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The equal-time commutator algebra of the broken conformal group is studied when spontaneous breakdown of
conformal invariance occurs. The nonsymmetric terms in the algebra are characterized by field-current-type
identities for the divergence of the dilatation current and the dilaton field. As a consequence of this result, the
generators of the group can always be redefined in such a way as to satisfy the closed Lie algebra associated
with conformal invariance. The resulting expressions are interpréted on the Lagrangian level by studying the
effect of a field redefinition on the dilatation current when this is only partially conserved. Our discussion is
mostly classical since it neglects the existence of the anomalies. With these limitations the results are
illustrated by explicit calculations for several model Lagrangians.

I. INTRODUCTION

The equal -time commutator algebras satisfied
by the generators of internal symmetries have
proved very useful for particle physics even when
the corresponding currents are only partially con-
served. Conformal invariance, regarded as an
approximate symmetry of physics, differs from
internal symmetries in the fact that the charges
associated with conformal currents do not satisfy
the Lie-algebra relations of the conformal group
when the currents are not conserved. The devia-
tions of the equal-time commutators of the broken
conformal group from their symmetry values can
be determined in a model-independent manner and
turn out to be expressible as simple moments of
the divergence of the dilatation current, By com-
bining this result with the hypothesis of scalar-
meson dominance of the trace of the energy-mo-
mentum tensor, one is naturally led to study the
effect of field-current identities on the algebra
of the broken conformal group.!

This type of questions is relevant in discussing
the symmetry limit of conformal invariance when
the symmetry is realized in the Goldstone man-
ner. In the Goldstone realization of the symmetry,
the breaking mechanism is induced only by a non-
vanishing vacuum expectation value of afield oper-
ator and leads to a theory with a massless dilaton,
massive particles, and, eventually, dimensional
coupling constants. We will show that there exists
a correlation among the various dimensional quan-
tities which results necessarily in the field equation

6 ,,()=c0B(x), (1.1)

where 6, ,(x) stands for the trace of the Callan-
Coleman-Jackiw® (CCJ) tensor, c is a constant,
and B(x) is the “dilaton” field.

Conversely, the condition (1.1) is sufficient to
guarantee the existence of an underlying theory

in which conformal invariance is only spontaneous -
ly broken. This question is also examined from the
Lagrangian viewpoint at the canonical level. In
two previous papers® (hereafter referred to as I
and II) we used the Euler dimensional relation to
relate the trace of the energy -momentum tensor to
the breaking terms in a given Lagrangian and stu-
died the effect of a field redefinition on the La-
grangian, focusing only on the dilatation transfor-
mation. The treatment of canonical scale invar-
iance presented in I is mostly classical. The same
is true of the following discussion about the algebra
of broken conformal invariance. On the quantum
level our premises, and therefore Eq. (1.1), are
invalidated by the existence of anomalies which
destroy the naive conformal invariance of the theo-
ry as well as the equal -time commutation rela-
tions of the conformal generators. However,
anomalies have been studied mostly in renor-
malized perturbation theory and mostly for scale
invariance alone, leading to the well -known de-
velopments of renormalization-group techniques.
From the algebraic viewpoint advocated in this
paper, what is needed is the general structure of
the anomalies which could be used in determining
the modification of the equal-time commutation
relations of the conformal generators. The effect
of the anomalies in such a general form in unknown
at present, so any discussion of the full algebra

of the conformal group only makes sense on the
classical level. Our discussion is a first step in
the direction of a deeper understanding of the
Goldstone realization of conformal symmetry on
the quantum level. A clue on how to incorporate
the anomalies in our scheme was implicitly of -
fered in II, at least for the spontaneously broken
theory of a massless self-interacting scalar field.
For this field theory, the difficulty of ultraviolet
divergences, which is the source of the anomalies,
was overcome by the following prescription: The
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bare coupling constant of the theory goes to zero
at the same time as the cutoff goes to infinity. It
was shown that this procedure results in the eli-
mination of the divergences while preserving the
time independence of the dilatation generator. It
should be noted that in spite of the above limiting
procedure the Bethe-Salpeter amplitude for a
two-particle scattering state does not vanish in
the pair approximation, thus yielding a nontrivial
S matrix. More important for our purposes, it
was also found that, in the presence of spontan-
eous symmetry breaking, the massive asymptotic
fields do not respond to scale transformation in
the same way as the Heisenberg operators, but
obey the dimensional transformation law previous -
ly introduced by Aurilia, Takahashi, and Um-
ezawa.® The Goldstone boson transforms inhomo-
geneously, which is a feature of spontaneously
broken scale symmetry. The dimensional trans-
formation reduces to a scale transformation in the
absence of dimensional parameters and reflects
the dimensional consistency of the field equations.
Thus “dimensional invariance” is exact and can
never be violated. The results of I, with some
modifications, can be extended to the full confor-
mal group, and this is the main object of this
paper. As for the results of II, we can only spec-
ulate that the anomalies inherent in any “confor-
mally invariant” quantum field theory are respon-
sible for the rearrangement of the original scale
invariance into the dimensional invariance at the
level of the physical Hilbert space. Should this
conjecture turn out to be correct, one would have,
in principle, the possibility of evaluating the de-
viations of the equal-time commutation relations
due to the existence of anomalies. It would be
interesting to interpret the results of I and II in
terms of standard renormalization-group tech-
niques and the Callan-Symanzik equations, thus
establishing a link between the algebraic approach
and the quantum field-theoretical approach to con-
formal invariance. These problems clearly re-
quire a separate investigation.

The plan of the paper is as follows. In Sec. II
we study the equal-time commutator algebra of the
broken conformal group. The structure of the
breaking terms follows from relativistic invar-
iance alone, without the use of canonical field
commutators. Thus one avoids altogether the
problem of scale-dependent renormalization con-
stants. In Sec. III the condition (1.1) is enforced
and we find that the deviations of the equal-time
commutators of the broken conformal group from
their symmetry values can be made to vanish by
a redefinition of the 15 generators of the group.

In Sec. IV we consider the effect of a field redefin-
ition on the dilatation current in Lagrangian field

theory.

Here we refer to that class of field theories for
which the CCJ tensor can be constructed and for
which the field virial

9L .
Vu= —W(ﬁuul —1Suy)§0 (1.2)

is identically expressible as a total divergence.?
This is known to be the case for all renormalizable
theories. It is also the case for the conformally
invariant theories of the Goldstone type consid-
ered, for instance, by Salam and Strathdee,* pro-
vided that one takes the Goldstone boson as a field
of canonical dimensionality. This is indeed the
situation envisaged in Eq. (1.1), which is shown
to be necessary and sufficient for the existence
of a field redefinition leading to a conformally in-
variant theory. In this resulting theory the sym-
metry is spontaneously broken. The 15 genera-
tors previously introduced, which obey the closed
Lie algebra of the conformal group, correspond
precisely to this spontaneously broken theory once
the field redefinition is implemented.

In Sec. V several model Lagrangians are pre-
sented which illustrate the results of the previous
sections.

II. THE COMMUTATOR ALGEBRA OF THE BROKEN
CONFORMAL GROUP

The 15 generators of the broken conformal group
are most conveniently expressed in terms of the
energy -momentum tensor 6,,(x) introduced by
Callan, Coleman, and Jackiw.? This tensor is
such that

auguv(x) =0,
0,,x)-6,,(x)=0, (2.1)
6,,(x)=8,D,(x),

where D, (x) is the current associated with dila-
tation transformations in space-time. One has

Py=~ [ 0,0, 2.2)
Muv= - fdo'x(x)[xuexv(x) ‘xvexu(x)] ’ (2-3)
D= f o, (x)x, 6, (%) , (2.4)
Ku= [ (250,00 -20,,)],  (2.5)

where P, and M, are the generators of the in-
homogeneous Lorentz group while D and K, stand
for the generators of dilatations and proper con-
formal transformations. For any Poincaré-invar-
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iant theory with fixed dimensional parameters the
above generators obey the following commutation
relations:

(D, P,]= ~iP, —i f do, (x)8,Dy (x) (2.6)
[D7 Muv] =17 f dcu (x)xuaxDx(x)
=i [ do,(0x,0,0,(), @.7)

[Ky, P,] = 2i6,,D - 2iM,, —2i f o, (¥)%,8,D,(x) ,

(2.8)
[Kns M1 =60, ~i0,,K,+2 [ do,z,0,D,

—Zifdo,,xxxua‘,Dp, (2.9)
[D,K,)=iK, —i f do,, ()x%8,D, (x) , (2.10)
[KM,KV]=Zz'fdau(x)x,,xza,‘Dl(x)

-2 fdo,(x)xuxzalDl(x), (2.11)
[p,,P,]=0, (2.12)
[Py, M, ]1=16,,P, —-ib,,P,, (2.13)

[Mu,v) Map] = i(évoMpu + GVVMM0+ GLIG'MUP+ GUPMGU)'
(2.14)

In the limit of exact symmetry, i.e. when 8,D,(x)
=0, the above commutation relations reproduce
the closed Lie algebra of the conformal group.
Inspection of the above algebra shows that even in
the symmetry limit the generators D and K, do not
commute with P,. This property together with the
explicit appearance of breaking terms in the com-
mutation relations constitute the major differen-
ces between the conformal group and internal-sym-
metry groups. However, the deviations of the
equal -time commutators from their symmetry val -
ues are model independent and are simply ex-
pressed as moments of the divergence of the di-
latation current D,(x). Moreover, any breaking
mechanism of conformal invariance leaves the
commutators [D,P,], [D,M,;], [Ky, P;l, [Kr, My,],
[K;, D], and [K,,K ;] unchanged. In view of the
generality of the commutator algebra of the broken

conformal group, it is instructive to outline the
J

[QM7PV] =i f do,Fy, ,

[Qy, M,,]=i6,Q. —z'zamQ,H'fdoux,,a,,lv‘,l - fdo,,xua,,Fﬁ,

method by which we have derived it. We use a
simple technique due to Takahashi® which enables
us to calculate, in general, the commutator of the
generator of a given transformation with the gen-
erators of the inhomogeneous Lorentz group with-
out using canonical field commutators. The meth-
od involves (a) relativistic invariance in the form

i[fp(x),Pu] =8,¢(x), (2.15)
lox),M,,]=(x,9, -x,9, +iS,,)0(x), (2.16)

where S, , indicates the skew-symmetric spin ma-
trix specifying the spinor or tensor properties
of the local operator ¢(x), i.e.

P () = O4x")=[ 845+ 21(S,))an€up s (x)  (2.17)
when

X, ~xh+ve€,,x, (€,,+€,,=0),
and (b) Schwinger’s covariant identity®

f do, (x)8, f(x) = f do,(x)3,, f(x) (2.18)

which is valid for any function f(x) such that
Xf(x) =0

when

X|=co.

Thus, for any tensor F,,, relativistic invariance
implies

i Fyr(x), P,]=8,F)(x) (2.19)
and
i Fy(x), My, )= (x,8, —x,8,)F,(x)
+ 0,3 F e(x) = 8,0 F 41 (x)
+0,.F, (%) = 8,.Fy, (x). (2 20)

Assume now for later convenience F,,=F,,, and
define the new quantities

Q= [ doyF ), 2.21)
Qu= [ doy()x,Fyu ), (2.22)
qu.v: fdah(x)xpquXv(x)' (2‘23)

One calculates the general commutation relations
of the above quantities with the generators P, and
M,, by using Eqgs. (2.19)—(2.20) and the identity
(2.18). We obtain

(2.24)

(2.25)



958 A. AURILIA 14

[qu’ Pp]:iaupfdoxFlu "ifdopFuv "ifdotrxualqu;

(Qur M, ] =i f 4o, x,F,, —i f do,x,F,,

(2.26)

+1 f dol(éwrqu).T =0, X F s+ 0y X Fyy — 6p.n-rprxu)

+1 fdouxpx,,a,‘FM -1 fdo,xpxualF" s

[quu’ P-r] :i fdol(é‘rpqulv“" unpryw) -1 fdaf(qupv+onuu+xpxua>.F)\v) ’

(2.27)

(2.28)

[Qpa'r’ Muv] =1 fdo'x(éupxoqul'r"' OyoXpX uFrr = 0, pX X Far =0, %o X Fag = 8,0%,% o Fy, + 6urxax¢qu)

+1 fdou(xavam+xnvaor'*’xaxuxuaan)

- f A0, (XX W F pr + %X, F o+ 2,2 5%, 03Fy 1) -

The algebra of the broken conformal group, with
the exception of the commutators (2.10) and (2.11),
follows in a straightforward manner from the above
commutation relations once we identify

FhuzB)UH Qu:_Pu’ qu—Qvu:_M‘“"
Quu=D, K,=5,(2Q,,, -Q,.)-

This method does not apply to the calculation of
the commutators (2.10) and (2.11), as they do not
involve the Poincaré generators. However, they
also are model -independent and can be derived
from Schwinger’s equal-time commutation rela-
tions among the components of the energy-momen-
tum tensor.” Neglecting the presence of Schwin-
ger terms they are

[944(.76), 94;(32)]:():,,0: [eik(i)‘*' 944(?)5;%]8);“3(i —?) )
(2.30)

[04k(x)y 04;‘ (y)]x0:y0 = [9 4i(i)ak+ 94;¢(‘§)a.]6(}.E ";) ’
(2.31)

[944(96), 644(y)]x0=y0 = [94k(i)+ 94k(§)]3k6(i —?) , (2.32)

and substituting directly into the expression of the
commutators [D,K,] and [K,, K,] one verifies the
algebraic relations (2.10) and (2.11).® The use of
the Schwinger commutators in the form (2.30)—
(2.32) is supported by the fact that they lead to the
same commutation relations of the broken confor -
mal group obtained by the previous technique, and
they are certainly valid for Lagrangian field theo-
ries with fields of spin s=1. These are also the
field theories to which the Lagrangian formalism
of Sec. IV will be applied.

(2.29)

I1I. THE MODIFIED ALGEBRA

In the following we combine the general algebra
derived in the previous section with a specific
mechanism of symmetry breaking. We are in-
terested in those dynamical systems for which

8,D,(x)=6,,(x)=0f(x), (3.1)

where f(x) is a given scalar quantity. We will see
shortly that a condition of the type (3.1) covers
the physically interesting case of spontaneously
broken conformal invariance. In such circum-
stances, since the energy-momentum tensor is
not unique, it is natural to introduce the tensor

T ()= 0, (x) —3(6,,0 9,8, f(x) (3.2)
satisfying

8,T,,(x)=0, (3.3)

T,,x)-T,,(x)=0, (3.4)

T,.(x)=0. (3.5)

It is then a direct consequence of Schwinger’s for-
mula (2.18) that the generators of the Poincaré
group are not affected by the extra term in (3.2),
i.e.,

B, = —fdo,‘(x)Tw(x)

=-quuwmu)
=P, (3.6)

and

M= = [ 4oy, T = 5,T )]

=M,,, (3.7
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while the generators of scale and conformal trans-
formations are modified according to

D= f do, (x)T), (x)x,

=D - [ oy, 1t .8

and

i{a: fdox(x)[Zxax,,Tw(x) "szla(x)]

=K +2 f 40, (2N By f(x) =248, /()] (3.9)

One also finds
2x,9,D, (x)=8,K,, (x)=0, (3.10)

where D,(x) and K, , (x) are the modified dilatation
and conformal currents corresponding to (3.8) and
(3.9).

In terms of the new generators P,, M,,, D, and
K,, the equal-time commutator algebra of the
broken conformal group reduces to the closed Lie

J

[Ry, P,]=[Ke, P +2 [ 40, () 645 f(x) = %o 8 f(x), P, ]

algebra associated with conformal invariance,
(D, P,]= -iP,,
(D, M,,]=0,
(K, P,]=2i6,,D - 2iM,, , (3.11)
(Ky, M, ]1=i6,K, —i6,,K,,
[D,R,)- ik,
(K., K,)=0;

of course, the commutator algebra of the Poincaré
group is unchanged. The above result follows from
the fact that the commutator algebra of Sec. II was
derived solely from locality and relativistic in-
variance. Thus one can merely replace D,K,,D,
with D,K,, D, in Eqs. (2.6)-(2.14) and use the re-
lation

Th(x)= 3,D,(x)=0 (3.12)

to obtain the Lie algebra (3.11). Of course the ex-
plicit calculation of the commutators reproduces
the same result. Thus, for instance, one finds

=206, ,D - 2iM,, - 2 f 0, (x)x4[ 03D, (x) - 200 f(x)] = 236, f o, ()3, f(x)

= 2i5ua5 =2iMyy ,

and analogously for the remaining commutators of
the algebra (3.11). From a physical viewpoint,

the most interesting specialization of the condition
(3.1) consists in setting

fx)=cB(x), (3.14)

where ¢ is a constant and B(x) is a spinless field.
In the next section we will see that the field B(x)
can be taken as the interpolating field of the phy-
sical Goldstone boson with canonical dimensional-
ity. The shifted field B(x)=B(x)+ ¢ has a nonvan-
ishing vacuum expectation value and induces the
spontaneous breakdown of scale invariance. The
new generators of the conformal group given by
Eqgs. (3.6)—(3.9) are well defined since they are
expressed in terms of the physical field B(x),
which vanishes asymptotically.® The presence

of a linear term in the expression for T,,(x)

also suggests that the situation (3.14) corresponds
to spontaneous breakdown of conformal invariance.
This linear term leads to the matrix element

(0]T,,|B(q)) = (21)>/%(2q,)" *3¢(a®6,, — 4u4,) »
(3.15)

(3.13)

which is a relation analogous to that defining the
pion decay constant in chiral dynamics. However,
the occurrence of spontaneous symmetry break-
down follows more precisely from the spectral
representation

O[[B@&), T, (»]]0) = fdfcz[pl(lcz)éuw Po(x%)3,8,]
X A(x —y; k7). (3.16)
Since Tw(x) is conserved and traceless one finds

py (k%) =0,
(3.17)
pz(Kz) = %66(’(2) ’

where ¢ is an arbitrary constant.
Thus,

0|[B(x), T,,(v)]]|0y=328,8,D(x ), (3.18)

which signals the existence of a massless boson
so long as ¢#0. But from (3.18) and the definition
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(3.8) we obtain
¢=(0|[B(x), D]|0)

1

-c [ do, (y)X0|[B(), 8,B(1)]|0)

=ic
#0. (3.19)

Thus the symmetry corresponding to the Lie al-
gebra (3.11) is spontaneously broken. We can sum-
marize the argument of this section by stating that
whenever the breaking mechanism of conformal in-
variance is such that the condition (3.1) is satis-
fied, it is possible to “renormalize” the theory in
such a way as to absorb the effect of the devia-
tions of the commutator algebra from its sym-
metric form into the expression of the generators
of the conformal group. The two sets of genera-
tors P,, M,,, D, K,, and P,,M,,, D, K, satisfy
the commutator algebra (2.1)-(2.14) and (3.11),
respectively. In the former case the breakdown

of conformal invariance is explicitly represented
by the equation

6,,x)=93,D,(x)=c0OB(x), (3.20)
while in the latter case one has

T,u(x)=28,D,(x)=0; (3.21)
but

(0|[B(x), D]|0)#0, (3.22)

so that conformal invariance is only spontaneously
broken.

The condition (3.20) is precisely a remainder of
this underlying symmetry in the theory in which
dimensional parameters appear explicitly. Indeed,
in the following section we will see that the var-
ious breaking terms in a canonical conformally
invariant Lagrangian—arising because of the
asymmetry of the vacuum —conspire in such a way
as to lead to the field equation (3.20) involving the
Goldstone boson and the divergence of the dila-
tation current.

IV. LAGRANGIAN FORMALISM

On the Lagrangian level, it is usually assumed
that only mass terms break conformal invariance.
In what follows we relax this restriction and con-
sider the contribution to the trace of the energy-
momentum tensor due to all possible dimensional
parameters g; appearing in the Lagrangian.

Thus we write

-33:53(_(5; aua’gi), (41)

where we have concisely assembled all the fields
in the theory into a vector ¢. The dimensions are

set as follows:
[o]=L1", [g]=1™"

Then we define the scale deficiency® *°

plx)= - 2 Nigh a"eg(") (4.2)

’ . . .
and use Eulers dimensional relation

L -
48 —l—+¢ — (l+1) ] q0+p 0 (4.3)
3y
to derive
6,,(x)=p(x) (4.4)
since??
)= .~ £ = 2 4L. (4.5)
a,D, I+1 «9 Q- . .
(x)=(+ = L0+ % @

Thus, according to the scheme of the previous
section, whenever the dynamics of the system
(4.1) is such that

-Zl' : ‘S(x ——==0f(x) (4.6)

we construct the new tensor
Ty, (%)= 6,,(x) —5(6,,0 -9,9,) fx), (4.7)

which is conserved, symmetric and traceless.

We emphasize that in order to satisfy the rela-
tion (4.6) it is essential to take into account not
only the contributions of masses, but those of all
dimensional parameters in the Lagrangian (4.1).
Moreover, in writing 7,,(x) in terms of 6,,(x) as
in Eq. (4.7), we have implicitly assumed that the
field virial (1.2) is identically equal to a total
divergence.? It is known that the virial condition
is necessary for conformal invariance and is suf-
ficient for the explicit construction of 6,,(x) itself.?
In the following we shall restrict our considera-
tions to theories involving fields of spin s <1,
without derivative couplings and for which the
kinetic term is of the standard form. For such
theories the virial condition holds true as an iden-
tity. On the other hand, the condition (4.6) is of
dynamical nature since it is strictly a consequence
of the field equations. The property

T,.(x)=0 (4.8)

cannot be interpreted as a necessary and sufficient
condition for conformal invariance since the scale
deficiency, i.e. the trace of the “true” energy-
momentum tensor 6,,(x), is nonvanishing. Never-
theless, in view of the properties of T,,(x) shown
in Sec. III, it is meaningful to inquire under what
conditions a given Lagrangian can be redefined so
that T, ,(x) can be interpreted as the CCJ tensor of
the new theory. Therefore, consider the operation
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R consisting of a field redefinition

R: 3()=79(x),g'] (4.9)
on the system (4.1), so that

R[£(0)]=£@(x), 8,9(x), 7). (4.10)
Correspondingly we set

[v]=L, [n']=L-*.

We require that the field redefinition is such that
the virial condition is identically satisfied for the
redefined Lagrangian as well. Thus, the CCJ
tensor 6/, (x) exists and is such that
) =0/ ()= - 3 228
1
and the usual connection of 6/,,(x) with scale and
conformal transformations is established for the
new Lagrangian as well. We recall from I that the
canonical energy-momentum tensor TS, (x) is in-
variant under the field redefinition, i.e.,

R[TS,(x)] = TS, (x), (4.12)

where the primed quantity is calculated from the
redefined Lagrangian. However,

(4.11)

R[p(x)]# p’(x) (4.13)
and more generally
R[6,,(x)]+# 6,,(x). (4.14)

The Euler relation is applicable to both theories
and gives

-

oL oL . .
p(x)—lsz—ogo—lw aucp—Tuu(x), (4.15)

p'(x)—k%%-i—k a—z%-aj:Tf[u(x). (4.16)

In writing Eqgs. (4.15), (4.16) we have used the stan-
dard definition of the canonical momentum -energy
tensor. Using the equation of motion and the in-
variance of T, (x) we obtain the general relation-
ship between the two theories

aL - L
‘o) =p - —
p-9, (l aau?ﬂ qo) p 8u<k 3au$ zp) . (4.17)
If the scale deficiency p’(x), calculated from the

redefined Lagrangian, turns out to be vanishing,
then necessarily

3L - AL -
p(X)=au(lW‘¢—ka—a;$-‘¢>. (418)

This agrees with the expression of p(x) given in
I.

Thus, when the redefined Lagrangian is confor-
mally invariant p(x) must be of the form

p(x)=3,x,(x) (4.19)

where x, (x) is a local vector quantity. The more
restrictive form

p(x)=0f(x) (4.20)

follows from the requirements that the tensor
T,,(x) be symmetric since this property is essen-
tial in deriving the closed Lie algebra of the con-
formal group in terms of the modified generators
introduced in Sec III. Moreover, the condition
(4.19) is necessary but not sufficient to guarantee
the existence of a field redefinition leading to a
conformally invariant Lagrangian. However, as
one might expect, the further restriction

p(x)=cOB(x) (4.21)

provides a necessary and sufficient condition for
the field redefinition

B(x)=B(x)+c (4.22)

to lead to a conformally invariant Lagrangian for
which p’(x)=0. In Sec. III we have observed that
the symmetry underlying the closed Lie algebra
(3.11) is spontaneously broken in the sense that

#0|[B(x),D]|0)= -c, (4.23)

which also means that the scale dimension of B(x)
under the action of D is not well defined. This is a
a general feature of spontaneously broken scale
invariance. However, the shifted field SB(x)
responds to the action of D according to

i[B(x), D] = —(x -8+ 1)B(x) (4.24)

and has therefore the canonical dimension usually
assigned to Bose fields. Indicating by R, the
change of variable (4.22), we know that

R[6,,(x)]#6),(x). (4.25)
However, we have
R[T,,()]=6],(x) (4.26)
with
67,,(x)=0. (4.27)

This follows from the definition
T,,(x)=6,,(x) -3c(5,,0 -9,9,)B(x) (4.28)

with the explicit expression of 6,,(x), i.e.,

T,,(x)=T;,(x) - Z

spin-0 fields #B(x)

%(GHVD - auau)z’z(x)

-4(6,,0-8,9,)B(x) -3¢(5,,0 -9,9,)B(x),
(4.29)
where T3 ,(x) is the symmetric canonical energy-

momentum tensor. The only terms affected by
the change of variable (4.22) are the last two terms
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on the right-hand side of (4.29), and one finds

Ty@)=T5,(x) - 2 H6,,0-8,0,)5%x),

spin-0 fields

(4.30)

where the sum includes now the field B(x) itself.
This is indeed the CCJ energy-momentum tensor
of the redefined Lagrangian. Since T,,(x) is trace-
less, the new theory is conformally invariant.
Conversely, suppose that under R, a given La-
grangian becomes conformally invariant, i.e.,

6,,(x)=0. (4.31)

Then setting B(x)=B(x) + ¢ in 6},,(x) one finds nec-
essarily

0,,(x) —6.,(x)=3¢(5,,0 -9,8,)B(x) (4.32)

and therefore
p(x)=cOB(x).

In the spontaneously broken theory in which the
generators D and K, are defined the field g(x)
possesses canonical dimensionality and has a non-
vanishing vacuum expectation value. The field
B(x) is related to the Goldstone field ¢ introduced
by Salam and Strathdee.” The o field has anoma -
lous transformation properties under scale and
conformal transformations,

60(x)= —c —x *90(x),

(4.33)
5,0(x) = =(2x,x, —%%6,,)9,0(x) —2¢x,, .
Thus, if we define
B(x)= c[exp(@> - ] (4.34)

we can take B(x) as the interpolating field for the
Goldstone boson in the theory for which the basic
condition

p(x)=cOB(x) (4.35)

holds true. The effective substitution (4.34) in the
Lagrangian density will lead to a spontaneously
broken theory in which dimensional parameters
may explicitly appear, owing to the anomalous be-
havior of the o field under scale and conformal
transformations. In the following section we will
give some explicit examples of this mechanism.
We can summarize the results of this section as
follows. We have given an interpretation, in the
framework of Lagrangian field theory, of the ten-
sor T,,(x) introduced in Sec. III. The basic prop-

erty
0, () =p(x) (4.36)

when (4.6) is verified becomes the traceless con-

dition
T,.(x)=0. (4.37)

Equations (4.36) and (4.37) are nothing but different
ways of writing the Euler dimensional relation
(4.3). Thus the algebra of the broken conformal
group and the closed Lie algebra derived in Sec.
II reflect first of all the dimensional consistency
of the theory. However, while Eq. (4.36) alone
specifies the breaking mechanism of conformal
invariance, Eq. (4.37) instructs us on how to ab-
sorb the breaking terms into a redefinition of the
generators of the conformal group. Under the
more restrictive condition (4.35), Eq. (4.37) also
tells that the breaking terms in a given Lagran-
gian are “spurious” and can be gauged away by
shifting the field variables. The constant ¢, an-
alogous to the pion decay constant of chiral dy-
namics, signals the spontaneous breakdown of
conformal invariance in a world which is other-
wise dimensionless. The condition

p(x)=cOB(x)

has been shown to be necessary and sufficient in
order for the field redefinition

Bx)=B(x)+c

to lead to a conformally invariant Lagrangian. The
CCJ tensor associated with the new Lagrangian is
precisely the tensor T, (x) expressed in terms of
the new variables.

The following section is devoted to illustrate the
above considerations for several Lagrangian field
theories.

V. EXAMPLES

It is possible to include massive particles and
dimensional coupling constants in a scale-invar-
iant theory by treating scale invariance as a spon-
taneously broken symmetry.* This is achieved by
introducing a scalar field o(x) with the anomalous
transformation laws (4.33) so that the quantity
¢ exp[o(x)/c] has canonical dimensionality and a
nonvanishing vacuum expectation value. Thus the
conformally invariant description of a massive
scalar field is

L£=-300,0) -3(8,0)%*°/¢ —sm*¢p?e®’/¢, (5.1)
with o(x) the dilaton field.
In order to apply the formalism of the previous

section to the above Lagrangian we introduce the
interpolating field for the Goldstone boson

B(x)=cexp[o(x)/c -1] (5.2)
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and rewrite (5.1) as
‘B = _%(au(p)z - %(auB)z - %ngoz
-(m*/c)¢*B - 3(m*/c*)p*B*. (5.3)

This model Lagrangian was considered in I, and
one finds at once

plx)= - E x‘g‘g—jr =cUOB(x) (5.4)

because of the field equations. Clearly, the form
(5.4) of the scale deficiency is a remainder of the
underlying invariance of the original theory. Con-
formal invariance is manifest by rewriting (5.3) as

L= -3(,9) -2(3,8) —3(m*/c*)B¢?, (5.5)
where
Bx)=B(x)+c. (5.6)

The scale deficiency of the system (5.5) vanishes:
p'(x)=0. (5.7)

The CCJ tensors of the two Lagrangians (5.3) and
(5.5) are given

euu(x) = Tiv(x) - %(5;“,[:] - 8u3v)¢2

—%(5uvD 'auav)Bza (5'8)
el:ll(x)= Tﬁ'v(x) —%(éuvm - auav)(pz
-1(5,,0-9,8,)8, (5.9)

and the values of their traces are consistently

given by (5.4) and (5.7). In agreement with the
general discussion of the previous section, one
finds that

R[T;,(x)]=Tg,(x) (5.10)
and in particular
T¢ ,(x)=30¢? + 30B% + m2¢® + (m*/c)¢°B
~ 300 +308°=T%, (x). (5.11)
However,
RJ6,,(0)]# 6},(x) . (5.12)

J

Rather, one easily checks that

Rc[Tuu(x)] = GLV(X) ’ (5.13)
where
T,,(x)=6,,(x) -3¢(5,,0-29,9,)B(x). (5.14)

Thus we can also take the tensor T,,(x), expressed
in terms of the o field via Eq. (5.2), as the cor-
rect energy -momentum tensor of the original La-
grangian (5.1). The generators P,, M,,, D, and
K, are given by Egs. (3.6)—(3.9) with f(x) = cB(x) and
do satisfy the Lie algebra of the conformal group.
As anticipated in Sec. III, one also finds

(0|[B(x),D]|0y=ic#0, (5.15)

which indicates the spontaneous nature of the sym-
metry violation. It is clear that all conformally
invariant Lagrangian field theories constructed

by the Salam-Strathdee method will meet our con-
dition (4.35) by performing the field redefinition
(4.34). Thus the Lagrangian of a free massive
fermion field can be made conformally invariant
by writing

L= —Jy - Y —mifpes/ ™

-3(8,0)2e €/ me (5.16)
with g an arbitrary constant.
The definition
B(x)=(m/g)e®’™° _1]=B(x) -m/g (5.17)

leads to the simple o-model -type Lagrangian with
Yukawa coupling

L= Py -8 —mPy -3(8,B) —glYB. (5.18)

This model has been studied in Refs. (11 and 3),
where details can be found. We limit ourselves
here to observing that the scale deficiency is sim-
ply given by

T,,(x)=-1P(x)v, (8, - 8,)9(x) - $P(x)v,(8, —3,)d(x) —8,B(x)3,B(x)

+ 0, (BB ()Y —5(5,,0 -9,8,)B%(x) - 5(m/g)(6,,0 - 2,9,)B(x),

in terms of which it is straightforward to construct
the generators P,, M,,, D, and K, satisfying the
commutator algebra of the conformal group. The
tensor T,,(x) is readily interpreted as the proper
CCJ tensor of the invariant Lagrangian (5.16),

p(x)=mPyh= (m/g)0B(x), (5.19)

where B(x) is the Goldstone boson.
The tensor T,,(x) is
(5.20)

or, equivalently,

L= Ty -0y -3(3,8)" —gPuB (5.21)
with

0|Bx)|0y=m/g. (5.22)
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Although the symmetry is spontaneously broken,
the generators P,, M,,, D, and K, are well de-
fined since they are expressed in terms of the
physical field B(x), which vanishes asymptotical -
ly.9,11

One also finds, by explicit calculation, that

(0|[B(x), D]|0)=im/g,

which is in agreement with the spontaneous nature

of the symmetry violation.!! We emphasize again

that the special form (5.19) of p(x) is strictly a
consequence of the original invariance of the theo-
ry. As our next example we quote a four-param-
eter class of Lagrangians proposed by Chang and
Freund' in their study of field-current identities
for scalar mesons and the divergence of the dila-
tation current. The Lagrangian is

c2(b+ @)? 1 2 a
= -lt?(g(b—?&v 18, 0)? +d[—;2- +(b+ 90)2] ——8—(b+ oN1+ 2+ @)+ i—b
a 2 22y | 1+ ¢(b+ @)
st i (b+<p)]ln‘——————-—1_c(b+¢) (5.23)
and is such that quartic self-interaction,
6,.(x)=a@+b0¢ (5.24) LW, 8,0)= —2(3,¥) +dy*. (5.29)

as a consequence of the field equations. This La-
grangian is a nonpolynomial one and the kinetic
term is not of the standard form. However, the
virial condition is seen to be identically satisfied
by expanding the kinetic term in power series.

In this sense, the system (5.23) belongs to the
class of Lagrangians considered in the previous
section. The relation (5.24) represents the par-
tial conservation of the dilatation current, which,
according to the conclusion of the previous sec-
tion, is now a combined effect of intrinsic and
spontaneous breakdown of scale invariance. In-
deed, the two limiting cases

(b=0; c=)
and

(@=0; c=)

give

£(b=0;c=2)=-3(8 ,0) —3a9 +d¢* (5.25)
with

0,.(0=0)=ap(x), (5.26)
and

L£(a=0;c==)= —3(3,9)* +d(b+¢)* (5.27)
with

6,,(a=0)=b00(x). (5.28)

Thus, the a term in 6, ,(x) represents the partial
conservation of dilatation current as obtained from
the standard o-type model Lagrangian. Instead,
the b term in 6, ,(x) signals the spontaneous nature
of the symmetry violation in the conformally in-
variant theory of a massless scalar field with

The breaking terms arising by shifting the field
Y according to

V(x)=@(x)+d
“remember” the original invariance of the theory
and are so correlated as to produce the field equa-
tion (5.28). Indeed it is readily checked that the
general Lagrangian

£=-30,0) -2m*¢* -g¢* -f¢* k¢ -1 (5.31)
will lead to the condition (5.28) if and only if

m _g 3k _4h_
3¢ 4 m> Ek

(5.30)

b. (5.32)

When such correlation exists, the shift (5.30)
changes trivially the Lagrangian (5.31) into (5.29).
The above considerations can be easily extended to
the general o-model Lagrangian, inclusive of the
pion and nucleon fields. Thus the conformally in-
variant Lagrangian

L£=-3(0,7) -3(3,8)
N[y 8+f(B+iT - Tys)IN

2@+ B2 (5.33)
is obtained from
£=-3(8,M* -2(8,B)* - (@ +B*)*
-3m*T* —3u°B? - gB(¥ + B?)
Ny +8+M+f(B+iT*Ty,)[N-kB -h (5.34)
by the field redefinition

B(x)=8(x) —¢ (5.35)
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provided that
——:—:—:—:———:C, (5.36)

and one finds that because of this correlation
6,,(x)=cOB(x). (5.37)

The commutator algebra of the broken conformal
group associated with the system (5.34) is im-
mediately obtained from the general results of
Sec. III. The modified generators obtained from
the new tensor

T, (x)=0,,(k) -35¢(5,,0 -8,9,)B(x)

do satisfy the closed Lie algebra of the conformal
group. Thus the emergence of dimensional param-
eters in (5.34) is consistent with original invari-
ance of the Lagrangian (5.33). This has also been
shown in II for the ¢* theory by means of explicit
dynamical calculations.
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