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The exploitation of unrenormalized canonical field equations and equal-time commutation relations is

generally not fruitful because of the need for infinite renormalization, The asymptotically free non-Abelian

gauge theories are much more benign in their ultraviolet behavior. Under certain smoothness assumptions,

canonical methods applied to the A'„(x)Ab(0) operator-product expansion are shown to lead to information on

the exact singularity structure of the theory. As a result, we show (1) that the unrenormalized gauge coupling

constant go(K) as a function of the cutoA' K has the behavior go(K)-(lnK) '", (2) how to renormalize
a" )& a (where a" is the unrenormalized gauge field), and (3) that the field-strength tensor
0"a "—3"a "+goa" )& a becomes proportional to F""=8"A' —FA" upon renormalization. These conclusions

agree with results obtained by the use of renormalization-group equations.

I. INTRODUCTION

The canonical formulation of quantum field the-
ory is based on the canonical field equations and
equal-time commutation relations satisfied by the
unrenormalized field operators. However, the
need to perform infinite renormalizations in per-
turbation theory completely destroys the utility
of these relations. The (finite) renormalized field
operators satisfy only very complicated field equa-
tions' and their products do not possess finite
equal-time limits, ' and the singular nature of the
equation increases with the order of perturbation
theory. In asymptotically free (AF) field theories,
one can fortunately go beyond perturbation theory
and exactly' calculate all of the renormalization
constants and counterterms. ~' The results are
always much less singular than in perturbation
theory, and are often finite or even vanishing. The
question to be studied in this paper is whether this
state of affairs can reinstate the usefulness of the
canonical formalism. %e shall argue that the an-
swer is affirmative.

The most physically interesting AF models' are
the non-Abelian gauge theories (NAGT's) of Yang
and Mills (YM) and their generalizations, ' and we
w'ill be primarily concerned with these in the pres-
ent paper. The canonical YM theories are particu-
larly beautiful, having local gauge invariance and
an elegant geometric interpretation. ' It is a pity
that much of this beauty is lost in the complicated
perturbation theory expansions, which require the
introduction of gauge-fixing terms and ghost fields. '
The "quasicanonical" approach we will adopt is an

attempt to resurrect some of the original simpli-
city of these theories.

In spite of its contradiction with perturbation
theory, the canonical formalism was actively
studied several years ago in connection with at-
tempts to explain the observed Bjorken scaling
behavior in electroproduction with a quantum field
theory. A purely canonical approach, which in-
corporated reducible scale invariance, was pro-
posed. "'" However, an explicit computational
scheme was lacking. The AF theories are struc-
turally quite similar to the quasicanonical ones,
but have the advantage of computability via ordinary
renormalized perturbation theory, as summed by
the renormalization group. It should be stressed
that there is at present absolutely no experimental
support for the physical relevance of these theories.
In particular, they shed no light on the observed
precocity of the scaling in electroproduction.
Nevertheless the possibilities they present for
understanding Bjorken scaling, quark confinement,
and related phenomena are sufficient motivation
for their intensive study.

For application to electroproduction, one must
determine how to renormalize the composite oper-
ators gy„D~g, G~„G~", etc. , which occur in the
light-cone operator-product expansion of the pro-
duct of electromagnetic currents. " Here

G'„, =s„a'„—s„a'„+g,f'"a„a,',
with a'„ the (unrenormalized) NA gauge fields
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g, (IC) -(In@)-'~' (1.4)

of the unrenormalized coupling constant for large
cutoff K, (2) the finiteness of the product

(a = 1, . . . , N for an N-dimensional gauge group)

g the coupled spinor fields, and T' the spinor
representation matrices. A detailed discussion of
this mixing problem is given in Ref. 13.

The fundamental gauge, ghost, and spinor fields
A'„, C'„and g are the unique ones of their dimen-
sions (1, 1, —,') and quantum numbers and so are
multiplicatively renormalizable. The composite
operators

APAP) gPPC lCQE ~ ~ ~

etc. of dimension 2 are the next simplest set. The
study of these operators, which all can mix upon
renormalization, will be the main subject of this
paper. The complete set of operators {0"8)which
can mix with (1.3) is obtained from (1.3) by con-
traction with all possible Lorentz-invariant ma-
trices L"„'8 (constructed out of metric tensors g ~)
and all possible gauge-group-invariant matrices
M,'~~ (constructed out of 5'~, structure constants
f'~~, etc.).'~ In spite of the fact that these opera-
tors do not have the physical significance of those
mentioned in the preceding paragraph, their study
is still interesting. Their low dimension renders
the mixing problem relatively simple and trans-
parent, and the field product occurs in (1.2) and
also occurs when the YM field equations are sub-
jected to an R transformation A'„(x)-A'„(x) +r~&."
It is in fact this latter circumstance which moti-
vated our interest in this problem.

Because the models we consider are AF, the
specified renormalization problem is exactly
soluble via renormalization-group (RG) techniques.
We have carried out the analysis for the general
SU(n) gauge group elsewhere. " Our purpose here
is to see how much can be deduced from canonical
methods alone. Our knowledge of the exact singu-
larity structure of the operators (1.3) will enable
us to determine the correctness of the quasicanoni-
cal formalism in these models. It will be seen
that all of our results support the validity of this
formalism. However, all of the information pro-
vided by the RG analysis will not be obtained. Our
analysis will nevertheless provide insights into the
physical bases of AF field theories.

The most interesting specific results we obtain
are the following: (1) the behavior

1 Z3
E~~p

—~ (K),
l

(1.6)

which occurs in the operator-product expansion
(OPE)

A'(x)A'(0) —E'" (x) s'A + ~ ~

II. OPERATOR MIXING

We consider a set of unrenormalized operators
U„ i = 1, . . . , N, which are mixed upon renormali-
zation, as described by the NxN renormalization
constant matrix Z. If Z„. is the i,j matrix element
of Z, the renormalized operators are given by

N

R) = Q U)(Z ),.( (2.1)

or

U~ =JR(ZU . (2 2)

Equation (2.1) should be written more precisely as

R, (x) =Iim P U, (x;R')(Z '(R'))„-,
K

(2.3)

where we have now exhibited the spacetime de-
pendence of R, and U~ and the cutoff dependence
of U,. and Z. R, is independent of the cutoff mass
K for K'-~. The U, are not multiplicatively re-
normalized into the R„but the matrix Vwhich
diagonalizes Z

VZ V =z =diag(z„. . . ,z„), (2.4)

can be used to construct the linear combinations

The result (1.4) is a well-known consequence of
the RG analysis' and we have previously" deduced
the finiteness of (1.5) by RG methods. In the pres-
ent paper, these results are deduced without use of
the RG.

We review in Sec. II the operator-mixing form-
alism in a general context. In Sec. III we illustrate
the quasicanonical approach in the context of Xp
theory. Section IV contains a summary of some
field-theoretic aspects of NAGT's, and it also
serves to fix the notation. In Sec. V we apply the
quasicanonical method to NAGT's by evaluating
the [a, a] commutator, and deducing a quasicanoni-
cal OPE. In Sec. VI we deduce some consequences
of the quasicanonical OPE. In Sec. VII we con-
clude the paper with a summary of our results.

f' 'A A'
Z p u ~

3
(1.5) Rf =Q V)R~, Uf =Q V()U;, (2.5)

which occurs in the renormalized version of (1.2),
and (3) a lower bound for the singularity E„„z,(x),
namely

which are multiplicatively related:

R,' =ziU' .i i i (2.6)
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In finite orders of perturbation theory, or ex-
actly in AF theories, one has the form

Z(K2} =e("((—'C
where

t =In(K'/(('),

(2.7}

(2 8)

with p,
' the renormalization mass parameter. Here

d is the NXN effective anomalous dimension ma-
trix and C is the N x N mixing matrix. Z can be
made more explicit in terms of the projection
operators P, and eigenvalues d„ l =1, . . . , N,
which decompose d:

(2.19)A, (x) B,(0) ~ QR((x)Z(((1/x') .

It is shown in Ref. 16 that (2.19) is in fact the cor-
rect OPE. If

Z 'Z . '-t'&
as

then, with (2.12), (2.19) gives

(2.20)

independent but rather has singularities for K'
given by Z(K'). The point-separated product
A((x) B, (0), on the other hand, ts cutoff independent
for K'-~ but has singularities for x 0. If the
K2-~ and x-0 limits commute, then (2.17} can be
recast as the QPE"

d=gd(P( (2 9)
A((x)B;(0) ~ gp (+ (QR((x)(P(C)((, (2.21)

P(P(=6((I & QP( = I ~ (2.10) with

p =In(-x'((') . (2.22)

By using

e(lnt)& ~ (1nt)4 f p

It is worthwhile, for later reference, to illus-
trate the above for the case N =2. We take d to be
triangular so that (2.9) becomes

=Qt (P, ,

(2.7) becomes

z=gt'(p, c,

so that (2.2) takes on the form

U( = Q t"Q R((P( C}(( .

(2.11)

(2.12)

(2.13)

Wd= =QP, +VP, ,
0 v

where the projection matrices are

(0—
0 0 0 1

Now (2.13) becomes

U( = t"Q R~(P, C}((+t" QR((P2C)((

(2.23)

(2.24)

The leading divergence of U& for K'-~ is thus

given by the largest eigenvalue d~ of d:
=t R] Cj+ C2] +tts V

Q V
R, +R, C, ] .

Q —V

U((x&K ) = t &JR((PI,C}(( . (2.14)
(2.25)

Of special interest is the case u = v of equal eigen-
values. Then (2.25) becomes'~

We will be interested in the cases where U, is
the product of unrenormalized fields a&, b&,

U( =t "(R(C2((e In t+R(C((+R2C2() . (2.26)

U, (x) =a, (x) b((x) . (2.15}

- j. 1
A] =Z~ a], 8] =Za b],

(2.2) becomes

(2.16)

Then in terms of the corresponding renormalized
fields

If t were K'/((' instead of In(K'/(('), (2.26) would
define a two-dimensional reducible but not com-
pletely reducible representation of the dilatation
group. Such representations were previously dis-
cussed in detail. '9'0 When t is (2.8), (2.26) de-
fines instead the "effective" version of the concept.
As in Ref. 10, E(I. (2.26) can be inverted to give

A, (x) B,(x}= QR, (x)Z, ,(K'), (2.17) R, =lim Ug

o C»up" ln p

where

(2.18)ZfgZfgZQZae
Note that although (2.16) are cutoff independent,
the local product (2.17) is not in general cutoff

= lim U2

«~o C»wp"lnp ' (2.27)

R, =IIm(U, R,C»(cp"Inp, -R-,C»p")/C»p",
«~0

where we have reverted to x space, using (2.22).
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III. QUASICANONICAL APPROACH

In this section we shall motivate and illustrate
our quasicanonical approach with the study of the
renormalization of composite operators in scalar
field theories. Our discussion will be notationally
simpler and more transparent than the correspond-
ing gauge theory analysis which will be given in the
following sections. However, the greater com-
plexity of the NAGT's will give rise to much
stronger results.

We consider first a renormalized massless
scalar field (t)(x), which is assumed to satisfy
the field equation

j(x)=-lim jr(x)

is a renormalized current operator. In finite
orders of perturbation theory, and exactly in AF
theories, '" one has the form

o, (K) =(y, [ln(K/p, ')]'(, i =1,2 (3 6)

for constants g„7, " In these theories, g, =Z, '.
Equations (3.1), (3.3), and (3.4) imply the fixed-

K short-distance (SD) expansion"

y, (x)y, (0)„„,o,(K) &, (x) I+a,(K) I', (x)j(o)

+B (K; X0), (3.6)

(3.1)

for some finite local operator source Z(x). It is
convenient to introduce a regularization, symbol-
ized by a cutoff parameter K, so that

y(x) =lim yx(x),

1 1
~, (x) =

2 ~2 )o~~

I', (x)=, In(-x'+iex, )16m2

have discontinuities ib, =- 6+ -6, i T.'-=1"+—I',
which satisfy

(3.'l)

and similarly for the other renormalized operators
in the theory. We also assume that the typical
equal-time commutation relations

[(t)x(x), jx(0)]5(x, ) =o,(K) i 6'( )x, (3.3)

[&,(x), y, (0)]6(x.) =o (K)ijr(X}6'(x)

are valid. Here the a&(K) are constants, perhaps
divergent for K-~, and

&(x) 1„,=, =6'(x), I''(x) I„,=, =b'(x), (3 6)

and the remainder R (K;x, 0) is less singular than

(lnx) in x. Suppose now that the theory is suffi-
ciently smooth that the x-0 and E-~ limits com-
mute in the sense that the K-~ limit of (3.i)) gives
the correct x-0 behavior after removal o& the
cutoff urhen the substitution Kt I/xt is made.
Then

1
(t)(x)p(0) ~ o,(-lnx'p, ')'& n( )XI+a,(-lnx'p, ')'21",(x)j(0)+If —,;x, 0

',(-)n. 'p, ) (,) g(,'(-In''g )' ')(0) R,

(3 9)

oI1=a1/«') o2=o2/16&'. (3.10)

where

if we suppose further that 8 in (3.9) is no more
singular than the exhibited term (Inx')"", we
learn how to renormalize the composite operator

f2

(t)(x) (t)(0) o(l nx')' ) t,)(-x)f
x' 0 o,(inx')'2 r, (x)

More formally, this can be written

j =p (t) =lim p (K)Q„

tion which appears in (3.11). The assumptions we
made in order to deduce (3.11) will be seen to be
valid in AF theories.

If, instead of the form (3.4), we have

[i,(x), y, (0)] 6(x, ) =o,(Z) ty, '(0) 6'(x), (3.14)

then (3.6) is replaced by

y, (x) y, (0)„„,o,(K)&,(x)f+o,(K)r, (x)y '(0} tt.

(3.16)

Now, if the above smoothness assumptions are
correct, we can deduce as a consistency condition
that

(lllx p, ) &(111x p } = coIlst. ,
p((() =g, (ln)'( ) '(', —), (3.13) ol

and we have not indicated the c-number subtrac- (3.1'l)
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but we have not learned how to renormalize p'.
The NAGT's will be seen to be sufficiently more
intricate than the above one so that we will be able
to deduce the analogs of both (3.11) and (3.16).

In practice, the source will have the form

~r =&4(K) 4'x'+' ' '

and (3.4) will be evaluated using (3.3},

(3.18)

[J'(x), P(0)] 5(x, ) = 3o,(K) o,(K) y
' i6'(x), (3.19)

so that

o,(K) =3o,(K)a,(K), v, =7,+7, . (3.20)

This procedure requires the further assumption
that equal-time and K ~ limits can be inter-
changed. In previous investigations, this assump-
tion was found to be sometimes valid and some-
times not. ' We will see that the assumption is
valid in AF theories.

The smoothness assumptions encountered above
are often not valid in renormalized perturbation
theory, probably because the o, (K) are too singu-
lar, e.g. , o,(K) -g'"(InK)" in 2nth order. For ex-
ample, in Xp4 theory one would find

y, (x) y,(0),~,(x)I - S.,r, (x) 4,'(x) +R, ,

k(x)-p'[k(p 'x)+lnpj(p 'x)] .

(3.2 5)

(3.26)

(3.27}

j(x) =Z 4 '(x), k(x) = 4'(x) -Z-'j(x),
for the renormalized operators with

(3.29)

Z '(K) = 1—,lnK . (3.30)

The representations (3.29) are precisely the same
as (2.27) with the identifications

Here1j, k) constitute a two-dimensional, not
completely reducible, representation of the di-
latation group. They exactly correspond to the re-
normalized operators $R„R,), encountered at the
end of Sec. II, which mix according to (2.26} and
which have equal (vanishing) anomalous dimen-
sions (u =v =0). The relations (3.24) imply the OPE

e)x)e(0),&,(x)) () —
4 . Inx }j(0)'k(0),

(3.28)

and the consequent expressions (ignoring the c-
number subtraction)

(3.21) Ri =g~ R2 =&~ U (3.31)

X,(K) -(InK)-', (3.22)

where pp is the unrenormalized field and A. p is the
unrenormalized coupling constant. If R p were

«const', '(0}, this would imply that

@=0, u) =iX/4w', C„=C„=l.
To illustrate how our arguments work in this

model, we replace the third commutator in (3.24)
by

which is wrong in perturbation theory, where [i(x), y(0)]6(x, ) =Z4'-6'(x), (3.32)

(3.23)

)t) =XJ',

[y(x), j(0}]6(x, ) =f6'(x),

[J'(x), y(0)] 6(x, ) =j(0) 6'(x)

(3.24)

are not consistent with conventional irreducible
scale invariance but require reducible scale in-
variance":

~,(K) =P X'" [c„(lnK)"+ ] .
n=0

The behavior of (3.23) is presumably just too
singular for finite n. But can the sum in (3.23)
be less singular? For positive renormalized
coupling constant X&0, this is not known. How-

ever, for A, &0 the theory is AF4 and then one ob-
tains precisely (3.22). This suggests that our
assumptions are valid for the exact AFT&0 the-
ory. The YM theories will be seen to behave
similarly.

Our final illustrative example will be an exactly
scale-invariant model. "'" The assumed basic
equations

with Z unknown and Z P' not assumed to be finite.
We can then deduce the OPE

y(x) y(0) . 4, (Inx')Zy'+R, (3.33)

IV. NON-ABELIAN GAUGE THEORIES

In this section we review some field-theoretic
apparatus used in studying non-Abelian gauge the-
ories (NAGT's). The classical theory is specified
by

Z.)„„„)(x) = ——,
' G'„„(x)G,"'(x), (4.1)

and conclude from consistency that Z -[(-ix/4))')
x (h)x')] '. According to (3.30), this conclusion
is correct. We note that we have not been able to
deduce the finiteness of Zp' and we recall that the
equal-time and K-~ limits often do not commute
in this model. ' The YM models, because of their
greater complexity and less singular behaviors,
are nicer in both of these aspects.
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where

G'„,(x) = s&a', (x) —8, a&(x)+ g, f '~'a&(x) a', (x),

P

0= 6"~"+ &' gf"'A". (x) S„C'(x)
2

(4.15)

1

p

The ETCR's are

(4 4)

6(x'-y') [G,"(x),a,'(y)] =i6"g"6'(x-y), (4.5)

16(x'-y') s'a, (x),a,'(y) =i6"6'(x-y).
0

(4.8)

The Lagrangian (4.3) also gives the field equa-
tions

0 =[6"6"+g, f"'a.'(x})G'„, (x)

a„s ~ a, (x)+g, f"'[s„c',(x)]c',(x), (4.7)
Qp

[6., 6" +g, f"'a„"(x)]s„c',(x) =0, (4.8)

s„[6., 6" +g,f"a". (x)]c', (x) =0. (4.9)

We always use lower-case letters to denote the
unrenormalized fields, and use an index 0 to de-
note unrenormalized parameters. Renormalized
fields are denoted by capital letters. Thus,

a& =Z, '/'~„,
l/'C =1 23 i&

(4.10)

(4.11)

~l
g p Z 3/2

3
(4.12)

(4.13)Qp =Z3Q ~

The field equations (4.7)-(4.9) in terms of re-
normalized quantities become

0= 6"s" + 'gf"'A,"(x}—
Z3

x spA,'(x) —s„A'(x)+ 'gf"4A'„(x)A', (x)—
3

1 Zs"s A'(x)+ ~gf"'s"C', (x)C', (x),
3 3

(4.14)

(4.2}

and f'~' are the group-theoretic structure con-
stants. For second quantization, a gauge-fixing
term and the attendant ghost fields are admitted,
and the Lagrangian is then

1
~( ) =~....;... (x) —, [s'(x)]'

2Qp

+s„c',(x) [6"s"+g, f-'a'„(x)]c',(x), (4.3)

where o, is the (unrenormalized) gauge param-
eter, and c, and c2 are anticommuting scalar ghost
fields. It is then possible to write down canonical
equal-time commutation relations (ETCR's) by
identifying the canonically conjugate momenta to
a'„(x) to be

0=s~ 6"s"+ g gf"'A,"(x) C', (x).
3

(4.16)

RG techniques sum up the perturbation series
in the ultraviolet limit for asymptotically free
NAGT's. The behavior of the combination 2, /Z,
of renormalization constants in the K ~ limit is
then known from such analyses. ' The result is
that

lim ' (K) =0.
K ~oo Z3

(4.17)

+E"' (x) S'A'+ I' ""(x) C'C'.
(4.18)

In Ref. 16, we evaluated the singular functions on
the right-hand side lowest nontrivial order in per-
turbation theory, and used the result as input to the
RG summation. Up to technical details, the sum-
mation does not present any more difficulty. The
true singularities of (4.18) are thus exactly know-
able.

V. QUASICANONICAL METHODS FOR NON-ABELIAN

GAUGE THEORIES

In this section we shall use the quasicanonical
methods developed in Sec. III for the case of YM
theories. Of particular interest is the behavior
of AP(x)A„"(y) at short distance. The quasicanoni-
cal method incorporates information from the
ETCR's and the field equations, and can be used
to infer how to renormalize the composite opera-
tor involved.

To proceed we shall first write down the basic
canonical field ETCR's. The canonical momentum
conjugate to the YM field a& is as given by Eq.
(4.4),

a a 1 aXwu-=- G.u
— gpss~, a

Qp

and satisfies

(5.1)

6(x'-y') [a'„(x),w„'(y)] =+ig„„6"6'(x -y), (5.2)

Qn the other hand, the operator products A&(x)A~(x)
are defined with some regularization K or with
separated points. The singularities in the K
or the x-0 limit have also been studied by RG
techniques. " The operator product A'„(x)A„'(0)
possesses an expansion in terms of all operators
with the same quantum numbers, and for dimen-
sion-2 operators there are three types: (1):AA:,
(2) sA, (3):C,C,:. Thus the expansion takes the
form

A'(x)A'„(0) D""(x) A'A;.
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and so after some rearrangement,

5(x'-y') [a', (x), d', (y)] = i-n, 5"5'(x -y), (5.3)

5(x'-y') [a', (x), ab'(y)] = i-g, d5" 5'(x-y), (5.4)

5(x'-y'} [a'; (x),a,' (y)] = 2ig-, f"'a', g„5'(» -y),
(5.5)

5(x'-y') [ac(x), abi (y)] = i(-n, 1)—5"s,5'(x -y)

in, g-, f"'a', 5a(x -y),

@Nb
= Qicb = (n 2)go f aog; (5.11b)

X =@+8
y (5.12)

Qi'ib =gaf [ c( il'yb+ igib) — gid b] (5 llc}
It is amusing to note some consistency conditions

that have to be satisfied by the ETCH's (5.8)-(5.11).
We start for example from Eq. (5.6) for the ETC
[a,d]. We define

5(x'-y') [a', (x), a', (y)] =0.
(5 6)

(5.7)

g=Q —Zy

and differentiate (5.6) with respect to ub to get

Pab — n g bf beef bde ac ad

Oab — n g 2f acef badeead

Pab g bfacefbde (ac Pk 4acad )g

(5.9b)

(5.9c)

+g 2 (n fbeef bde fabef cde +fedef bee) ac ad .

(5.9d)

Pab n g fabcabac (5.10a)

(5.10b)

(5.10c)

P" =gcf [(no 2}~bad+ S&aic & «i] ~

(5.10d}

gab 2 g fabcac (5.11a)

To learn how to renormalize A, &A~ ere need the
logarithmic singularity in the OPE aa& (x) ab (y), and

this will be inferred from the commutator [a, it].
We distinguish three kinds of (q-number) contribu-
tions to the commutator: (1) terms bilinear in a,
(2) terms involving one derivative of a, (3) terms
arith derivatives of 5 functions. Thus, ere ferrite

5(x'-y') [d'„(x),d'„(y)] =io„"„(x)5'(x -y)
+iP'„', (x) 5'(x -y)
+i qp b(») ab 5'(x -y),

(5.8)

and by the use of (5.3)-(5.7) and the field equation
(4.7), we have after a very tedious calculation

5(»'-y'), „[a',(x),ai(y)] =-bno g.f"a'i(») 5'(» -y) .

(5.13)
Now the left side (5.13} is just

5(x'-y') [a',(x), abi(y)] = 5(x'- y') [a',(x), a', (y)]
0

+ 5(x'-y') [a',(x), db, (y)],

(5.14)
and making use of (5.8}, we have

5(x'-y') [d;(x), d', (y)] = —5(x'- y') [abi{y),a', (x)]

= —iO', ;(y) 5'(x -y)

-iP', ;(y) 5'(x -y)
—iq,.",,(y) 8"„5'(x—y)

= ip', ;(x) 5'(x -y)
-iPb, ;(x) 5'(X -y)
+ iP",„(x)sb 5'(x —y)

+ i [Sb„q,b b(x)a] 5'(x —y) .
(5.15)

Thus, from (5.13), (5.14), and (5.15) we must
have equality for the coefficients of 5 {x-y}:

in, g,f"a-', (x) =i([o;,'(x) 0,'i(x)]-
+[P'„'(x) -P,'i(x)]

+ Sb q,b;b(x)) . (5.16)

We can easily check the correctness of (5.16) by
substituting in (5.9b), (5.9c), (5.10b), (5.10c), and

(5.11b) to get the right-hand side of (5.16) to be

right-hand side =i( g, f'b'[n, &,a-';+ (B,a', }(2 —n, )]+(n, -2)g,f"' aS]c
=inc ga f b sea', =left-hand side. (5.17)

Similar consistency conditions can be checked for other components of the ETC.
Having thus checked the consistency of the commutation relations (5.8)-(5.11), we proceed to deduce

their implications on the form of the a& (x) a, (y) OPE. This OPE is restricted by the usual symmetry prop-
erties. There can be seven independent forms for operators bilinear in a, and three forms for single de-
rivatives of a:
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a& (x) ap (y) = [e',6' a&(u) a„(u) I' (z) +cop'4 g&„a'„(u)a4 "(u) I' (z)+ e',6'4
g&, a'(u) a68(u) 6"8(z)

+cop a'„(u)a ~(u)n+»(z) +e', ' a'„(u)as(u)G+»(z)

+cop~a'„(u) a (u) 6„(z)+e'," a„'(u) a'„(u) 6+„"(z)]

+ [c~ (Spa (u) S„ao (u)) I (z) +co (g& SSa (u) g„&Sap (u)) 6 (z)

+c',"(g„sa 8(u) -g„s„aS(u)}n,"'(z)],
where, as in (5.12),

x =Q+z
p

P =8-Z
q

(5.18)

(5.19)

I;(z)=, in(-z'+iezo),
16m2

(5.20)

+ ' 8Z z -iezp '

)
Z Z Z Z

n S y 6

4w' (z'-iezo)'

The singular functions (5.20)-(5.22) are chosen to give the following limits at equal times (z, =0):

(5.21)

(5.22)

d z I'(z p=0} =1, (5.23)

~01
d'z &nS (Z o

= 0) =4gnp gzo gn8 s (5.24)

~oo

d'z G„Sy6(zp=0) =24gnogBogyog6o 4(gnogBogy6~gaogyog86+gaogpogSy

+gBogyo ga6+g Bog 6og ny+gyog6o g nS)+(gnSgy6+g ayg Sa+g apl Sy} ~

(5.25)

where the discontinuities are

iI'=F -F
ib =6+ -6
iG =G+-G

(5.26)

A slight complication arises in the determination
of the covariant tensor singularities from the ETC.
Suppose that

[a'„(x),a'„(y)] = I (z) go'„(u) . (5.27)

Then three differentiations with respect to time
zo would give the operator S&~„ in terms of the ETC,

(8, '[a'„(x),a', (y)]),T =5'(x —y) 8'„'„(u), (5.28)

while canonical calculation above furnishes the
quantity

etc. It follows from the chain rule that

8,,'8$=8$-38$+38$ -8$ .

Next we note that

(5.31)

(5.32)

(5.33)

and so it follows by repeated differentiations of
(5.32)-(5.33) that

0=8$+26 +8$ (5.34)

0 =68 +2dlg +QS . (5.35)

Equations (5.34) and (5.35) allow us to eliminate
8$ and 8(B in (5.31) to obtain

C'„'„(z,y)
-=[&'„(z),a'„(y)1„.

We adopt the notation

[a'„(z),a', (y)], T=- 866,

[d'„(z},a'„(y)], T=- Qe,

(5.29)

(5.30)

4([&=o(&)&'' (y),]so7 [fi„(x—)d'' (y),]z„T) .
(5.36)

We can simplify (5.36) further by noting that
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[s2(x) 8l(y}]ET=-[dl(y},&2(x)]ET

= —C'„'„(y,x) .
Thus we obtain finally

5'(x —y)8 „(u) = —4[C„„(x,y)+C'„'„(y,x)].

81=—[ 2 Qch1+ a (Qc 2)h1]ll (bh2+ 12h2} )

(5.39a)

1 .s
e2 12 ( +0}hl 2ahb

~2= (a+ 12 lxo}h1+ ~2ah21

j. se, =-—12(1+a,)h', + —„h;,
82 =

2a h2 12 (l22 2}h1

(5.39b)

(5.39c)

(5.39d)

(5.39e)

e, =- [-—,
' (ac —2)h;+-,' ach, ]- (—,'h, ——,', h', },

(5.39f)

e, = - [-.' (n, + 1)h', ,'h, ]- (-,',-h, ,'h—,), -(-5.39g)

)abed g 2faoef bee (5.40a)

)abed ~g 2( + faoefbde+fabafode fedefbce)

(5.40b)

Now we can take the ET limit of (5.18}and com-
pare coefficients with (5.8)-(5.11) to determine
the tensors e„.. . j evjc„caje,;

the unrenormalized basic field equations and
ETCH's. It is significant that the independent
forms e„.. . , e„e„c„csare uniquely determined
by solving a set of coupled linear equations which
follow from identifying coefficients from the ETC's
(5.8}-(5.11). This means that every one of these
independent coefficients e,j.. . j e,jc,j c,j c, is af-
fected by the particular form taken by the ETC's
as follows from the canonical quantum field theory
of the Lagrangian (4.3). Were this not the case,
say if some of them were indeterminate unknowns

in the set of coupled linear equations, those coef-
ficients would be free from any restrictions im-
posed by the set of ETC's.

VI. QUASICANONICAL DETERMINATION OF OPERATOR-

PRODUCT SINGULARITIES

We now make use of the fixed-E SD expansion
(5.12) to study the SD singularity structure of the
A.'„(x)A'„(y) operator product. Omitting Lorentz-
internal indices, we schematically write (5.12) as

a(x) a(0) = ggc' (a a) 2+'JJgc(sa)$

+ igc2 (aa) + g gc(ea) +ft, (6.1)

where 8 =lnx', I,', ag denote terms in (5.12) with
the coefficient P+ yroportional to lnx', I;, 'JJ denote
those with coefficients with only dix ection-depen-
dent singularities, and R denotes the remainder
that is no more singular in the K'-1/x2 ~ limit
than the exhibited terms. By making a wave-
function renormalization this is just equivalent to

h' =-,'(h+h),

with

g c544 I 054c
j

(5.41)

(5.42)

A(x)A(0) . =, Kgb'(AA) 2

+ gg, (sA}z,-'/2a

+ I,'gc'(AA) + 7Igc(SA) Za '/'

(6 2)

a(12o+ 5)gof

(~ 1)g fabc

cb-+ a( 2
- }gof"'

(5.43a)

(5.43b)

(5.43c)

Equations (5.18) and (5.39)-(5.43) give us then
the form of the OPE A'„(x}A„'(y) that follows from

On the other hand, general principles' call for
the existence of an OPE in terms of finite oyera-
tors for A(x)A(0):

A(x)A(0). =, ((:AA:)ZD+q(eA)R'. (6.3)

We substitute the expansion (6.3) for AA on both
sides of (6.2) to obtain

.AeAf. gD~abef) sAe (g abed) .AeAf. (g agD+1+abcd~cdef +g 2gDccabodfcdef)

SAe ( a@2+1~abed ode +g g 1/2 gc}fabc +g 2gbcCabcd qcde +g g 1/2 &/abc )

+R'~ Z

We compare the singular coefficients of the finite
operators on both sides of (6.4). The:AA: coef-
ficients give the relation g 2@~] (6.6)

with =- meaning here "as singular as." From (6.5)
it follows that necessarily

+ 2g txabef ~cdfff ~abgf (6.5} The equality sign cannot be inferred in such con-
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siderations because of the possible presence of R,
as mentioned in Sec. III. The comparison of the
BA coefficients yields

2 ~6+I ~ffbcd cde + Z -I/2gqfflbe gh bafbe

2') 2'~'Z -'~'
3

Z'&Z, /Z, .

(6.10)

(6.11)

Using the information (6.5) in (6.6) we obtain

(6.7}

@6)g Z I/2g

Using (6.5) and recalling that@, =Z,Z, '/'g, we

get

(6.9)

gb crabcd cde +g Z -1/agrgabe gb~abe (6 8}

For (6.7) to hold the singularity gcz, '/'ll obvious-
ly cannot be greater than Z~, and so we have the
bound

So far our quasicanonical methods have yielded the
estimates (6.5), (6.9), and (6.10) of renormali-
zation constants much the same as in the simpler
A, $4 theory of Sec. III. However, the occurence of
two finite operators:AA: and eA in the expansion
enables us to conclude more about the AA OPE.

We consider again Eq. (6.2). 'JJ'b' from our cal-
culations is just proportional to the antisymmetricf"'. We therefore have two equations from (6.2),
according to whether the a, b indices are sym-
metrized or antisymmetrized:

Symmetrize: [A(x)A(0)] = Zdgc (AA)Z+ Xdg, (AA)+R Z, ', (6.12)

Antisymmetrize: [A(x)A(0)]" = Z"gc (AA)Z+'ggc(aA) ' '2 +X"gc (AA)+'Jjgc(aA)z, ' +R"Z, '.
(6.13)

Nothing interesting arises from the symmetrized relation (6.11). However, from (6.12) a little rearrange-
ment gives (putting back in the internal indices)

gabe aAc a ([Aa(x)Ab(0)]A ct, A g 2AcAd g et, A g 2AcAd +cgabcg aAcZ -1/a)
0

(6.14)

1
r (2b InK)'/'(K) (6.16)

and "A" again means antisymmetrization with re-
spect to a and b. From (6.14) we can immediately
conclude that

ZI' f'"A'A'= aA
Z3

(6.17)

and is therefore a finite operator. It is particu-
larly interesting to note that the field intensity
G'„v in NAGT's is linear in the gauge fields:

Gc. =ac:-a. 'c+gcf"'&~:

=Z d 8 A —g A~+gf ~b~ Zl
3 P V V P Z ]I v

3

where = again means "as singular as." Omitting
terms smaller by a logarithm, we get

ZI A
&gabe aAc & AcAd 5ac 5bd + etched (6 15)

Z3 5 y

where we need'

the RG analysis, but it is good to see it emerge in
such a simple way here.

VII. CONCLUSION

It is interesting to observe the relationship of
the ETC calculations to the calculation of singular
functions in (4.18) in low orders performed in Ref.
16. In (5.18), the operator products on the right
are at coincident spacetime points, and would have
singularities beyond the free theory. But on the
level of order-by-order (without summing) pertur-
bation theory, the (e,j are already of second order
and so up to ga, the a(u) a(u) operator products are
effectively free. In (4.18) the:AA: are necessari-
ly singularity-free, so that up to second order the
singular contribution to D again multiplies an ef-
fectively free:AA:. Thus the computations for (D)
in perturbation theory performed elsewhere ex-
actly coincide with the quasicanonical evaluation of
the fe,.}carried out here, provided that the usual
identification of

=Z '/'(a A'-a A ). (6.18)
K'-1/x' (7 1)

The important result (6.17) is in full agreement
with the results of the RG analysis. " The behavior
(6.16) for g,(K) is of course also a consequence of

is made. The agreement with the perturbative
calculation serves as an invaluable check on the
veracity of our quasicanonical evaluation.

The way to go beyond perturbation theory is quite
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different in the two approaches. The BG approach
takes the second-order calculation and uses it as
input to the BG to obtain the full behavior of the
singular coefficient. The quasicanonical approach
takes the SD expansion (5.18}as an exact conse-
quence of the formal field equations and deduces
information inaccessible by finite-order pertur-
bation theory. This abbreviated approach cannot
hope to replace the HG analysis, but its relative
success indicates that AF theories are even more
benign in their ultraviolet (UV} behavior than is

generally expected. The other side of the coin is
that this rather simple quasicanonical method con-
tinues to work amazingly w'ell, and might merit
further study.
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