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We continue an analysis of two simple gauge theory models using point transformations rather than gauge
transformations. The renormalization constants are examined directly in two gauges, the renormalization
(Landau) and unitary gauges. Our result is that the individual coupling-constant renormalizations are identical
when calculated in each of the above two gauges, although the wave-function and proper vertex

renormalizations differ.

I. INTRODUCTION

In two previous papers,' which we denote by I
and II, a new approach to the treatment of unified
gauge theory models was introduced. In this ap-
proach one’s attention is focused on two gauges
only: one a specific renormalization gauge (in
practice the Landau gauge) and the other the uni-
tary gauge. In place of the group of gauge trans-
formations which connect the different gauges used
in the conventional treatments, the R and U gauges
are connected by a point transformation of fields.
This fact was used to give a formal proof of the
renormalizability of the unitary-gauge Lagrangian
to all orders. The approach was illustrated by
means of two simple models, one Abelian and the
other non-Abelian. In each of the models, the
equality of the S-matrix elements constructed in
the two gauges was demonstrated by means of an
explicit calculation to fourth order.

For the calculations the canonical formalism was
used rather than a dispersion approach,? as it al-
lowed the insertion of renormalization counter-
terms in the Lagrangian in a simple gauge-invari-
ant manner, and the calculation from first princi-
ples of the renormalization constants in each
gauge, in addition to the Feynman diagrams with
structure. The calculation itself was refined to
the point where it was purely graphical, and one
could tell by inspection that the S-matrix elements
were identical, and how the divergences in the uni-
tary gauge and the ghosts in the renormalization
gauge (in the non-Abelian model) cancel in the
evaluation of a physical amplitude.

The advantage of using the approach advocated
in I and II lies in the direct comparison of the uni-
tary gauge and one choice of renormalization gauge,
rather than treating the unitary gauge as a limiting
case. Thus we can derive relations between renor-
malization constants, for example, by working di-
rectly in the unitary gauge, as well as in a renor-
malization gauge. The disadvantage is that we lose
the possibility of exploiting gauge dependence, as
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done if the £ parameter is introduced when fixing
the gauge.

In the treatment of I and II, not all of the renor-~
malization constants were explicitly taken into ac-
count. Only the mass renormalization constants
were considered, and it was shown that they were
exactly the same in the R and U gauges, to second-
order corrections. In other words, if the mass
counterterms were chosen to cancel the self-ener-
gies as calculated in one gauge, then the self-en-
ergies in the other gauge were automatically can-
celed. On the strength of this result the self-ener-
gy contributions to the fourth-order S-matrix ele-
ment were not considered, as they canceled out
anyway. However, the other renormalizations
needed at this level of perturbation theory, for ex-
ample the wave-function and coupling-constant re-
normalizations, were not explicitly exhibited. It
is known, for example, that certain of the wave-
function renormalization constants are gauge de-
pendent.®+*

From the calculations of I and II we see that the
unrenormalized (bare) S-matrix elements are the
same in the two gauges. What is not so evident,
because the wave-function and coupling-constant
renormalizations were not explicitly accounted for,
is that these calculations have as a result the
equality of the renormalized, or physical, S-ma-
trix elements in the two gauges.

It is the purpose of this paper to point out that,
while the wave-function and vertex renormalization
constants are separately different in the two gauges,
when combined together to form the renormaliza-
tions of the coupling constants (or charges) the
anomalous parts cancel so that the resulting con-
stants are identical in the two gauges, i.e., the
charge renormalization constants are gauge inde-
pendent. This result completes the treatment of I
and II by exhibiting explicitly the renormalization
properties of the wave functions and the coupling
constants.

For the purposes of demonstrating the results
we will examine the simpler of the two models
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considered, namely the Abelian model of I. The
analysis has also been carried out for the non-
Abelian model.® In this case no essentially new
features occur; the calculation is more cumber-
some, but the result follows nonetheless. In Sec.
II we review the formalism developed for the
Abelian model in I. In Sec. III we attack the renor-
malization constants of the model, in perturbation
theory, and include the diagrammatic summaries
of the relevant calculations.

II. THE ABELIAN MODEL

In this section we will review some of the for-
malisms introduced in I for the Abelian model.
The model consists, initially, of a single vector-
meson field V,(x), with axial-vector couplings, a
fermion field y(x), and a scalar-pseudoscalar
complex doublet ¢(x)=,(x)+7¢,(x). The interac-
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tions are chosen invariant under a y,-type U(1)
group of local gauge transformations. We denote
the Yukawa coupling constant by g and the gauge
coupling by f. The scalar-field self-interaction
term is chosen to be of the Goldstone form.® After
applying the usual analysis of shifting the scalar
fields by a c-number amount, we find that the vec-
tor meson acquires a mass denoted by u, the fer-
mion acquires a mass given by », while one of

the scalar fields, ¢,, acquires a mass « and the
other remains massless. The parameters of the
theory are related by

f_8_
w 2m’ (1)
which follows from the analysis of the Goldstone

potential. The Lagrangian describing the model
then takes the form

£ (V: Y, ¢+m> —%[Fuu VP +3p2v? +$(iﬂ-m)¢+%!3u¢+2ifvu¢lz =f W5y —gP(d, = Tysd Y

E =

+UVY (3, ¢, +2fV, 0,) ——'g—<§%>2[l ¢i4+égﬂl¢l2¢1+(ggﬂ>z¢f1 . )

This Lagrangian is no longer invariant under the
original symmetry group; however, the effects of
the symmetry are still felt as we can write down
transformation laws under which £ is invariant,
called “broken” gauge transformations,’

P(x) = e 1Ay (x)

4>(x)Jrzgi-.e-zw«m[(Mx),r?]y (3)

Vo ()= V,(x)+A,,(x).

To introduce the point transformations we con-
centrate our attention on two gauges. As our re-
normalization (R) gauge we choose the Landau
gauge, in which the vector-meson field is purely
transverse, and our unitary gauge is chosen con-
ventionally as that in which the unphysical field
¢,(x) does not appear explicitly. If we use the
Stiickleberg form for the vector-meson field

1
V,(x)=U,(x)+-6,,(x),

® (4)
3'U,=0, 0O6=pd"vV,,

then we see that we can formally define the R gauge
by the condition

6=0
and the Ugauge by
$,=0. (5)

As in I, we choose as counterterms

-

5L (V, ¥, ¢+g7’> =b6my <1 +;‘%(¢1 - in%)) ¢

5k, — ok, L‘ m
T2 <2m o+

m
+%(-%6k1+%6k2)| 6+

4

2

- 306uU%. (6)

These are manifestly invariant under the “broken”
gauge transformations and provide mass counter-
terms om, 6y, 6k, and bk, for the fields y, U, ¢,,
and ¢,, respectively. The explicit charge renor-
malization terms included are not separately in-
variant.

We can now introduce the point transformation of
fields which relates the R and U gauges. To this
end let us denote the R-gauge fields by U, ¥, and
¢ and those in the U gauge by U, +(1/u)6,,, n, and
0. Then the Lagrangians are connected by the
point-equivalence result

m 1 m
Le(\U, ¢, +——>=L (U+—9, ,0+—>, (7
R( ¢, P g v m n g
where

w(x) = ei(f/u)ysetx)n(x) ,
®(x) +§=62i(//“)6(x) [o(x) +;_n:\ ,

and the Stuckleberg form of V, is used.
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It is necessary to take account of the fact that
the gauge function is a quantized field. We note
from the point transformation that the fields can-
not all consistently have zero vacuum expectation
values, as required of second-quantized fields. To
correct for this it was proposed in I to modify the
point transformation so that the fields may consis-
tently have zero vacuum expectation values. This
is achieved by considering in place of Egs. (8)

»(x):ei(f/u)yse(x) (x),
Y n 9)

m m
(ﬂ+—:fNWW“{?ﬂ+_]
¢ g ( g
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where
m <coszjf>=m. (10)

We see that this modification is equivalent to a
mass renormalization in the unitary gauge only,
and for this reason it is called an anomalous mass
renormalization. This renormalization plays an
important role in the calculations of this paper, as
well as those considered previously.

Combining all these points together we can write
the Lagrangian as

LV, 4, m)==5[F,, WP +3GT =M = f¥y)d - GU(d, — iy50,)0

. 2
—ilo, m2ifVynl? 4 bk, (o) (nlte it nz- Lo, (11)
2m 2
with the renormalization constant (or S-matrix element,
5 for that matter) under consideration. We consider
G=g (1 -——zl—> R the Feynman diagrams (and the corresponding
m

K,=—KkZ+0k, — Ok, ,
Ky =3 K* =30k, +3 Ok,

and in the U gauge,

m
”=¢1+E, (12)

while in the R gauge,
'V, =0, n=¢l+g’_-+i¢2. (13)

These equations define the model.

III. RENORMALIZATION CONSTANTS IN THE
ABELIAN MODEL

Let us now turn to the problem which is at the
heart of this paper, namely the comparison of the
renormalization constants in the two gauges. We
will show that, in general, the values of the wave-
function and vertex renormalizations are different
when calculated in the R and U gauges, but that
they combine to form gauge-independent coupling-
constant renormalizations.

In the derivation of this result we do not evaluate
any Feynman integrals; in other words, we do not
explicitly compute the various renormalization
constants in the different gauges and deduce the re-
sult. Rather we approach the problem from the
opposite point of view: We try to prove the result
without having to compute the constants, and as
such we use the graphical techniques introduced in
I and II. In the spirit of this approach we examine
the difference between the R and U gauge values of

Feynman integrals) which contribute, in either or
both of the gauges, and focus on the contributions
of each individual diagram to the overall difference
We reexpress and/or expand each term into a con-
venient form in which the contributing factors can
be reinterpreted as diagrams (we refer to this as
a A expansion later). For this purpose it was
necessary in I to introduce auxiliary vertices; we
shall not have to extend that list. When we com-
bine the A expansions of the various diagrams we
see that their sum is zero—thus giving us the re-
quired result.

As we do not need to evaluate explicitly any di-
vergent integral, we do not need to use a regulari-
zation prescription explicitly. However, to follow
the procedure outlined above we need to make use
of the invariance of the Feynman integrals under
translations in momentum space—this corre-
sponds to a relabeling of the momenta in any given
diagram. Any form of regularization which pre-
serves this symmetry property will suffice, and
we merely note that examples are known to exist.?

The Feynman rules which are needed for these
calculations are easily derived from the interaction
Hamiltonian (1). In deriving the interaction Hamil-
tonian from the Lagrangian (11), in the unitary
gauge, we must take note to include the Lee-Yang
(or Faddeev-Popov) logarithm term.® In Fig. 1 we
list those rules we need, as well as the auxiliary
vertices we use. We have normalized g/2m to
unity, for ease of calculation.

The couplings we consider to demonstrate the re-
sult are the physical trilinear couplings, i.e., the
trilinear couplings which occur in the U-gauge La-
grangian, namely the Jyo, PPV, V0, and 0® cou-
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FIG. 1. The Feynman rules for vertices and propaga-
tors in both unitary and renormalization gauges, calcu-
lated from the interaction Lagrangian, and the auxiliary
vertices which are used in the calculations.

plings. To examine the renormalization constants,
we look at all the one-loop corrections to these
vertices, with all external momenta on the mass
shell, after the self-energy contributions have
been subtracted. Since we are going to consider
the difference between U- and R -gauge contribu-
tions, we need only consider those diagrams which
are manifestly different in the two gauges. By
separating the one-particle-reducible and one-
particle-irreducible parts, we can glean informa-
tion about the vertex and wave-function renormal-
ization constants at the same time as studying

the charge renormalizations.

The calculations for the Jyo and YV couplings
are actually already included in paper I. However,
it is not obvious from the treatment given there
that the result follows; by regrouping the relevant
diagrams, and putting the external momenta on the
mass shell we see that the result follows immedi-
ately. This is done in Fig. 2, and one can see by
inspection how the cancellations occur. We see
that the wave-function renormalization constants
Z%9 and Z¥Y are gauge dependent, whereas 2"V is
gauge independent, and that both vertex constants
Z¥¥9 and Z¥% are also gauge dependent. By com-
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FIG. 2. Expansion of the diagrams contributing to the
renormalization of the ¥¥o and YV couplings, showing
explicitly that the renormalization, in each case, is in-
dependent of the choice of gauge.

bining, we see at once that the anomalous terms,
which denoted gauge dependence, cancel to give us
our result for these two cases.

The V20 and o vertices were not treated in I, as
there it was a fermion-fermion scattering process
which was considered and the corrections to these
vertices would not contribute until higher orders
were considered. The diagram summary is given
in Figs. 3 and 4. Again we see explicitly that the
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FIG. 3. Expansion of the diagrams contributing to the
renormalization of the V(,2 couplings, showing explicitly
that the renormalization, in each case, is independent
of the choice of gauge.
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FIG. 4. Expansion of the diagrams contributing to the
renormalization of the ¢® couplings, showing explicitly
that the renormalization, in each case, is independent
of the choice of gauge.
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wave-function and vertex renormalization contri-
butions are gauge dependent, but in the renormal-
ization of the charge cancellations occur to yield
a gauge-independent result. We notice in Fig. 3
the contribution of the anomalous mass renormal-
ization to the cancellation, in the final diagram,
while in Fig. 4, for the o® vertex, besides the
anomalous mass renormalization term, we see
also the contribution from the Lee-Yang §*(0)
logarithm term in canceling divergences in the
unitary gauge.
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