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Gauge-invariant theory of direct interaction between strings
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A manifestly gauge-invariant theory of direct interaction between strings is presented. The equations of motion
found have no constraints in the type of interaction. The field theory associated with a large class of direct
interactions is presented. %e also discuss a "two-body'* type of interaction between particles and strings.

I. INTRODUCTION

The purpose of this paper is to cast the theory
of direct interaction between strings in a mani-
festly gauge-invariant ("general-covariant'*) and
Poincare-covariant form. The main reason for
ca,rrying out this program is that the "general-
covariant" approach' provides us with the most
natural language to describe surfaces ("world
sheets"). Thus, this approach will deepen our in-
sight into the structure of the string theory. It is
also important to know which objects are gauge in-
variant because these objects represent the "ob-
servables" of the theory. The requirement of
gauge invariance will give us a clue to find the
equations of motion for interacting strings without
constraints on the types of interaction. The a.bove-
mentioned requirement leads us to the interesting
result that the strings' end points are not slowed
down by interactions, i.e. , they move with the
speed of light.

In Sec. II we present a summary of the "gauge-
invariant" theory of direct interactions between
particles. "' %'e also discuss the class of field
theories associated with a class of direct interac-
tions between particles. '

In Sec. III we develop the gauge-invariant theory
of direct interstring interaction following the lines
given in Sec. II.

In Sec. IV we present the class of associated field
theories that can be extracted from a class of di-
rect interactions between strings.

In Sec. V we study a "two-body" type of interac-
tion between particles and strings. %'e conclude by
giving as an example the equations of motions that
govern the gravitational interaction between a par-
ticle a,nd an open string.

II. DIRECT INTERACTION BETWEEN PARTICLES

In this section we will study the "gauge-invariant"
and Poincare-covariant formalism that describes
action-at-a-distance interactions between parti-
cles."' In the present section, "gauge invariance"
means invariance with respect to a change in the

parameter that describes the world line of each
particle.

The metric of the space-time is the Minkowski
metric

g„,=O, if pg p (2.1)

The world line of the jth particle of proper mass
m j will be denoted by zjj(tj). tj is a parameter that
describes the world line; it may or may not be
identical to the proper time s~. Moreover, we do
not assume that t& has any particular property of
invariance.

The action A. of a system of N particles interac-
ting through two-body forces is'

& =Io+1&nt

where

(2.2a)

Io -=Q ~l SZ j Vjdt j ~ (2.2b)

Ij„,—Q Q dtjdtj5jVJRjf (2.2c)

Rjj =&jj(hajj'(jj„H~(vj, z";, zjj'), (2.2d)

(2.3)

The interaction has been restricted to be depen-
dent only on the first derivatives of z", in order
that we may end up with a second-order differential
equation for z~&. Note that the quantities v~&/v&,

zt,', and v, dh, are invariants under the transforma-
tion

t j tj' = tj(t;). (2.4)

Thus 4 is gauge invariant and will be Poincare in-
variant if its dependence on the indicated varia-
bles is through Poincare invariants' formed with
vi'/v„&~lv~, zt,', and z&~.

From the va, riational principle we obtain the equa-
tion of motion
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8 1 d & a

BZg~ V8 dt's 8 V] Vg

(2.5a)
the second-order linear pax'tial-differential equa-
tion

(2.9)nGq{(x —zt)„(x—zq)"}= 4s5'(xo —zq~).

When R,&
is given by {2.8), we can easily extract

the field theory associated with this irteraction as
follows: From (2.7c) and (2.8}we have

f28e ~ o P
W~~& a"2 8 ~8V« (2.10)

u", (s, ) =- H(t, = s, ), (2.6)

(2.5b)

V, = Q dt~v~R~)+ Q dtqv~R)q . (2.5c)

The multiplication of (2.5a) by H gives 0= 0, i.e. ,
we do not need further restrictions on R,J to ob-
tain a Minkowski force perpendicular to the veloci-
ty.

Usually one parametrizes the world line of each
particle with its proper time s, . In this case

q
s ''"(x, ) =Q q u~u,' ~ ~ u"

A&i

x G~((x, —x~)')ds„. (2.11)

In this case we ean regard the equations (2.7a},
(2.7b), and {2.10) as the description of the motion
of a particle in the presence of a field ious' ' ' "(x)
created by the other particles, which obeys the
f ield equation

Sy,
' ' "(x) = 4', s' ' "(x), (2.12)

and Eqs. (2.5) take the simple form

dQ)
m] = A&V],

dsg (2.7a)

(x)= qy ugu& '''u)

x {}'(xo—zo&)dsz. (2.13)

A~ = — + Q~ 1 —Q 2.7b
8 d 8 8

~8
g dsg ~Qg P gQ

R,.~-q.q~(u&q } G)((z, -zq)"(z, -zq) }, (2.8)

where n is an integer, and q, and q& are coupling
constants. G~ is a Green's function that satisfies

r, =E ~„d*,~„~E j~*,~„. im. v. ~

Equations (2.7) ean also be obtained from a non-
manifestly gauge-invariant action if instead of taking
m& to be the proper mass we regard m, as a
"mass" depending on the parameter s&. In this
case a, multiplication of the equation of motion by

&, will give us a differential equation for m, . This
differential equation can be easily solved, and the
constant of integration corresponds to the proper
ma, ss. ' In addition, the differential equations that

m, (s, ) obeys can be found by demanding that the
corresponding action be invariant under the trans-
formation s; s; + 5s&.

If one takes anon-manifestly gauge-invariant ac-
tion with a constant mass, the multiplication of the
equation of motion by u&& or the requirement of in-
variance of the action under s, -s, +Os, will give
us a constraint" on R,&.

Now let us take the particular case of interaction
given by

Special cases of theories of direct particle inter-
action with associated field theories are the Fokker
principle of electrodynamics' (n = 1, G& =5) and the
principles of scalar and vector mesodynamics'
(n = 0 or 1). The expression (2.8) is not the most
general interaction that has an associated field
theory. For a discussion of this point see Ref. 4.

rA ~ ~A (7.B) J I ) p0
s(zo' v

a(7' 7' (3.1a)

The range of the parameter v' is —~~ v'&+ ~. The
range of v' is 0. & v'& p for a closed string and
a & 7' & j3 for an open string. For closed strings
we will have H(r', n) = H{r', p). In the case of open
strings, a and )1 will denote the end points, and in
this case we will require that

rrr. DIREn INTERAcTION sETmEN smrwos

The motion of a string sweeps a two-dimensional
curved timelike surface ("world sheet"), embedded
in the physical Minkowski space with metric (2.1).
We represent this surface as xo= xo(rA), where
7"= (v', 7'). vo is related to the timelike and r' to
the spacelike extensions of the world sheet.

In this section we will study the action-at-a-dis-
tance formalism for interaction between strings,
stressing the gauge invariance and Poincare co-
variance of the theory. By gauge invariance we
mean invariance under the transformation
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„0 (&")
=a, 8

(3.lb)

in order that under the transformation (3.1a) the
boundaries of the world sheet remain the bound-
aries. ' Also (3.1) must satisfy some "physical
conditions, " e.g. (a) that n, p, ((, p transform into
finite quantities and —~ & v'&+ ~ —~ & T &+ ~
and (b) that the timelike and the spacelike char-
acter of v' and ~' be preserved, except at the end
points.

In general we will not require that r'and 7'be Lor-
entz-invariant quantities. The general covariance
(invariance) under the transformation (3.1) will be
referred to as g covariance (g invariance).

To obtain a g-invariant action analogous to (2.2)
we must start studying the g-invariant quantities
that can be formed with "geometrical objects" as-
sociated with one string. We will limit ourselves
to objects that contain at most first derivatives in
x~, because we want an action that gives us sec-
ond-order differential equations.

The internal metric tensor of the string world
sheet is

TPVT & TP~
V

SPVS )I Tgk
V

Pf vT

S~vs = T &'T =2.PV PV

Now the analog of (2.2) for strings is

3=Io t Ilnt

where

I' = Q J M.(- y.)'~*d*V'. ,

(3.9a)

(3.9b}

(3.9c)

(3.9d)

(3.10a)

(3.10b)

(3.10c)

(3.10d)

P V

yAB Rp XA B

ax~
XA A'

BT

(3.2)

(3.3)

We also have the second-rank contravariant ten-
sor density &" with components

~01 ~ 10 00 &11 0 (3.4)

From (3.2)-(3.4) we can build the g-invariant
quantities'

~yd'r,
T~"=-yA x&x"

A B~

~ABS""=— x„"xB,V-y
where

y -=detyAB, cP7 = d~'dw'.

(3.5)

(3.6)

(3.7)

(3.6)

Note that (3.5) is a Poincare scalar and (3.6) and

(3.7) are Poincare tensors even if the parameters
vA are not Lorentz invariants. We will not con-
sider in the action objects formed with the Rie-
mann-Christoffel tensor formed with (3.2) because
they produce in the equations of motion terms con-
taining at least third derivatives of x}'. It is im-
portant to realize that quantities formed with ob-
jects belonging to two different strings are in gen-
eral not g invariants, e.g. , (-y, ) ' 'e" xi,'„x~s,
because each string in general will be parametrized
in a different way. The tensor T~" is the energy-
momentum tensor' and S~" spans the world sheet.
From (3.6) and (3.7) we get the useful identities'

x "(r")-x"(r,")+ 6x,"(r,"),

6x"(Tz = 2 Oo, Tz) = 0,

6x,"(7",, r,' = (r„j3,}e 0.

(3.11a)

(3.11b}

(3.11c)

(3.11d}

The variations 5x~(v,', ~,' = n, ), 5x~(7,', ~,' = p, ), and
6x~(r,") in general are independent. Furthermore
we will assume that the closed strings are smooth,
l.e. ,

ax~ Bx~

(2 4

(3.12)

From (3.10), (3.11c), and (3.12) we find

The indices a and 5 run from 1 to S, S being the
number of strings. M, is a set of constants. Note
that despite the identity (3.9b) we have included T~"
in the dependence of (3.10d). The reason is that
T~" has a clear physical meaning and when parti-
cular cases are studied it is easier to handle only
one symbol than S~"S„".

The action (3.10) is manifestly g invariant and it
will be Poincare invariant if the dependence of R,~

on the indicated variables is through Poincare-in-
variant quantities' built with T"", T~~", S,"", S~&",

x&, and x&.
The equations of motion of the strings are ob-

tained by demanding that the action Q be stationary
under the variation



1058 PATRICIO S. LETE LIER

u' E=( d'~, ,v.
I

[(-y.)'*x."„ax.")-t .**.„)ax,"I,
a

(3.13)

a&b

~'=8
+ Q'Q d'7~dr', q

—[(-y }'/'R ~]
a&b ~17a= ~a

(3.14)

=
5 g [(-y.)"y"'&".sl.

7a
(3.15)

Thus the variational principle, Eqs. (3.11), (3.13),
and (3.14), give us the equations of motion

s s 8
a a alp s~P sr& s~P [( 4

a a aA

(3.16a)

where P' denotes summation only over open strings
and

.'x)'=- (-y.}'/'v'„v'"x).'

gsaa
Sas&&+ 2( )-i/2&»5l~& 81

eHE
(3.18)

7 n8&s+ &s(n58) + ( )-z /2Ee&ja 85)
& aT"
2 8x~ x~+x q

+ -y

(3.17b)

and demanding that the part of the "canonical" mo-
mentum' that crosses the edges of the world sheet
be zero at the edges.

Now we will use the fact that R„ is given by
(3.10d) to cast (3.16) in a form similar to (2.5).
From (3.6), (3.'l), and (3.9) we get

M.(-v.&'**!„,„„II ~ )"eJI, .a

a'1 ra= aa. Ea

(3.16b)

where

where

g[gbv] — (gllbv gMbg)

gi "b") —= —,'(g" b" + g"b").

(3.19}

(3.20)

b&a"

P

d' '~(-7y~)'/'R~
The identities (3.18) and (3.19) can easily be ob-
tained if one uses the fact that in a two-dimension-
al Riemannian space we have'

(3.16c)+ Q d'v, (-y,)'/'R„.
b&a"

Equation (3.16b} applies only to open strings and
tells us that the end points of the string have their
proper interactions. Equations (3.16) can also be
obtained by assuming instead of (3.11b)-(3.11d)
the relations

AC BD
yAay cD

yAB y 1~A C& BDy

(3.21)

(3.22)

2
a a +ay ~ay~a& (3.23a)

(3.23b)

Hence from (3.16}, (3.10d), (3.18), and (3.19) we
obtain

5xf(r,'=+~, v,') =0, (3.17a} where

AB 0(+2& xaa egpa +~a&BTa8
a a

(3.23c)

(3.23d)
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The equations of motion (3.23) are manifestly
invariant under the gauge transformation (3.1) and

they will be Poincare covariant if tII5, is a Poincare
scalar.

The multiplication of Eq. (3.23a) by x,c gives the
identity 0=0 (see Appendix A). The multiplication
of (3.23b) by x,c gives

(3.24)y, (r,', r,'= a„P,) =0

(see Appendix B). Thus we have that Eqs. (3.23)
are valid for all R,~ of the form (3.10d).

From Eq. (3.24) one concludes that the end points
of open strings are not slowed down by interactions,
i.e. , they move with the speed of light (see Appen-
dix B). Also (3.24) tells us that Eqs. (3.16b) and

(3.23b} do not have a clear meaning as they are
written. We must understand them as limits (see
Appendix B).

An equivalent set of equations to Eqs. (3.23) can
be obtained by setting M, =M, (r,") in (3.10b) and

replacing

R. -(y.y ) ' 'R,'(( y.)' '-S."",(-y )' 'S(", .",4)
(3.2 5)

in (3.10c). The equation of motion obtained in this
case, when multiplied by x,~, gives a differential
equation for M, (r,") that can be easily solved; the
constant of integration corresponds to the constant
that appears in Eqs. (3.23). Also the differential
equation that M, (v,") obeys can be found by demand-

ing that the corresponding action be invariant un-
der the transformation v,"-z,"+5v,". If one uses
a constant M, and a noninvariant action, the multi-
plication of the corresponding equation of motion

by x,~ gives a constraint on the interaction. ' In

summary, each different possibility to derive the
equations of motion of particles that we discussed
in Sec. II has an analog in the string case.

p p)l. aS,]f „Sl}pe (4.3)

gPTg Tg~pp

(4.5)

(4.6)

T,"'(x, —x,)„(x,—x,),.
The scalars (4.1)-(4.5) are symmetric under the

interchange of a and b. Obviously the relations
(4.5) and (4.6) can be generalized to an arbitrary
number of "elements. "

Now we will consider the particular interaction
formed with powers of Poincare scalar quantities
similar to (4.2)-(4.6) and its generalizations, i.e. ,

(4 4)

(4.7)

where

+ q, S,' t( SS, 88 T,)» g, (x,)]},i —
p = 0,

(4.10b)

n' si
R,~=q,q~(SS, SS T,)» (8 S~ SS 7i) G((x, —x~)'),

(4 6)

where q, and q~ are coupling constants,
n

SA=ASAS ' SA (n factors), (4 9)

and the asterisk denotes the "total scalar product"
of the tensors formed by the tensorial products
indicated. G is the Green's function that satisfies
Eq. (2.9). Note that n, l, n', and I' by construction
are such that it is always possible to perform the
"total contraction" *. And it can be done in several
ways, as (4.2)-(4.6) indicate, which give rise to
different interactions.

Now the equations of motion (3.23) read

M, ,'x,„=q, 2„[(SS,Sy T,)»t)I, (x,)], (4.10a)

(M, (-y, ) 'i-"x.'„

IV. THE FIELD THEORY ASSOCIATED WITH

A GIVEN INTERACTION

As we have seen in Sec. II, to extract the field
theory associated with a given interaction between
particles we must restrict the type of interaction.
The situation in the string case will be richer, be-
cause we can form a larger class of interactions
that have associated field theories. To ensure
Poincare invariance of the theory the dependence
of R,~ on its arguments must be through Poincare
scalars. Examples of Poincare scalars construc-
ted with objects belonging to two different strings
are

n' gt

g, (x,) -=p q, d'r, (-y.)'i'8 S,SS 7',
b vsa

x G((x, —x,)'}. (4.11)

~q. (x}= 4', (x),

where

(4.12a)

ni gl

J,(x) = Q q~ i d'71( y~)' '8 -3~88&p5 (x" —x "&)~

bvs a

(4.12b)

Because G satisfies (2.9) we get the field equa. —

tion

(x, —x,)'—= (x,"-x~)(x,„—x,„}, (4.1}

(4.2)

We can interpret the set of equations (4.10} as
the equations of motion of a string that interacts
with the tensorial field g, produced by the other
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strings and obeying the field equation (4.12). The
study of the field theory associated with the inter-
action (4.2) can be found in Ref. l.

Also, associated field theories can be extracted
from interactions that axe formed with terms like
powers of (4. 't), but in this ca,se we will not have
a single field equation like (4.12); instead we will
have to look for the field equation case by case.

V. DIRECT INTERACTION BETWEEN

PARTICI.ES AND STRINGS

~,et us consider the action

stot I, I Io lint lint
0 int int ~

(5.1)

where I„ I;„,I', and I'"' are given by (2.2b),
(2.2c), (3.10b), and (3.10c), respectively, and

{5.2a)

(5.2b)

The indices a, b run from I to S, S being the num-
bex' of strings. i,j run from 1 to X, %being the
number of particles. The interaction (5.2) repre-
sents a "two-body" type of intera, ction between
strings and particles, i.e, the simplest one that
can be considered. The action (5.1) is g invariant
and it will be Poincare invariant if the dependence
of R,.&, R,~, and R„. on their arguments is through
Poincare- invariant quantities.

When the variational principle is applied to (5.1)
and the condition g~p,.„=1 is used, one finds

where

U, =- P d'~. (-y, )"H„, (5 8)

(5. t)

It = hT )'"u„u„5{[a(s)—x(7'")] ), (5.8)

Equations (5.3)-(5.7) give a complete description
of the interaction between particles and strings.
Note that no further restrictions on R,~, R,~, and

A„come from the equations of motion.
To have an acceptable physical description of the

system of particles and strings, one must add some
conditions on R„, e.g. , that when the particles
and strings are far apart the interaction be zero.
This condition can be satisfied by requix'ing that
the dependence of R„. on x, and z,. be through a
Green's function that produces the wanted property,
e.g. , 6((x, —z, )'). Also, the "separability con-
dition" mentioned above must be imposed when we

are dealing with direct interactions between either
particles or strings. The separability condition
in these cases can be implemented in a similar way.

As before, by consldel"lng partlculax' cases of
interactions between particles and strings one can
extract field theories associated with a given in-
teraction between particles axed strings. As an ex-
ample we will consider the case of one particle in-
teracting with one open string when the interac-
tion 1s given by

du~&

m,. ',. =A~(V,. + U, ),
Ag

M, ,'x, = Z,„(P, )- X,),

[V,(-y.)"'x.'„+f8,'„(4),+ y,)],i

(5.3)

(5.5)

where k is a constant.
From (5.3)-(5.7) we obtain

m " ='lP5t H~g+ (14@ 4 H~8 —21' Hs~)s

(5.9)

„(2q-yx Ph,„gyes'„sh-"—'x," 2e"sxs S„'h, t)),
OH 97'

(M~y x„'+2/-y x'sh„~ —g-y T h s
' x2 Sx„oh ()),i —.)1= 0,

(5.10)

(5.11)

)) s(*) = s f s sP s )' ss((s( ")- s)'), -(5.12)

motion of a particle in the presence of an external
gravitational field. "
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ls„( )=sf s(. s,ssS((s(s) —s]"). (5.13)

Note that (5.12) and (5.13) represent the gravita-
tional field in the weak-field approximation of one
string" and one particle, " respectively. There-
fore the interaction (5.8) represents a gravitation-
al interaction between one particle and one string.
Also note that (5.9) is the well-known equation of
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APPENDIX A

In this appendix we will show that a, multiplication
of the equation of motion (3.23a) by x)c does not



15 GAUGE-IN VARIANT THEOR Y OF DIRECT INTERACTION. . . 1061

ay
axuu

=2yx (A 1)

give any constraint on the interaction. For sim-
plicity we will drop the subscript a in this appen-
d1X.

From (3.21) and (3.2) one finds

My'-y x'+ (g-y P) = 0.
u axu (B1)

Let us assume that y c 0 at the end points; hence
we can always choose a gauge" where Q-y = 1.
Thus

Using the previous identity and the definition (3.15)
we have

Mx + )=0.a
u axu (B2)

xu 'x =4-y e x' +xu
ax' aH

c u c paTA caTA

From the definition of y we have that y ~ 0 implies
x",e0. Hence a multiplication of (B2) by xl„' yields

gg —Q ( B3)

a
gB Q (A2)

(A3)

where in the last step (Al) has been used.
Now from (3.16c) and (3.10d) we get

ap a@ aT ' ay as' '
x" = x" + xu.c aT a8 axu c asaB axu c'

A A A
(A4)

Using the identities (3.18) and (3.19) after some
work one finds

in the next-to-last step the identity xux = 5„has
been used.

To prove that xucg„/ =0 we will use the form of

x~cg„ that one obtains from (3.16a) and (3.23a),
l.e. )

a a a
A„4'= "

s „—s „s„(&- y0
A

To obtain the above result we have used the fact
that a y~0 ensures that x„' is finite and also en-
sures that (A4)-(A5) holds. But M is a nonzero
constant; therefore

y =Q. (B4)

(B5)

Equations (3.16b) and (3.23b) must also be under-
stood in the same way.

We have that

x,"xp„~ o, xu, x,u~ o, (B6)

where the equal sign is valid only as a limit at the
end points. Therefore (B4) can be fulfilled by
either one of the two possibilities

In general x„' and ap/axu, are going to be singular
when y =0. Thus we must understand Eq. (Bl) as
an equation that holds in the limit, i.e. ,

al 8

, xuc=o,
ax A

(A 5)
X"X =X"X =0 X"X ~ 0

X yXzu Xpxy M) X pXp ~ Me-Q u ) 0

(B")

(B8)

aSaB
xuc= 0

ax A

Therefore from (A3)-(A6) we have

xur„y=0 Q.E.D. (A7)

APPENDIX 8

In this appendix we will show that the end points
of open strings are not slowed down by interactions.
We will have interchange of momentum through
the edges of the world sheets, but the tangent vec-
tors to the edges are null vectors. In this appendix
all quantities that appear are supposed to be eval-
uated at the string end points.

The equation of motion of the end points is

The last relation has a nice geometrical meaning;
it says that the "force" 2 tI5 is always perpendicu-
lar to the world sheet.

The first possibility, when xux, &0, tells us that
the boundaries of the world sheets described by
an open string are tangent to null planes {planes
formed with a null vector and a spacelike vector
perpendicular to the first). When x",x,„=0 the two
vectors that describe the world sheet collapse at
the boundaries to a single null vector. The second
possibility (B8) can only be fulfilled when x,"x, = 0,
because we cannot have a null vector perpendicu-
lar to a timelike one. We have not considered the
possibility xu=0 at the edges, because that con-
dition is gauge dependent, i.e. , we can always do
a gauge transformation and have xu, x0.

In summary, we have that x,"x,„=0 at the edges,
i.e. , the end points of open strings travel with the
speed of light. Note that this property of the end
points does not depend on the type of interaction.
Also note that the same is true for "free
strings. "'~ '~"
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