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Lattice gauge theories and the continuum limit in two dimensions
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Lattice gauge theories in two dimensions are studied with regard to investigating the continuum limit. The

effective interaction is calculated for the lattice gauge theories for QED [U(1)] and SU(N) to all orders in the

gauge coupling and is shown to reproduce the usual Schwinger and 't Hooft models, respectively, in the limit

of zero lattice spacing. However, lattice gauge theories in strong coupling have, in general, qualitatively

different S matrices than their expected continuum analogs, Except for the SU(N) lattice gauge theory in the

formal limit N4oo, g N fixed, the lattice introduces additional four-or-more-body forces which are not

present in the continuum.

I. INTRODUCTION

There is considerable interest in lattice formula-
tions of gauge theories. ' ' The major reason for
this interest is that they provide a gauge-invariant
description of quark confinement. A central
question in their study is the nature of the con-
tinuum limit. While lattice gauge theories are
designed to give the correct continuum limit for
the classical lattice theory of quarks and gauge
fields, the continuum limit of the quantum theory
is a crucial problem.

In this paper, we study two-dimensional lattice
gauge theories of quarks and lattice gauge fields
in order to gain insight into the relationship to
the continuum theory. In particular, we consider
the QED [U(1)] and SU(N) lattice gauge theories as
formulated by Wilson on a space-time lattice. The
effective interaction is calculated and is shown
to reproduce the usual continuum Schwinger" "
and 't Hooft" "models respectively in the limit
of zero lattice spacing when the correct physical
quantities are held fixed. We show that if the
lattice spacing a is taken to zero, holding the bare
lattice coupling constant g, fixed, the lattice mo-
dels become the usual continuum models with a
coupling constant g, . This behavior is expected
because the two-dimensional continuum models
are superrenormalizable and there is no coupling-
constant renormalization. In addition, we define
a physical two-body coupling constant g~' and
take the limit a-0 holding g~' fixed. Then we
show that g,'(a)-gs' as a-0 and the dimensionless
two dimensional coupling constant n, =g, '(a)a'/4w
—0 as a- 0 as expected.

We show that in general the lattice introduces
additional multibody forces which are not present
in the continuum. The only expectation is the
SU(N) lattice gauge model in the formal limit
N-, g,'N fixed which is a theory of noninter-
acting bound states for any value of g, 'N such as
the 't Hooft model to leading order in N. But for

finite N, the lattice introduces additional forces
for sufficiently large distances. For a quark loop
of area A, these multibody forces arise for areas
of the order of g„'lnN or larger. The presence of
these forces implies two things. First, the S ma-
trix computed in strong coupling is, in general,
qualitatively different from the continuum S ma-
trix. Second, the lattice does not merely act as
an ultraviolet cutoff because the additional forces
modify the infrared behavior.

In Sec. II we present a brief review of the space-
time lattice gauge theory formalism. Its purpose
is mostly to define the notations used and the
Feynman graph rules. In Sec. III we formulate
the 't Hooft and Schwinger models as potential
theories on a lattice. We calculate the contribu-
tion of quark loops for the purpose of direct
compa, rison with the lattice gauge formalism. Sec-
tion IV presents a discussion of Migdal's theorem
and how a comparison of the potential and gauge
models leads to the definition of a renorma, lized
charge. Interacting quark loops are studied in

Sec. V. In Sec. VI we discuss the details a,nd

problems of the continuum limit. Finally, our
conclusions are presented in Sec. VII. We in-
clude an appendix listing some properties of
Fourier coefficents.

II. REVIEW OF LATTICE GAUGE THEORIES

As an approach to the solution of quantum
chromodynamics, Wilson" formulated the gauge
theory on a cubic space-time lattice as follows.
First, change from Minkowski space to Euclidean
space (t - it), then discretize both space and time,
x, =(n, a, n, a, n,a, n,a), n, =0, +1, +2, . . . , where.
a is the lattice spacing. Of course, introduction
of the lattice destroys Lorentz (i.e. , Euclidean)
and even rotational invariance, but we expect
they will be restored as a-0. The restoration of
Euclidean invariance in the continuum limit has
been shown for free field theories' and the Ising
model.
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However, if the classical continuum action is
naively discretized using finite differences, then
it would not be gauge invariant. Because of the
vagaries of renormalization, the quantized theory
might still lack gauge invariance in the limit a
-0. A possibly better idea is to add terms to the
action which vanish as a- 0 but make the action
gauge invariant for any a. The result is

A= —P
+ Kg[/„(1 —y )U„ t/)„; + P„,- (1+y )U„ii„]

nff,

d~4

+ z Tr(Un, vUn+v, v n+v, v Un, ) (2' 1)
2~o n~&v

where Un „=e'~o'"f'"'+
~

T' are the generators of
the gauge group in the fermionrepresentation, and
d is the number of space-time dimensions. We
have absorbed an irrelevant change of scale into
the fermion fields. The terms g„U„g„,„are in-
cluded to make the free fermion energy single-
valued within a single Brillouin zone. The con-
stant K is related to the bare quark mass. Now
consider the path-integral formulation of the gen-
erating functional for disconnected Green's func-
tions. Since the action is periodic as the vector
field ranges over the gauge group, we can restrict
the integration to over only one cycle of the group.
Thus we have

Z(q, q)= Q dv„ II dP„dg„exp —g tJr„g„+K P [P„(1—y )U(v„„)g „-+g„,-(1+y )U (v„„)ii„]
np n n

ad 4

2»v 2 P X ( nv n+ vv»nV+v, v nv)+ P (~n9n+ 1n~n)
~o n, g&v n

(2 2)

where v„„ is an element of SU(N), dv„, is an in-
variant measure normalized to unit volume,
and U(v) and )I,(v) are the matrix and character,
respectively, in the fundamental (quark) repre-
sentation corresponding to the element v. The
implications of this new theory are many. First
of all, if we do not fix a gauge (and we do not in
all that follows) then the expectation value of any
gauge-noninvariant quantity is zero. For ex-
ample, '

(U( „J)=z(0) II d gdgdg U( „,) "-=0.

Likewise we have

(2.3)

(2.4)

S„, resembles a free propagator only if we set all
U(v) —1. In general, only local color-singlet
states propagate through the lattice. Hence, they
are the only physically observable states.

Note that the fact that only color singlets propa-
gate does not mean quark confinement since it is
true even without any gauge field self-interaction
term. The essence of confinement is the sup-
pression of quark loops with large enclosed areas.
Without this suppression the quark's exotic flavor
quantum numbers could be detected.

In order to calculate Green's functions we write
down a set of spatial lattice Feynman rules for
color- singlet sources. Expand the exponential

of the fermion kinetic action in powers of Kand
integrate over the fermion fields. The rules then
are:

(1) Diagrams consist of quark loops. A quark
loop consists of a set of connected quark links. A
quark link is a line segment connecting nearest-
neighbor sites and is labeled with an arrow.

(2) For a quark link from n to n+ P write K
x(1+y, ) U~ „. For a quark link from n+ P to n write
K(1 —y )U„„.

(3) A factor I' at site n for insertion of a source
p„rq„.

(4) Take both y matrix and color traces.
(5) A factor I/I for an internal loop containing

l links.
(6) Integrate

n ad 1
tdvP

2 z P Xz(vnvvnvnvvn»v»vvnv)
links l i — gO n, g&v

(7) Sum over all possible quark loops containing
the sources.

III. 't HOOFT AND SCHWINGER MODELS ON A LATTICE

In this section, we write down a discretized
version of the continuum 't Hooft and Schwinger
models. Because they are just superrenormal-
izable potential models, we make the very reason-
able assumption that the continuum limits of the
discretized models are just the usual continuum
models. We regard this assumption as harmless
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because the form of discretization we use is
merely a way of giving a concrete definition to
the functional path- integral formalism. " The
only way in which these discretized potential mo-
dels differ from just a discretization of the path-
integral formalism is the probably necessary way
in which the fermion fields are included following
Wilson. We use these discretized potential models
to make direct comparison to the lattice gauge
theories.

The Lagrangian density of the continuum theory
is given by

~ ~ ~

~ ~ ~
II

~ il II ~

IL

il ~

FIG. 1. A single quark loop on the lattice.

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~

2 = ——,(G'„'„)'+ |I'(iP™)tI'+ ill'A' g', (3.1)

where A" (x) = T,"A'„(x) and G,"„=&„A„'

+@[A,A„]' . Choosing the gauge A, = 0 we find the
equation of motion

(3.2)

Thus, in two dimensions, the above theory is
equivalent to

|l= P(x) (ig m) g(x)

+ 2 g' d'y 0'(x)y.4'(x) r (x v) 0'(y)r-. (I'(y),

(3 3)

where

a(x v) =-,' 5(xo yo) lx, y

Now we discretize this Lagrangian in the manner
of Wilson and write for the action of this lattice
potential model

A= —P

+ g a g Z tI'. r.k. d. 0' r,4', (3 4)
nm

cern ourselves in the lattice potential model with
Green's functions of color-singlet sources only.
To calculate these Green's functions, we write
down a set of space-time Feynman rules. By
taking the generating functional in the path- integral
representation, expanding the exponential in

powers of E and g, and integrating over the
fermion fields, we obtain the following rules:

(1) Diagrams consist of quark loops and gluon
exchanges. A quark loop consists of a set of
nearest- neighbor quark links.

(2) For a quark link from site n to n+ P, write
5, ,K(1—y, ). For a quark link from site n+ P to
n write 5;,.K(1+y,). i and j are color indices.

(3) A factor I' at site n for the insertion of a
source tJj„+„.

(4) A factor 1/l for an internal loop with l links.
(5) A factor garo for every gluon-quark-quark

vertex. A factor 5,&4„ for a gluon exchange be-
tween vertices at n and m.

(6) A factor 1/p! for p gluon exchanges.
(7) Take both ymatrix and color traces.
(8) Sum over all possible quark loops containing

the sources and over all possible gluon exchanges.
Now we proceed to calculate quantities with

which we will make direct comparison to the lat-
tice gauge theory. Consider a single quark loop
as shown in Fig. 1. We write for the contribution
of this quark loop without any gluon exchange

where &„=r~ &„,~ ~n, —m, ~. We have neglected
the possible background electric field for the
Schwinger model" because it is not present in
the usual lattice gauge theories.

Since we know that the physical sector of the
't Hooft and Schwinger models is the (color)
charge-zero sector of the theory (the charge-
nonzero sector may not even exist), we may con-

JRo(v) =NK "Tr[(1a y ) (1+y } (1 ay }],
&v

(3.5)

where v denotes the particular quark loop and P„
is the number of quark links in the quark loop.

The amplitude for the exchange of one gluon from
point n to rn within the quark loop v is given by

'JK| (v) =K~"Tr[(1+y„)~ (1+y )yo(1+y }' ' ' (lay )yo(1+y ) ~ ~ (1+y )]N g a 4„ (3.6)
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Now observe that with only a few exceptions, we
can eliminate the y, 's in the y-matrix trace and
write JR," (v) in terms of the no-gluon amplitude

3R," (v) = JR, (v)Ng'a'q„q (3.7)

where g„= 0, + 1 depending only on where the vertex
at n is within the quark loop. For example, for a
vertex between two links in the x, direction we
have a factor

(a) q =0

(b) ~ =-i

(c) q =+~

(d) no q

FIG. 2. The value of g for insertion of a gyo vertex
(represented by an &&).

(1+yo)yo(1+ yo) =+ 1(1+yo) (1+yo) (3.8)

and g=+1 for this vertex. Note that we have a
Euclidean metric for y matrices, {y„,y„}=28 „.
A list of vertices for which g exists and the
respective value of 2} is shown in Figs. 2(a)-2(c).
For a one-gluon exchange graph, g does not
exist for the configurations in Fig. 2(d). Also,
when a vertex is at the same site as a source
then q exists if the vertex is adjacent to a link in
the +xo direction and equals +1, respectively,
otherwise g does not exist. Consequently, if we
consider a quark-loop configuration for which q
exists along every site a,long the quark path, we
can write the sum over all single-gluon exchanges
as

JR, (v) = JR,(v)g'a2N 2p )}„)7
nfl

inv

(3.9)

Contributions for which g does not exist merely
add small correction terms to this result. Con-
sider a quark loop v with large fixed area A„. For
fixed g and vanishing a, the sum in Eq. (3.9) gives
a contribution proportional to Av, but the cor-
rections give contributions proportional to aL',
where L' is some fixed length. Consequently, the
correction terms due to vertices for which q does
not exist are negligible for large loop areas or
equivalently small lattice spacing.

For L gluon exchanges, we can write

exp ie dx"A" x
gauge fields

dA" exp ie dx'A" x

x exp d'x4 1"„„'

=exp -8 dx" dy" Q „x y 3.12

where 4,„(x-y) is the free gluon propagator.
By comparison, it is easy to see now that the
role of the q factor is as a unit vector tangent to
the quark path.

Finally, for a large nonoverlapping single-quark
loop with area Av» a', we have for the lattice po-
tential theory

—,
' QN„N d.„= 2A„/a',

inv

(3.13)

And the total contribution of this single-quark
loop is

Observe that the gluon contribution is almost
identical to the expectation value of a single-quark
loop in an Abelian continuum gauge theory (in
Euclidean space)

1 L
JR~(v) =3R,(v) —

(
2g'Na2 P q„)7

—n.„
Pl%

inv

(3.10)

(v) JR (v)e (1/2)(( NA(x (3.14)

IV. MIGDAL'S THEOREM AND THE RENORMALIZED
CHARGE

This expression is valid for @ED and the 't Hooft
model for N-~, g'N fixed. For finite N, this
formula neglects terms down in 1/N. It also ne-
glects all small correction terms because once
again they are negligible for large areas.

Consequently, the sum over all gluon exchanges
for a single-quark loop v is

JR(v) = g JR~(v)
L=O

In this section we calculate the contribution of
a quark loop in the lattice gauge theory to all
orders in the gauge coupling. A comparison to
the lattice potential models will then lead to a
definition of a renormalized charge.

Consider a single box as shown in Fig. 3(a).
We write its contribution to the generating func-
tional as

2"'( )= ex)xIX . .(x.( ) x.'( ))
1

2g 'a'

(3 11)

inv

=2(,()ex,' Ne'Qeex e)„
nest

= Q Zpd2y~(v), (4.1)
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FIG. 3. Combining boxes to give Migdal's theorem.
FIG. 4. Contours for calculating (X&(v~)).

where Z~ is the Fourier component of Z"'(v) in
the Pth irreducible representation of the lattice
gauge group [U(1) or SU(N)] and d~= X~(I) is the
dimension of the /th representation. Z~ is given
by

Z"'(v) = P Z~'d~X~(v), (4.6)

Z =d ' dv X+ v Z"' v

(4.2)
Z'"&(v) = g Z,".~ "d,X,(v), (4.6)

where v is the product contour around the perim-
eter. Thus, for an arbitrary combination of n

connected boxes

Now consider what happens when we combine
two connected boxes and integrate over the com-
mon link as in Fig. 3(b):

Z"'=- dv Z'" v,v Z"' v'v,

= P xxd, z,d, f d xx, (x, )x&( xx, )

—Q Zv dpXp(v v2) .

%e have used the orthogonality theorem for char-
acters

where A„ is the area enclosed by the perimeter
product contour v. This is Migdal's theorem
which is very useful for studying the two-dimen-
sional problem.

Our boundary conditions are chosen as a large
box of area. 4. Then the contribution of the gauge
fields to the generating functionaI. in the absence
of sources is

Z= Q dv, exp» g [X,(v,)+X,*(v,)]
links l 0 boxes b

dvp Zp dp gp vp

Pi

Z A/a2
0 (4 7)

Consequently, if we combine four boxes as in

Fig. 3(c) by integrating out the internal links we
The expectation value of a particular contour is
(see Fig. 4 for notation)

(x,("))=a ' f lid" x (") xv, x *,*g I x (") x.'( .)f

=Z0 dv~dv v Z t& d X v V v v+ Z t& d
P~ P2

=d (Z yZ )"vt'a' (4.8)

where A„ is the area inside v. This is %ilson's law of areas. Since Z~&Z, large areas are exponentially
suppressed. Now consider the contribution of a single-quark loop v to a Green's function. Using the
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Feynman rules of Sec. II me write

3R(v) =If'~~Tr[(1 ~@ ) ~ ~ ~ (1~@„)]

~
~

1x 11dU, TrIU„„,U„., „, U„.„....„„[expI,, g [g,{v,) ~ y, {,)[}
=N '3R, (v)(g, (v))

(v)+-(1/2) Es gA„
0 (4 9)

where 3R,(v) is the same [Eq. (3.5)] for the lattice potential theory, and we have defined the renormailzed
charge

2 Z, (1/g, 'a')
gs N = —~ ln (l~g, s2)

. (4.10)

The qualitative behavior of g„' is shown in Fig. 5. By comparison with Eq. (3.14), we see that the contri-
butions of single-quark loops in the lattice gauge theory are precisely the same as in a lattice potential
model vrith coupl. ing g~'. Therefore, for the quark-antiquark sector of the theory, the lattice gauge theory
acts like the usual respective 't Hooft and Schwinger models arith coupling g„'.

V. INTERACTING LOOPS

In this section we consider the contribution of overlapping loops in both the lattice gauge and potential
models. First consider the lattice gauge theory. The contribution of bvo overlapping quark loops as in
Fig. 6(a) is written

3R,(v„v,) =N '3R, (v, )3R,(v,)( y, (v, )y,(v,)) .

The expectation value can be written

{g{a)y {z ))=&r*.. . ,v 'f d d~ dz dv Fs, r 'd
y {z, aa )g z I' & y {a' ')

P~ P2

(5.1)

Z &&x'+3

g peed (Z yg )x Ss2

0
(5 2)

where C~" is the Clebsch-Gordan coefficient for
finding the Pth representation within the q@q re-
presentation. Consequently, we have for over-
lapping quark loops

3R, (v„v,) =3R,(v, )3R (v )e " " z "{"i'"3'

configuration is

V,=-g'[{f,—(d, +d, )+ (d, +{f,+{f,)

+{f,—({f,+d,)+{f,]
=-g'({f,+{f,).

x&-' ~ C -«"&&~'»2
Z pe p~ (5.3)

Now consider the contribution of interacting
loops for the latticized U(1) potential modeL De-
fine the charge configuration and distances as
shown in Fig. 6(b). The potential energy for this

FIG. 5. Qualitative behavior of the renormalized
charge.
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And so this gives a contribution

JR (v v ) JR, (v )JR (v )z (&l2&2 (A&+A2) (5.5)
v'
2

= —g'(d, + 4d2+ d2), (5.6)

and the amplitude for these overlapping quark
loops ls

JR (V )JR (V )e (1j2)E (A&+4A2+A2)
yot eat jal 0 l 0 2

(5.7)

This does not agree with the U(1) lattice gauge
theory which is

JR = )R (V )JR (V )e (li2)C&& (A1+A2) (1)'2&22 A2
gauge 0 1, 0 2

(5.6)

Defining

2 2 2 2 0g =4g„-g =—ln ——
e2 g Z0 Z~

+gaugers "' yoteat|al

This new coupling is a consequence only of the
lattice gauge formalism. It introduces a new

four-quark force which is not present in the con-
tinuum whenever there is a quark-loop configura-

which is the same as in the U(1) lattice gauge
theory. The same argument applies to Fig. 6(c),
which gives the same as above which again agrees
with the U(1) lattice gauge theory.

However, consider a situation such as that in

Fig. 6(d) with adjacent charges of the same sign.
We have

V2=-g2[-d„+ (d, +d,)+ (d, +d, +d, )

+d, + (d, +d, ) —d, ]

1' l'
/ $ I
+= d =--d-+= d2

/

+~d» «2 d ~~~d»+
I ( 2~ Bl

(d)
/'

+~d
) ( 2 2 j

FEG. 6. U(1) interacting loops for (a) the lattice gauge
theory and (b)-(d) the lattice potential model.

tion such as that in Fig. 6(d).
We can mock up a contribution to the continuum

action which would reproduce this additional force
as follows. Define Q(z, t) = f„d8x(z x)p(x, t),
where p(x, t) is the charge density operator.
Figure 6(d) contributes whenever (Q) = a2 in a
spatial region with length equal to d, . All the
other configurations such as Figs. 6(b) and 6(c)
give (Q) =0 or +l. So an interaction Lagrangian
which would reproduce the amplitude R„„„is

2

f,,„,„,= '2 dz'Q2(z', t)[(2)2(z', f) —1]
a CO

(5.9)& «p(*, ))s(v, &)l*-) I+f d «d&«(( )')p( ))u()"))s( *)))'( '*)'*)'
where

V(~v, x, y, z) = t dz '8(z' 2())8(z' x)

x 8(y- z')8(z z') .
For a-0 with g02 fixed, g,22 0; but for strong
coupling g„'c0 and gives an S matrix qualitatively
different from the continuum S matrix. Likewise
the lattice gauge interaction of three-or-more-
quark loops introduces additional six-or-more-

quark forces which are not present in the contin-
uum. The additional couplings they introduce
vanish as a-0 with g0' fixed, but not for strong
coupling.

Now consider the SU(N) lattice potential modeL
Since to leading order in N loops are noninter-
acting we have for the configuration in Fig. 6(a)

JR(V V ) = JR (V )JR (V )e "~2)'"A1"A2'A2&

(5.10)
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Because of the properties of the Fourier coeffi-
cients to leading N as discussed in the Appendix,
the two-loop lattice gauge theory gives an identi-
cal answer but with coupling g~'. The lattice
theory of SU(N) for leading N is a theory of non-
interaeting bound states such as the continuum
theory because the lattice is also restricted to
planar topologies for leading N like the contin-
uum. ' However, for finite N

3R(V 0 ) = jR (5 )JR (0 )8 "/ "2R "'"1+"2'

Ceq P e-& j.f2)I/I, A&
2

g2

(~ )~ (~ )e (1/2)ks (A~tA2)

g 2

gp

g 2/n2

P'g„'/n'
g„ f1xed .

no

(6.4)

all the additional lattice forces disappear, and the
usual continuum theory is reproduced with cou-
pll, ng go.

What would happen if we held fixed a physical
2n-quark coupling constant g„' for some n ~ In
that case, the bare coupling go would become a
function of the lattice spacing. The limit would
give

x(y -2+ C-(2/2)2//2 ~ A2) (5.11)

so that for large areas of intersection

A2 =gz lnN, (5.12)

VI. THE CONTINUUM LIMIT

In this section we discuss the lattice gauge the-
ory in the limit of zero lattice spacing (a-0).
As mentioned in the Introduction the limit depends
on the quantity being held fixed as a-0. For de-
finiteness we will consider only the U(1) gauge
model, although our conclusions apply equally
well to any SU(N)-gauge model except in the limit
N-~, g'N fixed.

The 2n-quark coupling constant is given by

2 Z„(l/2g, 2a2)

a2 Z, (1/2g 2a2)
' (6.1)

The extra couplings generated solely by the lat-
tice which are not present in the continuum are
given by

g 2 n2g 2 g 2 (6.2)

The dimensionless coupling is defined by ao
-=g,2a'/4w.

Now we consider several cases where a differ-
ent quantity is held fixed each time while taking
the limit a-0. As a first example, hold the bare
coupling go fixed. Because the two- dimensional
continuum has no coupling- constant renormaliza-
tion, we expect that keeping g, fixed would give
us the usual continuum, and indeed it does. In
particular,

llm g~p
a 0

Co

g,2 fixed (6 3)

the amplitude deviates from the potential model,
which again shows the manifestation of additional
forces as introduced by the lattice gauge formalism.

lim g&
—— ~, g,„ fixed .

a"0

no 0

(6.5)

Notice that no vanishes, but not fast enough to
allow finite limits for go' and g~'. The resulting
theory appears to be a perfectly mell-defined
Euclidean- invariant theory.

VII. CONCLUSIONS AND DISCUSSION

In this paper, we have shown that when either
the bare coupling g,' or a renormalized coupling
g22 is held fixed, the lattice gauge theories U(1)
and SU(N) for N- ~, g'N fixed in two dimensions
become the usual continuum Schwinger and
'tHooftmodels, respectively, in the limit of van-
ishing lattice spacing. Qur method consisted of
calculating the contributions of quark loops to all
orders in the gluon coupling and comparing them
for the lattice gauge theory and for a latticized
potential version of the continuum theory. We
have, of course, assumed that the latticized po-
tential theory becomes the continuum potential
theory for vanishing lattice spacing holding its
bare coupling fixed. However, we regard this
last assumption as harmless because this form
of discretization is a way of defining the contin-
uum functional path integrals, except possibly

Again, all the additional lattice forces disappear,
and the usual continuum theory is reproduced with
coupling g„/n.

But what would happen if there were, say, some
mass or coupling constant which vanished in the
previous limit and was inadvertently held fixed&
An example of this might occur in the four-di-
mensional theory if it really gave a pion mass
which van. ished in the "true" continuum. As a
specific example, let one of the additional lattice
couplings g,„' be held fixed. In this case

go
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for the (albeit necessary) method we used for
discretizing the fermion fields. Our interest was
whether the additional modifications to the dis-
crete (lattice) theory made by the Wilson formal-
ism (manifest gauge invariance of the a.ction, in-

tegration over only one cycle of the group, etc. )

would introduce any modification in comparison
to continuum theory. We have shown that if the
correct physical quantities are held fixed, there
are no modifications in the two-dimensional the-
ories in the limit a-0. We also showed that, in

general, the lattice introduces additional forces
not present in the usual continuum. These forces
make the la.ttice S matrix qualitatively different
from the continuum S matrix, particularly in

strong coupling. The extra, forces go away only
for vanishing lattice spacing and holding a proper
physical constant fixed. Consequently, in order
to have a lattice theory which has the same phys-
ics as the continuum, additional terms must be
added to the lattice gauge action to compensate
these additional forces. For finite lattice spacing,
the simple box plus quark link action does not
have the same physics as the continuum.

As usual, the continuum limit of the lattice
gauge theory is controlled by the existence of
critical points in the renormalization group. The
two-dimensional gauge theories are a.symptotically
free and the renormalization group is very simple.
In this case, holding physical couplings fixed and
sending the lattice spacing to zero forced the bare
coupling to its ultraviolet (short-distance) fixed
point. The existence of an ultraviolet fixed point
plays a crucial role in the four-dimensional case.
We expect that if the theory has an ultraviolet
fixed point at the origin, then we expect that
taking the continuum limit holding the right phys-
ical couplings fixed will force us to the critica, l
behavior of the lattice theory.

Letting x=1/g, 'a', the coefficients are
2 fr

Z~(x) =— d8 e'~He*'"8 = I~(x),
0

(A2)

where I~(x) is a modified Bessel function of pth
order with asymptotic properties

X —(x/2) + ~ ~, x«11

I,(x)- (A3)

Consequently, the renormalized cha. rge for U(1)
has the behavior

g oO (( 1

—ln pa, g Q»1.
(A4)

(A5)

where f,. =f, +iV —j, $ (l„.. .. , &„)=
l
e", . . . , e'))'l,

under the constraint Z;(t); =0. The Fourier co-
efficients a,re given by

Zp =dp V~

~ (' (y)eX(Xy( 0)+ X~*, (Ol) 1 (A6)

where V„ is the group volume. We have the fol-
lowing relationships between the coefficients:
Z~ = Z„-, where N is the antiquark representation,
BZO,/Bx=NZ„+NZ„-, or in general

Consider the SU(N) lattice gauge theory. We
denote representations by their dimension d~. The
representation can also be characterized in terms
of a set of N numbers f„.. . ,f„which determine P.
The character of the Pth representation is

ACKNOWLEDGMENTS

We thank all our colleagues at Ferrnilab for
useful discussions. We especially thank W. A.
Bardeen for his suggestion of this problem and
his continual support.

Z P d Z C(n-m)N, mN (AP)ex" )yi
m=0

where C~~''" is the Clebsch-Gordan coefficient for
finding the pth representation in the (N 8)"(3) (NS)(
product representation. The renormalized charge
ha, s the behavior

APPENDIX

In this Appendix, we list some of the useful
properties of the Fourier coefficients and the re-
normalized charge for the U(l) and SU(V) gauge
groups. First consider the U(1) group. The char-
acter for the Pth representation is given by

(A1)

goN
SU(N)

gp N PpQ (& 1

in@, N, g,a» 1.
(A8)

Now let N-~ keeping gp'N fixed and observe that
the ratios of Fourier coefficients are all of the
order of 1, Z~/ Zf(g, 'N) We find that.
g~(j()f-i) /2 Xg(j((r+ y) /2~ N(i)()'-1) /2 N(M+1) /2&



LATTICE GAUGE THEORIES AND THE CONTINUUM. . . 1093

which is also equal to Zy2, and s'Z, /»'
= 4N'Z~, . Now consider

Z
= 2N

Bx Z Z Z (A9)

Since the left-hand side is O(1/N) then the expres-
sion in the brackets is O(1/N'). Thus to leading
order in 1/N, Z„a,/Z, = (Z„/Z, )'. In general, if
O(d~ ) =O(d~, ) =O(N") then Z~ =Z~ =Z, (Z„/Z, )".
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