCTION

A theory of quarks interacting with non-Abelian
gauge mesons has recently attracted considerable
attention as a potential theory of the strong inter-
action. ' The esthetic appeal of such a theory is
heightened by the successes of gauge theory else-
where in particle physics, first and most dramati-
cally in quantum electrodynamics and more re-
cently in the renormalizable theories of the weak
inter action.

The strong-interaction theory is conjectured to
differ in one fundamental respect from previous
applications of gauge theory. The physical spec-
trum of states should not contain isolated particle
states corresponding to the fundamental fields,
i.e. , quarks and vector "gluons, " but rather should
include only bound states which are singlets under
the gauge group. This conjectured "quark confine-
ment" would provide a most elegant resolution of
the successes of the quark model with the lack of
observation of free quarks.

Unfortunately there is a dearth of theoretical
evidence supporting confinement. Renormaliza-
tion-group arguments indicate that, for low mo-
menta, Green's functions reflect a large effective
coupling constant. ' This only means that pertur-
bation theory is not a reliable tool for investigat-
ing widely separated quarks. Indeed, low orders
of perturbation theory give no clear signal of a
nascent conf inement.

To circumvent conventional perturbation theory,
Wilson proposed placing the theory on a discrete
space-time lattice and then perturbing in the kin-
etic term for the gauge field. ' In this formulation
gauge invariance remains an exact local sym-
metry of the action and naturally leads to confine-
ment. The hope is that the artifice of going to a
lattice is nothing but an ultraviolet cutoff. Un-
fortunately it is not known if the continuum limit
exists and is Poincare invariant.

Halian, Drouffe, and Itzykson have presented a
further analysis of this theory. 4 One important

feature of their work is a mean field-theory cal-
culation indicating that in a sufficiently high num-
ber of space-time dimensions a phase transition
will occur as the coupling constant is varied. For
strong coupling one obtains the confined phase
studied by Wilson whereas for small coupling one
reverts to a quantum-electrodynamics-like theory
of free quarks and gluons. Migdal has presented
approximate arguments that for non-Abelian gauge
theories the transition to the unconfined phase
requires more than four space-time dimensions. '
Presumably the transition can occur for Abelian
theories in four dimensions and has occurred for
quantum electrodynamics, where we certainly do
not want confinement. From this point of view,
the photon is the Goldstone boson of the ordered
phase. '

Kogut and Susskind have pursued an alternative
approach to lattice gauge theory. ' Keeping time
as a continuous variable, they make three-dimen-
sional space discrete. Working in the gauge A, =0,
they define a Hamiltonian for quark- and gauge-
field degrees of freedom on the space lattice. Con-
finement arises from the invariance of this Hamil-
tonian under time-independent gauge transforma-
tions. Recently, in conjunction with several other
authors, they have investigated the spectrum of
this Hamiltonian in a strong-coupling approxima-
tion. '

In this paper we investigate the relation between
the Lagrangian approach of Wilson and the Hamil-
tonian approach of Kogut and Susskind. Our main
tool is the transfer-matrix method of statistical
mechanics. The use of the transfer matrix was
suggested by Wilson as a method of relating his
Euclidean path integral with quantum mechanics
in Minkowski space-time.

One of the virtues of Wilson's formulation is that
it does not require a gauge selection for quanti-
zation; however, the gauge invariance does allow
gauge fixing without altering the physics of gauge-
invariant quantities. We will discuss this point
and then go to the gauge A, =-0, as used by Kogut
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and Susskind. In this gauge the transfer matxix
assu~es a particularly simple form. Once the
transfer matrix and the Hilbert space in which it
acts are obtained, we find the Hamiltonian for the
continuous-time theory by taking the timelike lat-
tice spacing to zero.

The plan of this paper is as follows. In the next
section we review Wilson's theory and discuss
gauge invariance and its relation to confinement.
In Sec. III me discuss the possibility of gauge fixing
in the theory. Section IV reviews the use of the
transfer matrix to obtain conventional quantum
mechanics from a discrete-time path integral. In
Sec. V we find the transfer matrix and the continu-
ous-time Hamiltonian for pure gauge fields. %'e

study the Fermi fields in Sec. VI and give the com-
plete coupled Hamiltonian in the concluding Sec.
VII.

sites on the corners of the hypercubes by an index
i .We consider a four-component spinor field g,

"
for each site i and for every value of the internal-
symmetry index z. The internal-symmetry group
is a connected unitary group 9 of matrices g ~.
For simplicity we assume that the field g, trans-
forms under the fundamental representation

~
a a8~ 8 (2.1)

where a sum over P is understood. For every
pair of nearest-neighbor sites fi,j) we introduce
the gauge field U„.~~ which is a matrix in the
group 9. Under interchange of i and j we do not
obtain a new degree of freedom but rather require
that U become its inverse in the group

(U )RB (U l)cs (2.2)

In terms of these degrees of freedom the Euclidean
action defining the theory is

II. REVIEW/ OF %WILSON'S THEORY

Electrodynamics can be formulated in terms of
a path-dependent phase acquired by the wave func-
tion of a charged particle moving through an elec-
tromagnetic field. ' For a non-Abelian gauge theory
this phase is replaced by a rotation in the internal-
symmetry space of the theory. This notion of a
nonintegrable phase factor forms the basis of
%ilson's prescription for formulating gauge fields
on a lattice. Representing the gauge-field degrees
of freedom, an internal-symmetry rotation is
associated with each pair of nearest-neighbor sites
on the lattice. The fexmion degrees of freedom
reside on the sites. Whenever a fermion moves
from one site to a neighboring one, its wave func-
tion undergoes the corresponding internal-sym-
metry rotation.

%'e now formulate the theory precisely. Work-
ing on a hypercubical lattice of spacing a, we label

1
2 pP;», ™(U;;U»U»U,&),

jjkf

where we suppress internal-symmetry indices,

(2.3)

[1 if f and j are nearest neighbors
A]) =

t 0 otherwise,

(2 5)

a Euclidean sum is understood in y„e", g is the
bare gauge field coupling, and

e,&
is a unit vector pointing from site i to site j,

y& are Euclidean Dirac matrices satisfying

[ 1 if f,j,k, l run around a "plaquette, " i.e. , a square of side a in the lattice

~ 0 otherwise.
(2.6)

A discussion of the reduction of Eg. (2.3) in the
limit a-0 to the usual classical-gauge-theory ac-
tion is contained in Befs. 3 and 4. The projection
matrices (1-y„e„)inserted in Eq (2.3) ensu.re
that free fermions will have low energy only for
low momenta. %ithout these factors, one will have
low-energy fermions with momenta of order w/a.

From the action in Eg. (2.3), Wilson defines
Euclidean Green's functions by the path-integral

where

Z= dgdU e (2.8)

formula

G(0(, 0;~ ~ ~4gi U, » ~ ~ ~ ~U„)

1
[dgdU] e P, ~ ~ P, U „~ ~ ~ U„„(2.7)
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The integral over fermion degrees of freedom is
standard and will be defined precisely in Sec. VI.
The measure [dU] means that each independent

U„. is integrated over the internal-symmetry group
with the Haar measure. This measure for compact
groups has the properties

(4f (a)=
J

'4f (m ) = f 4rf (sr) = f 4'rf (r ')

(2.9)

for any function f (g) over the group and for any

group elementg, . The measure is normalized

Let P(g, g, U) be some polynomial in the fields
which is invariant under the general gauge trans-
formation of Eq. (2.11). Associated with this
gauge-invariant polynomial is a Qreen's function

G(P)= J[dpdUI Po, p, U).
1

(3.1)

a =fg',
(3 2)

We begin the gauge-fixing process by concentrating
on a single link from site i to site j. A 5 function
g(g', g) on the group 9 has the properties

I~=i. (2.10)
&(gag' ) =&(goggi~gog'gi)

for arbitrary g, and g, . Consider the integral
The formal argument for confinement is based

on the local gauge symmetry of the action in Eq.
(2.3). Given an arbitrary group element g, for
each site i, the action is invariant under

&(P,g, ) = — [dgdU] 5(U,, ,g, ) e 'P(P, (, U),
1

(3 3)

f)f g cf8
y

8

(2.11)
where g, is some group element. We have

dgol ~go =G P . (3.4)
The integration measure in Eq. (2.7) is also in-
variant under this transformation; consequently,
if boundary conditions on the lattice can be ig-
nored, we have

=G(gf; " 'g. U..g.

f (P,g, ) =I (P,g, 'g, g, ). .-.
Sinceg, . andg, . are arbitrary, 1(p,go) mustbe
independent of g, . Equation (3.4) then implies

(3 5)

If we now perform the gauge transformation of Eq.
(2.11) on Eq. (3.3), we obtain

This relation is true for arbitrary g„. thus G can
only depend on locally singlet combinations of the

g,. and U;, . In particular we conclude

G(g, , g,.) =0 for ivj, (2.13)

which means that free quarks cannot propagate.
This argument can break down if boundary con-

ditions imposed on the U, , at the lattice edges
affect the U,, deep in the interior. In other words,
for infinite lattices a phase transition to an or-
dered state may occur. This transition has been
discussed in Refs. 4 and 5 and is expected to oc-
cur for the lattice version of quantum electro-
dynamics if this type of theory is to describe un-
confined electrons and photons.

G(P) =f(P,g )

dpdU 5 U]~,go e P p, p, U .

(3 6)

III. GAUGE FIXING AND THE LATTICE THEORY

A virtue of the Wilson approach is that we need
not choose a gauge before quantizing. The in-
tegrals over the U„. are finite because the group
G is compact; consequently, no infinities arise
from integrating over all gauges. On the other
hand, gauge invariance of the action still permits
working in a fixed gauge without affecting Qreen's
functions of gauge-invariant operators. In this
section we define gauge fixing in the lattice theory.

G(P) = — [d(dU] II 5(U;;,g;, )
1

fi, g} . r
xe ~P(g, g, U) . (3.7)

Thus, to calculate a gauge-invariant Qreen's
function we can set any particular U,, to an arbi-
trary group element and only integrate over the
remaining U's.

This process can be repeated to fix more U's.
The final result is that we can arbitrarily fix any
set of U's as long as this set contains no closed
loops; i.e. , the fixed U's form a tree (possibly
disconnected). A gauge is completely determined
by first choosing a maximal tree T, a tree to
which no more links can be added without forming
a loop. Then the U,.& on the tree are set to arbi-
trary elements g, , . The Qreen's functions of
gauge-invariant operators are then found by inte-
grating over the remaining U's. The general
formula is
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The notation (i,j] means the link connecting sites
j and j with arbitrary orientation. An example of
a maximal tree is shown in Fig. 1.

The most natural element of G to use for fixing
U's is the identity element. The simplest trees
are those with many straight branches. The gauge
we shall use for the rest of this paper corresponds
to taking&, =0 and was discussed briefly in Ref. 4.
The tree for this case includes all timelike links,
upon which the U, &

are set equal to the unit matrix.
We are still free to make time-independent gauge
transformations, which corresponds to the yos-

sibility of fixing a set of spacelike U's that link
together the timelike branches of the tree. Such
a tree is illustrated in Fig. 2.

The utility of the gauge 4, =0 is that the trace
of four U's in a timelike plaquette becomes a trace
of only two U's at subsequent times. We relabel
the lattice sites with two indices i and t, where i
represents the space coordinates and a, t the time.
Here we allow the timelike lattice spacing a, to
differ from the spacelike spacing a. The action
for the lattice gauge theory in the gauge &0 =0
then becomes

a ao g 3 4i. i(l 'Y 'e i) ~ ii4i, i a aog 2 IA, i(+la+& )o'4, +it', (li& )0At+ji,
t, j, t

3 1 — a 1+a'a, g —+—-in y;, ,y;, , —
2 . Q &ii Tr(~ii, i,i ~o, i)a ao ' ~ ' 2ga«&,

ao
2 ~ +ijiil ~(~ij, t+jk, t~k tivoli. t)g a

gyp' g

(3.8)

Here the definitions of g,.i and P,», in Eqs. (2.4)
and (2.6) are restricted to the spacelike lattice.
Note that the term coupling p's at different times
resembles the Hamiltonian for the statistical me-
chanics of a set of one-dimensional classical spin
chains with nearest-neighbor interactions. The
final term in Eq. (3.8) represents a 4-spin coupling
between the chains. Note that in two-dimensional
space-time there is no interchain coupling and the
pure-gauge part of the theory is a trivial one-
dimensional statistical-mechanics problem.

EV. TRANSFER MATRIX AND QUANTUM MECHANICS

In this section we review the use of the transfer
matrix to relate a Feynman path integral to the
conventional operator formulation of quantum
mechanics. The discussion is similar to that
given in Feynman's original paper. ' A treatment
of a conventional scalar field theory is in Ref. 11.
We illustrate the method on the one-degree-of-
freedom harmonic oscillator with Lagrangian

(4.1)

ji ~ ~ ~ ~ iseji

FIG. l. An example of a maximal tree on a two-di-
mensional lattice. The U's corresponding to all links
on the tree can be set to arbitrary group elements by
the gauge-fixing process.

FIG. 2. A tree corresponding to the gauge Ao-—0.
Here the vertical direction represents time. The dashed
links can be fixed by time-independent gauge transforma-
tions.
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Going to an imaginary time lattice of spacing a
leads to the action

2 2
1 Xj+1 Xj + 2S=a~ +

2 xjaj
(4.2)

The path-integral prescription involves integrals
such as

(4.8), we write T in terms of p and x

(2v )1/2 -aP /2e-a(a z /2

=(2(ra)' 'exp[-aH +O(a')J,

where

(4.11)

z =
J (azl~ '. (4.3)

H =
z (jr+((r x ) (4.12)

The key to the transfer-matrix method is that
the local nature of (4.2) allows Z to be written

Z dxi Tx ~ X. (4.4)

where I, 2 aT, = exp — (x' -x) — x
3c $x 2 a 2

(4.5)

Consider the Hilbert space of functions of fast
decrease with inner product

(r lr& =Ia*r '"(«)a( ). (4.6)

dx()((x) i x&,

&x'
i x) =5(x' -x), (4.7)

For notational convenience we expand states in

this space in terms of the nonnormalizable basis
(~x&J so that

is the usual harmonic-oscillator Hamiltonian.
The procedure for going from a path-integral

to a Hilbert-space formulation of quantum me-
chanics consists of two steps. First, construct
the transfer matrix T and the space on which it
acts. Second, take the logarithm of the transfer
matrix and identify the coefficient of the linear
term in the lattice spacing as the Hamiltonian.
Physically, the transfer matrix propagates the
system from one time to the next, and this is the
role played by the exponentiated Hamiltonian in
the Hilbert-space formulation. In statistical me-
chanics the thermodynamic properties of a system
are determined by the largest eigenvalue of the
transfer matrix. In ordinary quantum mechanics
the corresponding eigenvector has the lowest
eigenvalue of the Hamiltonian, i.e. , it is the
vacuum or ground state of the system. In the re-
mainder of this paper we will construct the trans-
fer matrix for the lattice gauge theory in the gauge

a, =o.

V. PU RE GAUGE FIELDS

Introduce the operators p and x with properties

x x x x

We postpone discussion of the quark fields to the
next section and consider here only the pure-gauge
part of the action in Eq. (3.8)

e"' x x+a

(4.8)
0 ij, t

ap
zr Pr/ar T (Ur, rU, a (Uar, rU(; r).

8g a
In this Hilbert space we define the operator T by (5.1)

&x'I T Ix& =T„,„, (4.9) By analogy with the last section we wish to find a
transfer matrix T such that

where T... is given in Eq. (4.5). Taking a finite
lattice of N sites and imposing periodic boundary
conditions, we obtain

Z= dU e '=Tr T", (5.2)

Z —Tr(TN ) (4.10)

Green's functions of the theory are obtained by
inserting polynomials of the x,. into Eq. (4.3). This
corresponds to inserting the operator x in the ap-
propriate places in the trace of Eq. (4.10).

Connection with the usual Hamiltonian is made
by taking the lattice spacing a to zero. Using Eqs.

where N is the number of discrete times and we
have imposed periodic boundary conditions.

The space in which T operates is a direct pro-
duct of spaces of square-integrable functions over
the group G. A state

~ ()() in this space is specified
by a set of square-integrable functions rc(,, (g) over
the group, one such function corresponding to each
different pair of nearest-neighbor sites (r', jJ on a
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spacelike lattice. A pair is not considered as being
different if i and j are interchanged. The inner
product in this space is

The overlap in this basis is

(U'IU& = II 5(U,'„U„).
ft, J()

(5.5)

Jl
4"6'j*(g) 0ij(g)

(&,g}

(5.2)

-1
U]Jt =Ups (5.4)

where the product runs over all different nearest-
neighbor pairs (i,j). We expand the general state
in the nonnormalizable basis(I U)), where a state
in this basis is determined by a group element U, &

for each nearest-neighbor pair(i, j). The U, j
satisfy a condition similar to E(l. (2.2),

Completeness is written

dU U U (5.6)

The general state is then expanded

I R&
= J(Rrr) I (r& ll R„(rr„) (5 7)

(.~)
'

Working in this Hilbert space, we can immediately
write down an operator T satisfying E(l. (5.2)

)

(U'I TI U) =exP 2, QA, j TrU,'j 'U, j exP 8', g P,», Tr(U„U»U»U„)2g Qp 8g a
(5.8)

U», =U», for(k, l)c(i,j)
U,'; =gU;;. (5.11)

The operators R,, (g) satisfy the group-represen-
tation property

R,, (g)R, (g') =R„(gg') .

In terms of these operators we express T as

(5.12)

O' R;;(R) «R
2 ~ r "(R+R ) )

t' [ a

x exp, P;,»U;, U»U» U„. 5.13
ijkl

This form is not yet simple enough to discuss
the limit ap-0. To proceed we must review some
group theory. We parametrize the elements of our
unitary group in the standard form

Just as we expressed 7 for the harmonic oscil-
lator in terms of the operators p and g', we would
like to write this 7 in terms of some simple opera-
tors in the present Hilbert space. We begin by
defining a set of matrix operators U, &

and unitary
operators R,, (g),

U,",'I U& =U,",.'
I U&, (5.9)

R;, (g) I U) =I U'), (5.10)

where

The A satisfy an algebra

[Ar)A ]=if, „A„, (5.16)

where f j»„ is totally antisymmetric in its indices.
The group integration measure takes the form

(5.17)

J(x) = J(-x) (5.18)

and in a neighborhood of x =0 it is regular and
nonvanishing.

Because of the representation property in Eq.
(5.12), R,j(g) can be written

m

R, (g(X)) =e'rm»miij =e' ijR, (5.19)

where the l,, are Hermitian operators with the
following properties:

[I,'jrl, , ] =if, „l,.", ,

[l,", , U, , ] = AU,.j, —

[l;, , Uj, ] = U, , A ,

[l;,l,, ] =0=[i;, ,R;, (g)],
where

(5.20)

(5.21)

(5.22)

(5.22)

2 ) 2 ~)m )m (5.24)

d(g(x)) = J(x) IIdx

where the Jacobian function Z(x) is determined by
the group multiplication law. It satisfies

g(X) e(Z«RmAm= e(R ~ j& (5.14)

Tr(A A„) =5 „. (5.15)

where (A ) is a set of Hermitian matrices that
generate the group. We orthonormalize them such
that

is the quadratic Casimir operator for the group.
In our Hilbert space of square-integrable func-
tions over the group, the /, , represent differen-
tial operators in the group parameters.

Using Eqs. (5.14), (5.17), and (5.19), we write



1134 MICHAEL CREUTZ 15

r
T= II IIdx J(x)e" '*exp 2, Tr(2cosA. x) &exp 8 ,'QP, ,„Tr(U,&U, ,U, U„)

g, p) pp
2g ao )& 8g'a . .ijkl

(5.25)

When a,-0, the integral over x is dominated by z
near the maximum of Tr(2 cosA ~ x). For a unitary
group this maximum always occurs near x =0;
consequently, we have

generates a local gauge transformation at the site
i. Using the invariance of the group integration
measure and the cyclic properties of the trace, one
can show

Tr(2 cosP ~ x) =2n -x +O(x~), (5.26) [»&;(z)]=o =[«;(g)]; (5.30)

where n is the dimension of the group matrices.
Inserting Eq. (5.26) into Eq. (5.25), we do the
Gaussian x integrations with the result

T =N exp [-a,H +O(ao')],
where

(5.27)

1 A A A A

Q P);)), Tr(U;;U~), U)), U, ()a
syne

(5.28)

z, (p(x)) =exp ('p EA„. ),.i) (5.29)

and N is an irrelevant constant factor. This is
the gauge-field part of the Hamiltonian used by
Kogut and Susskind.

We close this section with a brief discussion of
the remaining gauge freedom of the theory. As
we have only specified', =O, we can still do time-
independent gauge transformations. An operator
that performs such a transformation is g,.J, (g,.),
where g, are arbitrary group elements and

consequently, Z,.(g) generates a symmetry of the
theory.

VI. QUARK FIELDS

In this section we apply the transfer-matrix
formalism to the quark fields. This discussion
does not exactly parallel the treatments in Secs.
1V and V for two reasons: (1) The quark Lag-
rangian is only linear in the time derivatives of
the quark field, and (2) the quark fields obey anti-
commutation relations. In addition, technical
differences in Wilson's approach to fermions pre-
clude our obtaining exactly the Kogut-Susskind
quark Hamiltonian. Wilson uses a four-component
field at each site, whereas in Ref. 8 a one-compo-
nent field suffices.

In the gauge AD =0 the coupling term between the
quarks and gauge fields only involves fields at
equal times; consequently, it will be trivial to find
the coupled Hamiltonian from the free-fermion
Hamiltonian. Thus, for simplicity we extract from
Eq. (3.8) the action for free lattice fermions

S=-a aop [7));, i(1+ yo) g«+g, , (1 -yo)))), , 1] -a ao g 2" 7))«(1-y ~ e &)g,'. 2"
3 1

+a aog —+ -m
s, t

(6.1)

The transfer matrix will act on a Hilbert space of
fermions on a three-space lattice. The fundamen-
tal spinor operators y,. in this space satisfy

n Bfq 3
[X& X ],=a5&5 8 (6.2)

[x; x, '], =o.

We define a "bare vacuum" state
i 0& by

P, x) I o& =o

x;"P- I o& =o

(oi o& =1.
(6.4)

P, = -.'(I+ y. ) (6.3)

To simplify the following formulas, we introduce
the four-by-four projection matrices

The general state in the Hilbert space is generated
by application of yolynomials in X,. and g,. to this
vacuum.

We now consider a set of anticommuting objects
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(6.5)

This state has the properties

P, x;"I i}'& =P, 4; I0&

x i P - I i}'&
= 4'; P - I iI' & ~

(6.6)

g,
" and ij~, and form a "Fermi-coherent" state"

It&=exp a'g(XP, 0 +TiP-X;) Io).

This equation can be considered as defining the
integral over the anticommuting objects i}i and gt
at one time. Integrals of various polynomials in

g and p~ can be defined from this equation using
Eq. (6.6). Note that the argument of the exponen-
tial in Eq. (6.8) is the remaining term in the action
that does not contain a factor of Qp.

In this fermion Hilbert space we define the op-
erator

The overlap between two of these states is T = exp(- aoH), (6.9)

(g' I i}& =exp a'g (g,'P, (ii+i}i,P i}i,') (6.7} where

(6.8)

where we have assumed that g,. and g,'. anticom-
mute. Note that if we set tl},. =g, , and g', =f,. „„
then the argument of this exponential is just the
time-changing term in Eq. (6.1). The states

I g&

form an overcomplete set just as the coherent
states for boson fields do." In analogy with the
boson case, we define a completeness relation

[dgdgt] I i} & (i}i I e ' 'i i ~i .

H =a' p A, , X,. (l-y e, ) X,
t kj

3
:x;x;: (6.10)

Here the normal-ordering symbol:: means with
respect to the vacuum of Eq. (6.3). Matrix ele-
ments of T between the Fermi-coherent states are

(l(i„, I TI g, & =exp +aoa'p
2 A;&(i(i, „,P++g, , ,P )(1-y ~ eo)(P+p&, , +P g& „,)

-" *Q(—, — )(i, * P.+k, & i(p*k. +P--i;,.) &i„.li, &. (6.11)

To proceed we consider small gp and assume

t+ ic, ti=O(ao) .
This implies

(6.12)

VII. CONCLUSIONS

Combining the results of Secs. V and VI, we
can easily construct the full interacting Hamil-
tonian

P+g, , +P P, , $+, , +P (g, ,+i.
—g, , )

=i}, , +O(a, ) .
In Eq. (6.11) this gives

(6.13)

2 1 A A & A

H —
3 g Ii) —

8 k Q Pi Jk! ~(UijUfkUkiU, i)
fjki

+a'g
2 A,.&X,. (l-y ~ e,, ) U;;X;

Z = dfdg~ e = Tr exp -apH+0 ap' ~)

with H given by Eq. (6.10}.

(6.15}

=exp +aoak g A, ,(,. (l-y ~ e,, )g&20
l ~ J

a'p —— g, $;+O(ao') (i', +, I iC', & .
a

(6.14)

Up to the O(a,') term, the argument of this ex-
ponential gives the remaining terms in the action
of Eq. (6.1). Combining Eqs. (6.7), (6.8), and
(6.14), we obtain

(7.1)

This differs from the Hamiltonian of Kogut and
Susskind only in that we treat the fermions with
Wilson's projection-operator technique. We re-
gard this as a technical point, although a careful
discussion of the chiral invariance of the theory
for m=0 may reveal something more. '~ Indeed,
the complications in placing fermions on a lattice
are intimately related to the Adler-Bell- Jackiw
anomaly in current algebra" and deserve further
study.

In summary, modulo these technical points in
the treatment of fermions, we have derived the
Kogut-Susskind Hamiltonian for lattice gauge
theories from Wilson's Lagrangian formulation.
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This required addition of a gauge-fixing term to
Wilson's theory. In the gauge A, =0, the gauge-
field part of the theory is equivalent to a statisti-
cal-mechanical system of coupled one-dimensional
spin chains. The nature of the phase transition to
the unconfined phase needs further study. In par-
ticular, ordinary quantum electrodynamics should
be obtained in a continuum limit from the ordered
phase.

If the Wilson and the Kogut-Susskind approaches
are equivalent, which is preferable? The answer
is clearly a matter of taste. In the Wilson form,
space-time symmetry is more apparent, as is the
relation of the possible phase transition to a sta-

tistical-mechanics problem. The particle spec-
trum is given by the singularity structure of
Green's functions. In the Kogut-Susskind approach
one deals with a generalization of conventional
quantum mechanics with a well-defined Hamil-
tonian operator. The spectrum of the theory is the
spectrum of this Hamiltonian, and the phase tran-
sition should be related to a level crossing in the
inf inite-volume limit.
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