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Functional measure for quantum gravity
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We derive the functional measure for quantum gravity by reducing to independent degrees of freedom in the
light-cone gauge. We use the recently developed functional techniques devised to handle field theories with
second-class constraints in order to analyze quantum gravity quantized along null planes, where it has been
shown that all eight dependent components of the metric may be explicitly functionally eliminated, leaving

only two unconstrained variables. Using our result, we confirm the result of Fradkin and Vilkovisky for the
functional measure for quantum gravity, though we disagree with several other authors who have different
measures.

INTRODUCTION

g"'( ) II dg"( )
fy+ X

[In Eq. (1) g" is the inverse of the metric tensor
g „, and g=detg, „.]

A quite independent study of the problem was
made by Fradkin and Vilkovisky, ' and in their
paper disagreement was found with the result of
Faddeev and Popov. Fradkin and Vilkovisky ob-
tain

M = II g"'(x)g"(x) II dg '(x)
X as'

g "'( )g"( ) II ~g.,( ) .
x fr+ X

(2)

In the literature there is considerable confusion
over the precise functional measure for quantum
gravity. Previous results, based on vague invari-
ance arguments, have all been discredited. Re-
cent advances in the quantization of field theories
with gauge invariances' have made possible the
conclusive determination of the elusive functional
measure for quantum gravity. The key to solving
the problem' lies in observing that in the fully
reduced, unconstrained, noncovariant Hamiltonian
formulation, where all dependent variables have
been explicitly integrated over, the functional
measure is equal to unity. Working backwards, it
is then possible to determine the functional mea-
sure that must be added into the constrained La-
grangian formalism (which is covariant and con-
tains many dependent variables) in order to re-
produce the correct measure (unity) for the re-
duced Hamiltonian system with only independent
components. This procedure, first carried out
by Faddeev and Popov, ' gave the following result
for the measure:

The presence of g '(x) may seem irksome to a,

naive reader (the measure looks noncovariant),
but as Fradkin and Vilkovisky carefully demon-
strate, one cannot judge by appearances alone.
We refer the reader to their paper for details.

In this paper, we shall present a new investi-
gation of the problem of functional measure,
which is an application. (and extension) of one of
the recent studies of quantum gravity (reduced to
independent variables) in the light cone ga.uge. '
The advantage of the light-cone gauge is that all
eight redundant components of the gravitational
metric can be explicitly functionally eliminated
from the Lagrangian, so that we are left with an
unconstrained noncovariant Hamiltonian, where we
know that the functional measure is one. In the
usual Coulomb gauge for gravity all redundant com-
ponents cannot be explicitly eliminated from the
functional integral. Seven redundant components
of the metric tensor can be completely eliminated,
but the last redundant component requires com-
plex, formal iterative procedures. In the light-
cone gauge, however, all eight redundant com-
ponents can be explicitly eliminated.

We shall close the introduction with an impor-
tant comment concerning Eq. (2). As the reader
will note by inspecting the paper by Fradkin and
Vilkovisky, ' Eq. (2) holds only if one accepts a
particular determination of certain ambiguous
terms of the type [see their Eqs. (2.8), (2.9),
(2.10), the discussion following those, and also
the remark following their Eq. (2.21)]

[&,s „D~(x —y)]. ..
which consists in writing

4

[s,s„D~(x y)]„,= s„e„, . e"'" "
k'+ 2&
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integrating first over k, in the integral in Eq. (4),
taking the derivatives, and then taking the limit
x- y. In the resulting expression only the term
proportional to 5"'(0) is isolated. '

If, however, one chooses the determination of

Eq. (3) which consists in writing

k, =q, k, + Q $,'k, (4}

(where q„ is a certain timelike vector of norm 1

and (,' are three orthonormal vectors orthogonal
to q') and integrating first over k„ in Eq. (3), then
the tensor structure multiplying &' '(0) in Eq. (3)
is g„q„. The special case q„= 5„, corresponds
to the previous determination.

This more general determination has the con-
sequence of replacing Eq (2) b. y

(5)

What can be said about the light-cone-type reg-
ularization of (3), which consists in integrating
first over k =(k'+k'}/v 2? This is clearly the
one we are interested in, since we shall study the
functional measure for gravity quantized on the
light cone, in which type of quantization such a
regularization is a consequence of the standard ex-
pression for D~(x) (see Ref. 5),

D~(x) =(2v) ' d'P

(6)

In Eq. (6), p x stands for p'x + p x'= qx + (p'/2q)x'.
The reader will easily check that a term propor-

tional to 5"'(0) (with this type of regularization)
will be found only when

(pv) =(+ -) or (p. v) =(-+).
Repeating the arguments of Fradkin and Vilkovis-

ky (for this type of regularization), one finds in-
stead of Eqs. (2) and (5)

The measure thus depends on the type of regu-
larization adopted for the ambiguous terms, but
of course quantum gravity theory does not, since
the contributions of the measure simply cancel
other contributions in the perturbation expansion
proportional to 5"'(0}as long as the regularization
procedure is uniform, as demonstrated by Fradkin
and Vilkovisky.

I. REDUCTION OF QUANTUM GRAVITY IN THE LIGHT-

CONE GAUGE TO INDEPENDENT FIELD VARIABLES

In a recent study by one of the authors (M.K.),'
the method of path integrals was used to effect
(after a 2+ 2 decomposition of the metric tensor)
a complete elimination of the eight dependent com-
ponents. A formulation of quantum gravity quan-
tized on the null planes in terms of only two un-
constrained Lagrangian degrees of freedom was
thus obtained.

For this purpose, we use the light-cone gauge
condition

klgP t $gt 0 (8)

In Eq. (8), k = det(g, ,) (i, j= 1,2), I is an arbitrary
constant, and of all the 5" only 5 ' is nonvanishing
(and equal to one}.

It was also demonstrated that this gauge is
ghost-free. In functional integral language, this
simply means that the Faddeev-Popov determinant
corresponding to this choice of gauge is a constant
independent of the field variables.

Let us emphasize that the gauge selection cor-
responding to Eq. (8) differs from most others
known in the literature on quantum gravity, in that
it implies a radically different quantization
scheme, one along the surfaces of constant "null-
plane time" x'=(x'+x')/v 2 rather than surfaces
of constant x'.

The final result of this investigation can be de-
scribed by

11 ee]1MII]e'']~1 ~ '] '+]1']]'"],1'ee(i e' z (9)

In Eq. (9), the left-hand side is the S-matrix
element for transition from the state ~i) containing
only physical gravitons to a state

~ f) of the same
nature.

On the right-hand side a.(x) and P(x) are two
field variables corresponding to two unconstrained
degrees of freedom of a physical graviton, and

f

Z(o], P) is the corresponding Lagrangian, which
we shall display shortly. x/v 2 is the coupling
constant of gravity.

In the intermediate expression p& and p,. are the
field wave functionals for the states

~ f) and ~f);
g„5, is the 6 functional corresponding to the gauge
choice (8) k Fp is the corresponding Faddeev-
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Popov determinant, and M is the functional mea-
sure discussed by Faddeev and Popov and Fradkin
and Vilkovisky. It is left unspecified in Eq. (9).

By displaying an independent derivation of the
factor in curly brackets we shall be able to deter-
mine M.

The form of Z(n, P) in Eq. (9} is the following:

«'R(n, p) =2k' '(e"s,s e,, }+(21+-,' }k'~' s, s ink

+ ~k'[e"(B,s„e,,e' —2(a,e").(s,e")e,, ]

+ 2e "(s,k'") s,k' "+. ,'k '"—e,-I'M. ',
(10)

M'=k'"e" —[s (k'e'™8e )+-'k' '(s e™)se

k'~28,.8 ink+ Ik'~' s. ink 8, ink .—ik'i'8, 8 ink].

A dimensional fa,ctor «' (where «/0 2 is the gravi-
tational coupling constant), usually set equal to
unity by an appropriate choice of units, has been
reintroduced for future convenience.

In Eq. (10) and (ll), e" are given in terms of n
and P by

e,, = (1+«'(n'+P')]'i'5, , +«k;, ,

eii [I + «2( 2 p2)]1/2gij

where

and, finally, k is expressed in terms of e" and

e,, in the following fashion:

y = 9 ink, y = P ( I —4) U
ftt =1

I jj
i=Q

II. THE HAMILTONIAN PATH INTEGRAL FOR

CONSTRAINED SYSTEMS VfITH SECOND-

CLASS CONSTRAINTS

While the Lagrangian exhibited in Eq. (10) con-
tains only two independent field variables, n(x)
and P(x), we shall see shortly that the Hamiltonian
formulation corresponding to that Lagrangian con-
tains constraints. This may seem bizarre to those
readers who have sometimes encountered the
statement that "constraints in the Hamiltonian
formalism correspond to a gauge invariance of
the theory" [and in the transition to the reduced-
variable description the original gauge invariance
of quantum gravity has disappea, red (after all, the
gauge has been fixed before that transition) ].

However, the above statement is only partially
true —it applies only to the so-called first-class
constraints, which are those whose standard Pois-
son brackets with each other vanish upon applica-
tion of the constraint equations. '

Second-class constraints' (which ean be defined
as those that are not first-class) can also appear
in certain field theories, and they do noI, corres-
pond to a gauge invariance.

A notable example are field theories rewritten
in terms of null-plane variables. All these con-
tain second-class constraints. '

The functional measure for constrained Hamil-
tonian systems containing only first-class con-
straints was found by Faddeev. ' For the case of
systems containing both first- and second-class
constraints, the measure was evaluated (extending
Faddeev's method) by one of the present authors
(P.S.),' and independently by 1'abuki. " We shall
need only a special case of their result, namely
the one holding for theories containing only sec-
ond-class constraints, which can be formulated
as follows:

x y~+exp i d'x gll, (x)j,(x) -X(x} [y, .i

P& and P, are final and initial field wave function-
als; {,) denotes a standard equal-time Poisson
bracket, 8'(x) are the second-class constaints,
p„'s are the set of fields appearing in the theory,
II, are their conjugate momenta, K is the Hamil-
tonian, and the square root of the functional de-
terminant is precisely the above-mentioned func-
tional measure.

FUNCTIONAL MEASURE FOR GRAVITY IN THE LIGHT-

CONE GAUGE REDUCED TO INDEPENDENT VARIABLES

%e are now well equipped to proceed with the
calculation of the appropriate functional measure
corresponding to the Lagrangian (10).

The first step will consist in rewriting the
relevant portions of that Lagrangian directly in
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terms of the variables o. , P. We shall call z = q,
and P = q2.

It is a simple exercise to show that

do not contain "time" derivatives.
Our constraints are therefore

K'Z(q) = z'k't'M „(a,q )(a q )

+(21+-,')k't'a, a ink+ V(q}, (16)

8 (x)=p (x)-A (x),

ii.(x) = [k"'M.„a q„],

2 qmqn
~mm= ~mm —~ 2 2 y1+K q

In Eq. (16), V(q) does not contain "time" deriva-
tives (i.e. , derivatives with respect to x ) of the
q's, and k is still given by the chain of equations
(14), with the last equation in the chain now re-
written as

U, =-lt' —[(a q„)M „(a q )]., 1

6~8 ink&

One then derives the null-plane Hamiltonian:

II= dxdxp Bq

V q dx dx. (23)

For the purpose of transition to the Hamiltonian
formalism, the system will be taken to *'evolve"

along the direction of varying x', i.e. , the role of
the time variable will be played by the null-plane
time x'.

Qne can now transcribe the action correspond-
ing to Eq. (16) as

1+(2I+ 2) —,
K

dz ' " k"'(z )
Se ink&-

aq (x),+ -„

(20)

Equations (20) represent constraints, since they

S= d'x [Z(q)], ,

~'Z(q)
i
„=z'k't 'M „(a,q„)(a q„) i „

+ (2i+-.')(a,q, )
~
„dz 5(a Ink}(, „, -„

~q, x,x', x

x k"'(z x' x)

+ V(q}.

The functional derivative in Eq. (19) is an ordi-
nary local derivative as far as the dependence of

q, on x and x is concerned. It is a genuine func-
tional derivative only as far as the dependence of
q on x goes. Eg. ,

aq (y, x', x)
5 6( )

aq,(x,x",x}

To go over to the Hamiltonian formalism, one
must derive the conjugate momenta. Qne obvious-
ly finds

aZ
p„(x)=

( )

=k' 'M n(a q,)lx-

8.8,(x', x, x)

={8,(x,x-, x), if(x")}

+ dy dye (x', y, y){8,(x', x, x), 8 (x', y, y)}.

(25)

An explicit evaluation in the rest of this section
will show that for our theory

det{8,(x), 8 (y)}~„...e0, (26)

and thus Eq. (25) simply determines the multi-
pliers and generates no new constraints. Equa-
tion (26) is also Dirac's criterion, ' which, when

fullfilled, implies that all the constraints 8,(x)
(and any linear combination of those) are second
class.

After some rather straightforward algebra,
one finds, using Eqs. (21) and (22),

In the second step, the constraints (21) were used.
These are no secondary constraints generated

from the constraints appearing in Eq. (21) by ap-
plication of the equations of motion. The proof
is simple. According to Dirac, ' the equation of
motion for a quantity f is given by

f={f,» ~.{f,8.} (24)

The symbol {,}denotes standard Poisson
bra, ckets, X are a set of a priori arbitrary)
multipliers, and 8 are the constraints. In our
case the contraints are labeled by a set of con-
tinuous indices x, x [we are dealing with a field
(i.e. , continuum) theory at fixed x'], and by a dis
crete index m (m=1, 2).

In our case, therefore, Eq. (24) reads (if one
takes f to be the constraints themselves)



(8 (x), 8,(y)}l„.„.= &(x-y) ]-2k""(x )M„,(x ) 5(x -y ) --,'k "'(x )[8"k(x )]M,(x-)5(x- y-)

2g2q Qj, /2+, , M„(8 q,) 5(x —y )1+K' q

Qkl/2(y ) !)kl/2(x )+, , M„(y-)8"q,(y-), M.,(x-)8'.q,(»-)1, 6(e. ink) I,- &k'/2(z ) 5(8 ink) i,- &k'/'(x )
&q (x) &q,(y) ~q, (y) &q (x) I .'

Using standard properties of determinants, we can see that

Q det{8 (x), 8,(y)}l„,„,= g [k(x) detM, (x)]S, (28)

S = Q det(x, I; y, s) 5„5(x —y )
X+2 If

+
4

&„&(x - y ) —z2(qM„q'„)„5(x —y )
1 k'(x)—
4 kx
1 6 ink(x), 1 k'/'(y) 6 lnk(y)

+4 g ( )
ql(x) -4 „,/, ( )(M '),„(x)M„(y)q,'(y)

~ql(y ) ~q, (y ) ~q (» )

Primes in Ecl. (29) denote derivatives with respect
tox.

I et us now go back to Eq. ('I). In the light-cone
gauge, ' using g=k'~" and g =0 ', one finds fox
M in this equation

Q [k2T+7/2( ) ] IS ll/2

%e have been able to calculate S only by ex-
panding it in powers of x [up to (and including)
terms of order »2] and have found

(34)

M,„=g k'/(x) gdg "(x) .
x ff, ~w V

(30)
Isl = det [1+O.(x')].

Mrz, = g k""/'(x) gdg""(x)
x p4V

Equation (28), combined with the use of

1
detM, =.

1+K g

yields

g ldet(8. (x), 8,(y)}I'/' I..

(32)

I 1
(1+&2 2)l/2

Qn the other hand, the measure of Faddeev and
Popov [Eg. (2) ] gives 111 'this gauge

To this order, this agrees with Eq. (30) and dis-
agrees with Eq. (31) [note that k=I+0(»2)], and
therefore settles the controversy in favor of Fx'ad-
kin and Pilkovisky.

To spare the reader from the unenlightening in-
tricacies of the calculation which includes tex'ms
of order x4, we shall limit our presentation to the
discussion of the evaluation of S up to (and includ

ing) terms of order s2 The (cumb. ersome) evalua-
tion of the O(x') terms was accomplished by a
straightforward extension of the techniques used
to perform the calculations of the terms of order
K .

Throughout, we shall use

(n —1)!, (x —y)" '2e(x-y), n=1, 2, 3.

This must equal the measure in Eg. (9), which
produces the equation

This is the standax'd determination made. in light-
cone quantization (see, e.g. , the paper by Corn-
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wall and Jackiw, "especially the formula at the
end of their Sec. II).

Extracting an infinite constant factor det(s/sx }
we obtain for S, to O(z'),

det(1 + z'Q, + z'Q, ) = exp Tr ln(1+ x'Q, + z»Q, )

= exp Tr(x'Q, + x'Q, —z x'Q, ') .

In E(I. (36),

det(1+ x'Q) = 1+x' TrQ .

In the calculation to O(x4), we used

(36)

and

TrQ = dx Q„(x), (37)

1
Q„(x,z) = —,

1 1 k'(x), , 1 5 ink(x), 1 5 Ink(y}
dy 4 „( }

5.5(x-y)-&'(qM. ql). '(x-y)+4 5 ( } qI(x}-4 5 ( } q'(y}
8- y. - x qsy q, X(,f, 5(& )n»)„h»'~'(*') Il(B (nh)„ tl»'~'( ')

5q.(x) 5q, (y) 5q, (y) 5q.(x)

obtained from E(I. (29) by keeping only O(x') terms and relabeling, e.g. , z -z.
Note that Q, itself is of order K'.

Observing that

dx = dx —ink = 0,k'(x) s
k(x) Sx

f ~ I

dxq(M, »q»= dx» ——z dx 8„ln(1+ z'q') = 0,1+K q

we find

(39}

TrQ =—, dxdy — — q', (x) + —,(2l+ —,) dz ' k'~'(z)1 1 1 Sink(x), I, 5(S ink), 5

K 8 „2 5 5q(x 5q, y
(40)

where we have used the antisymmetry of (I/O )„
which follows from E(I. (35). To order x', we
have

1 5 ink(z}
~q, (y)

'

2 5q, (y)

(41)

Using Eq. (41) and similar identities for Dink(x)/
5q, (v) and 5(S ink), /5q (x), we find

But in view of Eq. (35),

=0, k=2, 3

so that TrQ vanishes. This completes our pro-
mised presentation of the proof that

ISI=det
8x

to order I(.".

y — —— qr' y q

~ 2(2) ~ —,') Jdxdyd*(—} —
(
—} q,'())

8 1x—— q', (x) . (42)
8+ 8

TrQ=

A partial integration in y in both terms and an
integration in z in the second term produces the
expression

1x)q'(x)—
xx

8 1—2(2l + z} dx q,'(x) —— q,'(x) - (43)
xx

SUMMARY

We have presented a method of calculating
the functional measure for quantum gravity re-
duced to independent variables in the light-cone
gauge, studied recently by Aragone and Chela
Flores, Kaku, and Scherk and Schwarz. ' This
method is based on recent results by one of the
present authors (P.S.)' (independently found also
by Yabuki»0} for the functional measure in the
Hamiltonian-type path integral for an arbitrary
Hamiltonian system containing second-class con-
straints.

Our result was then used to extract information
about the functional measure for quantum gravity
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in its standard formulation. The resulting expres-
sion was found to agree with the result of Fradkin
and Vilkovisky. ' It therefore disagrees with the
result of Faddeev and Popov. '

For objections to the result of Faddeev and Pop-
ov, as well as a discussion of the relevance of the

problem of measure, we refer the reader to Ref.
3.
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