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Center-of-mass theorem in post-Newtonian hydrodynamics
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In the post-Newtonian theory of a perfect fluid in adiabatic motion, the conservation laws of energy,
momentum, and angular momentum can be obtained via Noether's theorem from the invariance properties of
the Lagrangian under infinitesimal time and space translations and rotations, in complete analogy to the
corresponding case of interacting particles; but, again in complete analogy, the center-of-mass theorem cannot
be as directly related to the infinitesimal transformations of a group. Therefore the center-of-mass theorem
had previously only been obtained by direct integration of the equations of motion. However, it has been
shown recently in the case of interacting particles by Havas and Stachel that invariance of the Lagrangian
under space and time translations is by itself sufficient to guarantee the existence of a center-of-mass theorem,
and it is shown here that the techniques developed for that case also lead to the center-of-mass theorem for
the perfect fluid.

I. IN TR0DUCTION A ND DISCUSSION

Within a year of the creation of the general theo-
ry of relativity, Lorentz and Droste' succeeded
in obtaining the post-Newtonian (PN) equations of
motion appropriate for a number of bodies inter-
acting gravitationally' from a PN Lagrangian fol-
lowing from an exact Lagrangian for a fluid by ex-
pansion of the metric in powers of v/c, and elim-
ination of the gravitational field variables. Their
work apparently went unnoticed, and the method
was only reinvented four decades later by Plebah-
ski and Bakanski, ' who derived the PN equations
of motion for a fluid in isentropic flow as well as
for a number of bodies; their results can easily be
extended to the adiabatic case. By the latter we

mean a flow in which the entropy is constant along
each streamline, but not necessarily from one
streamline to another as in isentropic flow.

Similarly, the PN equations of motion for a
general- relativistic fluid were obtained by direct
expansion in powers of v/c of the general-relativis-
tic field equations and equations of motion for a
perfect fluid by Chandrasekhar. He also derived
the PN conservation equations for energy, momen-
tum, and anguiar momentum of the fluid clem. ents,
as well as integral forms of these conservation
laws for a fluid body, by direct integration of the
PN equations of motion. '

Two of us have verified that the Plebanski-
Bazaiski and Chandrasekhar formulations of the
equations of motion are fully equivalent, and have
derived the conservation laws for energy, momen-
tum, and angular momentum (which also agree
with those of Chandrasekha, r) from standard con-
siderations of the invariance of the Plebanski-

Bazanski Lagrangian under time and space transla-
tions and spatial rotations, respectively. "' We
have also carried out the PN approximation on the
Eulerian variational principle developed for re-
lativistic hydrodynamics by Tam and O'Hanlon, '
and verified that these are also equivalent to the
Plebanski- Baianski and Chandrasekhar formu-
lations. '

This raises the question of the center-of-mass
(c.m. ) theorem for the fluid in PN approximation.
In the past, this conservation law for a system
of point particles interacting gravitationally had
been derived directly from the equations of motion
for the system. ' For an elastic body it had been
derived by Fock, using the approach to the equa-
tions-of-motion problem that he had first developed
in 1939." In Fock's method the equations of mo-
tion of the body as a, whole (which he called the
external equations of motion) in the PN approxi-
mation are developed by a method that requires
only the use of the Newtonian equations of motion
for the behavior of the internal structure of the
body (which he called the internal equations of mo-
tion), without any need for a PN general-relativi-
stic elastic theory. On the basis of his approach,
Fock was able to develop the integral conservation
laws for an elastic body in the PN approximation
from an analysis of only the PN external equations
of motion and the Newtonian internal equations of
motion. His method is quite complicated, and de-
pends upon the imposition of harmonic coordinate
conditions. The resulting PN c.m. theorem for an
elastic body applies, of course, a fmtiori to a
fluid body. Our result, Eq. (16), agrees with
that of Fock, Eqs. (79.58) and (79.59) of Ref. 10."'

Yet it s& .ms that the c.m. conservation theorem
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should also be derivable from Noether theorem
considerations based upon symmetry properties
of the PN Lagrangian for any theory for which
such a Lagrangian exists, just as the Newtonian
c.m. theorem was derived by Bessel-Hagen for
a system of interacting particles. " However, even
in the latter case such a derivation poses diffi-
culties in PN order.

The problem, as discussed by Havas and
Stachel, ' is basically connected with the fact that
for the infinitesimal Lorentz transformation
("boost") the transformed time t' = f+ M depends
on the untransformed space (as well as time) co-
ordinates. But then for 3 y variational principle
of the form

which is always defined, can be interpreted as the
velocity of the e.rn. point; however, to define this
point explicitly requires that R (and thus K) be ex-
pressible as a function of the position and velocity
vectors. In general, the existence of such a vector
function is not ensured; however, if the system
described by the variational principle (1) repre-
sents an approximation to a Poincare-invariant
variational principle, with two-body forces, the
function always exists. '6 Furthermore, it was
shown in Ref. 13 that in this case it is sufficient to
treat E as constant in Eq. (3), i.e. , to evaluate
only

with the help of the equations of motion, and thus

where I depends on more than a single position
vector (as it necessarily must if it is to describe
interactions), it is not obvious how to define a
unique dt' for all positions, as needed for Noether's
theorem, which requires us to compare f I dt with

JI 'dt'. One way out of this suggested in Ref. 13
was to consider directly a set of infinitesimal
transformations

Q = 8'. R/c', 6r~ = Zt (~)

associated with a c.m. vector R(t). It was then

shown that any I. invariant under space and time
translations, i.e. , which conserves energy and
momentum, is also invariant under the transfor-
mations (3), provided that R is related to the total
energy E and momentuxn P by

(3)

and the corresponding conservation laws resulting
from the Noether identities can be interpreted as
the c m theorem x '5 Thus once one has obtained
the energy and momentum integrals for such a
system, one can immediately write down a con-
served c.m. vector 6 such that

6=K- Pt = constant,

Here the velocity

dK d
dt dt c

= —~B =P+Ov c

For all Lagrangians discussed in Ref. 13, and in-
deed, as shown in Bef. 16, for all approximately
relativistic Lagrangians which in the limit c —~
reduce to the Newtonian Lagrangian

myUy ~j p Q ( )

and for which [either exactly or at Iea« to order
(v/c)'] the (two-body) interactions are symmetric
in the particles; R is given by"

mq 1+ ——~ rq + 2 V~,2 c 2c

I'
a «~a)

where V~ is the Newtonian potential energy of the
kth particle in the field of all others.

The above method involves a slight extension of
Noether's theorem to include infinitesimal trans-
formation which are functionals [such as Eqs. (3)
with (3)]. Another method, which also involves
a slight extension of Noether's theorem, has been
developed by two of us recently. " It requires
consideration of transformations in which the I.dt
of Eq. (1) is not restricted to be invariant up to a
divergence, but where it has this property only
modulo the equations of motion. " With this ex-
tension, and an interpretation of the action of the
Loxentz transformation on the coordinates for
which 5t =0, so that t'= t, as discussed in Bef. 14,
all action integrals (1) considered in Refs. 13 and
16 are indeed invariant to order (v/e)' under the
full Poincark group. These questions will be dis-
cussed in detail elsewhere. " Both methods, of
course, must lead to the same c.m. theorem.
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II. THE POST-NEWTONIAN FLUID

p ' l s those for the various action principlesPN fluid oses the same prob ems as
~ ~ ~

The action principle for the P '
p

f ply where L as given in Ref. 3, isticle s stems. It still has the orm, wfor approximately relativistic par ic e sys

L = —— pd3x+ —— pv d x+
8

pv d x+
2 G

)
d'xd'xW)4 G [X—X

i ~ rV

C

6 G

1
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)2 ~ dp d'x d'x
C2
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nsit a comma denotes partial differentiation, andwhere p is ethe conserved Newtonian matter densi y, a corn

c2 1 1 d'x
G c 2

' "=p*=p 1+~ -v'+3G, x
X —X

ts the local three-velocity of the fluid andi n matter density. v'~xj represen s eis the conserved post-Newtonian m
ntum following from the invariance ofroximately) conserved energy and momen um o

5-712) under infinitesimal translations in time and space as given y a

o)
~'x
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+~ — pv d x+G
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~ dp
) )I

x x ' PP d3x d3xd x"d x'd x+ pv +2G, d x(x- x'
I )x- x"

I Jx-x

pp
tx- x'( (13)

P= W d'x, (14)

where m is e mthe momentum density of the fluid:

m C m
2 t- 1

m+P,V + 2 jLl,v V
GI

1 dp( 1 ) — v~d3x + p,vm 4 sm)ds t
&& x x &

& m

..er ofTo obtain the c.m. theorem we can use ei e
the two methods discussed in Sec. I. The second
one is more appropriately discussed in connection
with the derivation of the other conservation laws. '
Here we shall present the first method. Thus we
mus e et d t rmine R where now the expressions P and

er theE in Eq. (3) must be written as integrals over e
s. Herefluid body of some vector density functions.

we may e gui ebe ided by the experience of the c.m. re-
sult for a system of particles in PN approximation,
i.e. , by the resultant expression (11). It shows that
th PN correction of the Newtonian c.m. vector ise

eequivalen o corret t " cting" the mass of each particl
b taking into account the mass-energy equivalencey i
relation, i.e. , by replacing the rest mass o
particle by its total energy divided by c', to obtain

particles had to be distributed equally between

them. The problem now is to obtain the correct
hydrodynamic analog, guided by this heuristic idea.
If p*e is the internal energy of compressibility
per unit vo ume, i't l 't seems reasonable to guess that

K = p*xd'x

+~ — p v xd3x

xd'xd'x
x)I

+ p fxd'x

'dp p
p p
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will be the correct volume integral whose total time
derivative will be P. For the first term in the in-
tegral is the moment of the matter density, the sec-
ond term is the moment of the kinetic energy density,
the third term is the moment of the gravitationa, l
potentialIenergy density at point x, halved in ac-
cordance with the sharing rule found to work for
particles, and the last term is the moment of the
elastic compressibility energy density, the last
three energy terIDS being dlvlded by c to get their
contribution to the effective PN mass in the cal-
culation of the c.m. density. At any rate, no matter
how plausible we have made this guess, the task
now is to verify that Eq. (9) holds to the order in-
dicated.

To do this we shall have to use the equation of
mass conservation for p*

needed total derivatives:

p E(x, t)d' = p d
d'x. (21)

fluid fluid

Now, it is just a matter of calculating the total
time derivative of Eq. (16), which we proceed to
do, term by term, omitting the details of the es-
sentially trivial intermediate steps. %e get suc-
cessively

(22)

using (lV) and (21);

pv vd'x —2 v &Pxd'x

, v (x-x')
IX- X'l'

+ (p*~')
Bh tS (1V) (23)

and the Newtonian equations of motion for the fluid using (1V), (18), and (21);

dv
p —=- ~P+ p&@

Ch

where 4 is the Newtonian gravitational potential,
for which

PP X+X X+X
~
~I

~ ~

«r I ~
~~ d~ ~ I

«p
I

3 X X

Note that in all terms in which a c ' occurs, i.e. ,
all but the first term in Eq. (16), the PN matter den-
sity p may be replaced by the Newtonian matter
density p, since the calculation is only correct to
order (v/c)' in any case. For a locally adiabatic
Qow we also have

(20)

dh
pfxd x= — p V 'v xd x

+ p ———vdx

(24)

The following mathematical lemma, familiar from
fluid dynamics, ~ is also useful in computing the

using (20) and the integral expression for e given
in Eq. (16).

Combining Eqs. (22)-(25), we get

dK „„, 1,„, G pp'(x-x')(x-x') vd, „, G pp'v
p vdx+ 2 2

pvvdx-
2 p Q X X X x

v +pxd x — p +' vxd x+ pv —dx- pvdx
0 p

(26)

The four last, pressure-dependent, terms combine
to give

third term of (26) can be rewritten by noting that

pv —d x pxv 'dS,dp

p
(2V)

[X~ X
) @Qt+ ««p ~ + ««pI ~ ' ~X- X'I (X- X'I

and the surface integral vanishes (either taking the
surface outside the body, or noting that the pres-
sure vanishes on the surface of the body). The

When this is done, we finally get the desired re-
sult: Eq. (9), with the K and P of Eqs. (14)-(16).
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Ãote added in Proof. In a recently published
paper by G. Contopoulos and N. Spyrou, Astrophys. J.
205, 592 (1976), it is shown that the momentum
of the PN fluid, in the form given by Chandrasek-
har, ' may be written as the total time derivative
of a vector equivalent to our K by methods similar
to those of our Sec. II. This result is then used

to define a c.m. point. As shown in Ref. 6, Chand-
rasekhar's definition of the momentum is equiva-
lent to that given here. Contopoulos and Spyrou
do not seem to be aware that the c.m. expression
for a fluid was given by Fock some time ago, as
discussed in Sec. I of this paper.

The results presented in Sec. II constitute part of a
thesis submitted to Boston University in partial fulfill-
ment of the requirements for the Ph. D. degree.
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