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All the minimum-uncertainty states tz(a)) are built as the eigenstates of generalized annihilation operators

a(a). We obt"in the most general Hamiltonian which verifies the following property: Given an initial

minimum-uncertainty state Iz(tt)) at t = 0, the z' which corresponds to the minimum-uncertainty state that
maximizes I(z'(a)Iz(a), t)I follows the classical trajectory in phase space. Finally, we comment on its

relationship with the most general Hamiltonian which preserves minimality.

I. INTRODUCTION II. MINIMUM-UNCERTAINTY STATES

Recently' an appealing algorithm for expressing
the nonrelativistic quantum mechanics of a spin-
less particle in pseudoclassical form was pro-
posed. It naturally makes use of minimum-un-
certainty states (MUS's). But in this scheme it is
not demanded that minimality be conserved. Qne
is interested rather in seeing whether the MUS
that "best" describes the time-evolving state of
an initial MUS exactly verifies the classical equa-
tions of motion (in the sense defined in Sec. III).
It should be emphasized that his approach does
not deal with any kind of classical limit or the so-
called semiclassical approximations. Theref ore
a strictly classical interpretation is not in prin-
ciple entailed. This means that the present ap-
proach is independent of whether a classical cal-
culation will in fact provide a meaningful descrip-
tion of the motion.

The aim of this paper is to seek the most general
class of Hamiltonians that allow the description of
the dynamics in terms of such a pseudoclassical
way. We follow this program making use of the
very useful technique of annihilation operators
and their eigenstates, which in recent years have
successfully been applied in many fields of physics
such as nonlinearity' and adiab3tic invariants for
both classical and quantum systems. '

The main body of this paper is divided into three
major sections as follows. In Sec. II we define
for each d, s (momentum uncertainty) the family of
MUS's as eigenstates of a generalized annihilation
operator; we reobtain the most general Hamilto-
nian which conserves minimality. ~ ' Qur main
results are contained in Sec. III, where we find
the necessary and sufficient condition in order for
a system to verify the pseudoclassical evolution.
In Sec. IV we carefully comment on our result
being a generalization of the Hamiltonian con.-
sidered in Sec. II.

We define a family of non-Hermitian operators
depending on a. real, positive parameter a t a(tz),
in the following way:

a(a) =nq+
2

P. (2.I)

where I n)„ is the eigenstate of the number operator
a (tz) a(tz) with eigenvalue n (n is a non-negative
integer). Note that n is independent of tz, owing
to (2.2), although naturally the state

I n)„depends
on tz because the number operators at(tz) a(tz) and
at(P) a(P) do not commute (and they cannot have a
complete set of simultaneous eigenstates). The
set of numbers z (tz) spans the entire complex plane.

Since a is non-Hermitian, its eigenvalues are
in general complex; it is easily verified that

z(tz) =tz&q&+
2 &p&, (2.4)

where the angular brackets denote the expected
value in the corresponding eigenstate I z(tz)&.

The main properties of these states are the
following:

If tz takes on the value (mac j2)t~z, then a and ar
are the usual ladder operators for a harmonic
oscillator of mass m and angular frequency &.
Prom the definition it follows that

(2.2)

where g~ denotes the adjoint of a, and the square
brackets denote the commutator.

For each value of ~ we construct the normalized
eigenstates of a(rz) in an analogous way to the har-
monic-oscillator coherent states'
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(i) Nonorthogonality: —a (n; t) =f [a (n; t), t),d
(2.13)

d'z n z n z a (2.6)

(iii) Overcompleteness, in the sense that if we
have any convergent sequence of complex numbers
z„-zo, the MUS's

I z„(n)) themselves form a com-
plete set. ' This property was already noted by
Von Neumann in the case of harmonic-oscillator
coherent states.

(iv) Generation of
I z(n)) through displacement

operators"

I z(n)) =D [z(n)] I 0&,

where D is a displacement operator

D (z) =exp[zat(n) -z *a(n)] .

It is unitary,

D„(z) =D„(-z) =D '( ),
and has the following multiplication law:

(2.7)

(2 6)

(2.9)

D (z ) D (z, ) =D„(z,+ z, ) exp[-', (z,z,*—z,*z,)] .

(2.10)

Equivalently, Eq. (2.7) can be written as

I z(n)& =exp[- —.
'

I z(n) I'+ z*(n) a'(n)] I 0) (2.11)

owing to the Baker-gausdorff theorem.
(v) I z(n)) are the most general MUS's. " In

fact it is easily seen that

a, =(2n) ' (2.12a)

(2.12b)

The I z(n)) states differ from the harmonic-oscil-
lator coherent states only by an obvious scale
transformation'2 (see also the end of this section),
but their physical interpretation as harmonic-
oscillator states is rather different for ng(mv/
2) itz

We now ask the following question: which is the
most general Hamiltonian H, which preserves a
MUS as such? Note that the arbitrary ~~ of the
initial MUS defines the o. with which we shall work.
In exactly the same way as in the case of har-
monic-oscillator coherent states, "it can easily
be shown that a necessary and sufficient condition
for the initial MUS

I z(n)) to remain a MUS is

&z,(n)lz. (n)) =exp &- ![Iz,(n)l'+Iz. (n)l']
+z,'(n) z,(n)}. (2.5)

This overlapping goes to zero when I z,(n) -z,(n) I

(ii) Resolution of unity:

i.e. , that the time derivative of a does not involve
a functional dependence on gt. Furthermore,
since H, is Hermitian, one concludes that JJy must
be of the form

H, (n) = (u(t) at (n; t) a(n; t) + f (t) at (n; t)

+ f *(t)a(n; t) + v(t), (2.14)

where a(t) and v(t) are arbitrary real functions
and f (t) is an arbitrary function. We shall now
comment on this result:

(1) Using the relation

a(n) =c(n, p) a(p) +s(n, p) a (p),
where

(2.15)

c(n, P) =

p2 ~2
s(n, p) =

(2.16)

as is immediate from the definition in Eq. (2.1),
we may express 0, in terms of a(p) and its adjoint

H, (P) = (u(t) C (n, P) a (P) a(P)

+ ,'(u(t)S(n-, p) [a '(p)+a'(p)]

+g(n, P, t) a'(P) +g *(n, P, t) a(P) + b(t),

(2.17)

where C(n, p) =c'+s', S(n, p) =2cs (in the same
way as for q and s, C and S can be considered as
the cosh and sinh of an arbitrary real positive
function), g(n, p, t) =f (t) c + f *(t)s, and b (t) = &a(t)
+ v(t).

(2) In the special case n = (m~/2)'~2, one obtains
the most general Hamiltonian which preserves the
oscillator coherent states. "

(3) This result can also be deduced from Ref. 6,
where it is shown that the "coherent states" (our
MUS's) are unitarily equivalent to the "minimum-
uncertainty packets" [eigenfunctions of an opera-
tor S =(2lL) 't'(x+tpp) with arbitrary, real p, ,
i.e. , of a(n =+(2p, ) 't'}]. Equation (2.17) is ob-
tained by applying a unitary operator U to the
harmonic-oscillator-coherent-state-preserving
IIamiltonian [i.e., Eq. (2.14) for n = (ma/2)' '].
But Eq. (2.14) is just Eq. (2.17) in terms of a(n).
Q. E. D.

Finally, it should be emphasized that in our
scheme, MUS's are by definition the eigenstates
of annihilation operators a(n). For each n, the
set of all I z(n)) is overcomplete. The change of
+ to P can be said to correspond to a change of
"basis" in the same (MUS) representation. This
change is performed through the unitary operator'
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It(n-P) =exp(-,'r [a'(n)+at'(n)] t,
where

r = cosh '(ll'+ n')/2nP,

so that

(2.18)

(2.19)

9 9
=Q +

9q 9z 9z*

9 s 9 9

9p 2n 9z 9z *

(3.2a)

(3.2b)

a(P) =U(n-P) a(n) Ir (n-tl) . (2.20) we impose the condition that the first derivative
be equal to zero:

Equations (2.20), (2.15), and (2.2) express the
fact that operator U corresponds to a canonical
transf ormation. "

I q~(t)& =e '"'
I z(n)& =

I z(n), t& . (3.1)

We now define the phase-space (quasi) probability

I (z'(n) I z(n), t& I'. Note that this approach does
not lead to a true joint probability distribution. '4

The physical significance of I (z'(n) I z (n), t) I' is
the quantum probability that the particle would
be found, if measured, in the MUS lz'(n)&. We
emphasize that it is not the (nonexistent) proba-
bility density of finding the particle at position

q = n ' Re(z ') with momentum p = 2o. Im(z '), but it
is the most "classical" possible quantum de-
scription of the system. For this reason, the
MUS representation is called a "classiea1. parti-
cle" quantum description of the system. "

It is evident that in the particular case when

I
z (n), t& propagates as a MUS, then the maximum

corresponds to I z'(n)) =I z(n), t). This implies
that 0, (n) given in Eq. (2.14) will be a particular
case of our general solution.

The distribution I (z '(n)
I
z (n), t) I' is a function

of two real independent variables q'(n) and p'(n),
and is defined by the real parameters q(n) and

p(n) (initial condition) and by the Hamiltonian which
gives the dynamics. In order tofind I z'(n)) we must
maximize with respect to q'(n} and p'(n}.

From now on the ~ dependence will be under-
stood, without our having to write it down. Taking
into account the relations

III. PSEUDOCLASSICAL DYNAMICS

IN QUANTUM MECHANICS

In this section we consider the following problem:
Given an initial MUS

I z(n)) at t =0, we let it
evolve in time under the action of an arbitrary
Hamiltonian. We find the MUS lz'(n)), which has
maximum overlapping with our evolving state at
time t&0. The basic question is: Which is the
most general Hamiltonian&, for which z' de-
scribes the classical trajectory in phase space?
In other words, we ask: When will n 'Re(z') and

2n Im(z') describe the classical trajectories of

q and p [see Eq. (2.4}]?
Given the initial condition

I g(t = 0) &
=

I z (n)), the
formal solution to the Schrodinger equation is
(taking h =1)

0= ', l&z'Iz, t&l'
9q

=n[-("+"*)I&" lz, t& I'

+ (z'
I
a I z, t&(z, t

I
z'&

+ &z'
I z, t& &z, tl a'I z'&], (3.3a)

9P'

= —[- (z'* -z')
I

&z'
I z, t&I'

2Qt

+ (z'
I
a

I z, t) (, t
I
z'&

+ ( 'zI z, t&( ztl altz'&]. (3.3b)

Adding and subtracting these two equations we ob-
tain the simpler ones:

(z'I a lz, t& = z'&z'I z, t&,

(z, t I
a'I z'& = z'*(-, t I

z') .

(3.4a)

(3.4b)

Observe that Eqs. (3.4a) and (3.4b) are complex
conjugates of each other.

In the particular case when I z, t) is an MUS

(I z'& will then be equal to I z, t) ), Eqs. (3.4) are
trivially verified.

Note that Eq. (3.4) is valid for all l, but that
the solution z', as well as the value of the maxi-
mum probability I ( z'

i z, t& I', both depend on

time. If z' and z" are the solutions corresponding
to times t and t —t, (0 & t, & t), the values of the
maximum probabilities at t and t- t„which can
be written as

I (z'
i z, t& I' =

I &
z', —t. l z, t —t.&

I'

and

l&z" lz '-') I'=l&z" 'lz ') I'

are in general different. Only in the ease when

I z, t) propagates as an MUS will the probabilities
be equal (in fact, time independent and equal to
unity); but still. in this case, z' will depend on
time, with the initial condition z'(t =0) =z. This
time dependence of z' is the crux of the problem,
because our aim is to find the most general Ham-
iltonian for which the trajectory of z' is formally
equal to the corresponding classical one. In par-
ticular, for very small l we have from Eq. (3.4a)
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( z + A t+ O(t ' ) I
a [1—iH t+ O(t ')

I I z) = [z + At+ O(t ' )](z + A t+ O(t '
) I 1 —iH t+ O(t' ) I z), (3.5)

where we have written

z'(t) = z'(0) + A t+ O(t '
)

=z+ At+0(t'). (3.6)

Up to first order in t, from (3.5) one finds that

A = —~( z
I [a, H] I z& .

Substituting back into (3.6), we get

z' =(z I a —it [a, H] I z) +O(t').

(3.7)

(3.8)

q'(t) =q„„(t),
p'(t) = p,i„(t),

(3 9)

This means that z' is equal to (z I a(t) I z) up to
first order in t.

Our objective now is to find what Hamiltonians
verify

lowing physical systems":
(i) free particle (c,. = 0 for all i),
(ii) harmonic oscillator (only c, w0),
(iii) particle in an external uniform field (e.g. ,

electrical or gravitational; only c, wO)

(iv) harmonic oscillator in an external uniform
field (only c„c,c0),

(v) c, c0 corresponds in cases (i) to (iv) to a
(nonrelativistic) moving frame of reference,

(vi) c,o0 corresponds in cases (i) to (v) to a
shift in the energy scale.

Qbserve that the lack of a crossed term in q
andP means that the case of a particle (or an oscil-
lator) in a uniform magnetic field" is not included.

If we express H, in terms of a(n) and its adjoint
at(n), we must distinguish two cases in Eq. (3.11):

(a) c2t0:

that is, to first order in t

(z, tI qI z, t) =q„„(t),

(z, tI pI z, t& = p. ..(t),
(3.10)

H, (n) =urCa (n)a(n)+-,' &uS[a '(n)+a'(n)]

+ga t(n)+g'a(n) + b, (3.13a)

where

where q„„(t) and P„„(t)stand for the classical
trajectories. From Eq. (3.9) and from Ehren-
fest's theorem" we deduce that if q', P' must
satisfy the same equations of motion as q„„,P„„,
then the Hamiltonian must be, at most, a quad-
ratic polynomial in q and P (with no crossed
terms),

(u =(2c /m)'t'

C =(m/2c )'t'

S (C2 1)1 /2

g=(c, /2n)+inc, ,

b =c,+n'(2m) '+c, (2n) '.
1

H2= P +ciP+c2q +c3q+c4,
2m

(3.11)
(b) c, = 0:

z' —. (z, t
I a

I z, t) = (z I a(t) I z) (3.12)

to all orders in t (for H, ).
Our result, Eq. (3.11), corresponds to the fol-

where c; (i =1 to 4) must be real, owing to the
Hermiticity of H, . Also c, (i = 1 to 4) can be arbi-
trary (real) functions of time.

Equation (3.11) expresses a necessary condition,
that is, the Hamiltonian we are looking for cannot
be more general than (3.11). But it also is a suf-
ficient condition, as has been already explicitly
demonstrated, ' except for the term linear in p.
But this case is implicitly also included, by com-
pleting the square, i.e. ,

P' P" mc, '
2m ' 2m 2

with P' =P+ mc, .
It should be noted that for the Hamiltonian in

(3.11), as both (z, tI a I z, t) (owing to Ehrenfest's
theorem) and z' (see discussion above) follow the
classical trajectory, we can conclude that

Q 2 Q 2

H, (n) = a (n)a(n) — [a '(n)+a'(n)]

+ga t(n)+ g*a(n) + b (3.13b)

Our result, Eq. (3.11), generalizes the Ham-
iltonian H, of Eq. (2.14), which we had expressed
in a very similar way to H, (n) for c, 00 in Eq.
(2.17) in terms of an arbitrary P (Pe n). The
generalization is evident: MUS-preserving Ham-
iltonians are a particular case of (3.13a) (in fact,
for S=O, i.e. , for c, =2n'm '). For instance,
the free particle Hamiltonian [ case (i), corre-
sponding to (3.13b) with g=0] does not conserve
MUS's, but it does verify that the maxima of the
distribution I

(z'
I z, t) I' follow the classical tra-

jectory.
It should be emphasized that the derivation of

our result, Eq. (3.11), does not involve any ap-
proximations, and that it will ther efor e be true
independent of the fact that the classical descrip-
tion of the trajectory between measurements could
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be meaningful or not. ' Also, in this scheme we
are not involved in classical limits. "

IV. FINAL DISCUSSION

The general quadratic Hamiltonian in q and P
with no crossed terms exhausts the class of Ham-
iltonians which make the MUS's follow pseudo-
classical trajectories.

In spite of the formal similarity between H„(a)
in Eq. (2.14) and H, (a) in Eq. (3.13a), their respec-
tive physical interpretations are rather different.

In Sec. II we saw that H„as given in Eq. (2.14)
in terms of a(a) or in Eq. (2.17) in terms of a(P)
(arbitrary pea), conserved the minimal character
of an initial MUS

~ z(a), t = 0).
In Sec. III we showed that, given an initial MUS

~ z(a), t =0), H, (a) as expressed in Eq. (3.13a)
verified the pseudoclassical evolution condition
for z'( a). The similarity is due to the fact that
there exists a P [in fact P = (mc, /2)'~' ] such that
H, (a) =H, (P), that is, H, (a) for c, &0 preserves
the minimality of the states

~ z(P)) (P fixed and
independent of a).

It is clear that the family of all H, (P) (varying
P) is a subset of the Hamiltonians H, (a) for any

It is the one obtained when c, spans all the
positive nonzero values.
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